Minimally Invasive Implantable Biomaterials for Bone Reconstruction

Feng Han, Zhao Liu, Qiang Wei, Luguang Ding, Li Yu, Jiayuan Wang, Huan Wang, Weidong Zhang, Yingkang Yu, Yantao Zhao, Song Chen, Bin Li

Engineering ›› 2025, Vol. 46 ›› Issue (3) : 23-46.

PDF(4294 KB)
PDF(4294 KB)
Engineering ›› 2025, Vol. 46 ›› Issue (3) : 23-46. DOI: 10.1016/j.eng.2024.01.031
Research
Review

Minimally Invasive Implantable Biomaterials for Bone Reconstruction

Author information +
History +

Abstract

Bone injuries induced by accidents or bone-related disease have dramatically increased in the past decades. The application of biomaterials has become an inextricable part of treatment for new bone formation and regeneration. Different from traditional bone-regeneration materials, injectable biomaterials—ranging from bioceramics to polymers—have been applied as a means of promoting surgery with a minimal intervention approach. In this review, we summarize the most recent developments in minimally invasive implantable biomaterials for bone reconstruction and different ways to achieve osteogenesis, with a focus on injectable biomaterials for various applications in the orthopedic field. More specifically, bioceramics and polymeric materials, together with their applications in bone fracture healing, vertebral body augmentation, bone implant fixation, bone tumor therapy, and bone-defect-related infection treatment are reviewed in detail. Recent progress in injectable biomaterials with multiple functionalities and bioresponsive properties is also reviewed. Finally, we summarize the challenges in this field and future directions for clinical treatment.

Graphical abstract

Keywords

Bone / Regeneration / Implantable biomaterials / Biomedical applications / Minimal intervention

Cite this article

Download citation ▾
Feng Han, Zhao Liu, Qiang Wei, Luguang Ding, Li Yu, Jiayuan Wang, Huan Wang, Weidong Zhang, Yingkang Yu, Yantao Zhao, Song Chen, Bin Li. Minimally Invasive Implantable Biomaterials for Bone Reconstruction. Engineering, 2025, 46(3): 23‒46 https://doi.org/10.1016/j.eng.2024.01.031

References

[1]
Xue X, Hu Y, Deng Y, Su J.Recent advances in design of functional biocompatible hydrogels for bone tissue engineering.Adv Funct Mater 2021; 31(19):2009432.
[2]
Tamimi F, Torres J, Lopez-Cabarcos E, Bassett DC, Habibovic P, Luceron E, et al.Minimally invasive maxillofacial vertical bone augmentation using brushite based cements.Biomaterials 2009; 30(2):208-216.
[3]
Finkemeier CG.Bone-grafting and bone-graft substitutes.J Bone Joint Surg Am 2002; 84(3):454-464.
[4]
Peters MC, McLean ME.Minimally invasive operative care. II. Contemporary techniques and materials: an overview.J Adhes Dent 2001; 3(1):17-31.
[5]
Raucci MG, D U’Amora, Ronca A, Ambrosio L.Injectable functional biomaterials for minimally invasive surgery.Adv Healthc Mater 2020; 9(13):2000349.
[6]
Alamir HTA, Ismaeel GL, Jalil AT, Hadi WH, Jasim IK, Almulla AF, et al.Advanced injectable hydrogels for bone tissue regeneration.Biophys Rev 2023; 15(2):223-237.
[7]
Ghandforoushan P, Alehosseini M, Golafshan N, Castilho M, Dolatshahi-Pirouz A, Hanaee J, et al.Injectable hydrogels for cartilage and bone tissue regeneration: a review.Int J Biol Macromol 2023; 246:125674.
[8]
Leach DG, Young S, Hartgerink JD.Advances in immunotherapy delivery from implantable and injectable biomaterials.Acta Biomater 2019; 88:15-31.
[9]
Togawa D, Bauer TW, Lieberman IH, Takikawa S.Histologic evaluation of human vertebral bodies after vertebral augmentation with polymethyl methacrylate.Spine 2003; 28(14):1521-1527.
[10]
Ying SH, Kao HC, Chang MC, Yu WK, Wang ST, Liu CL.Fixation strength of PMMA-augmented pedicle screws after depth adjustment in a synthetic bone model of osteoporosis.Orthopedics 2012; 35(10):e1511-e1516.
[11]
Galovich LA, Perez-Higueras A, Altonaga JR, Orden JM, Barba ML, Morillo MT.Biomechanical, histological and histomorphometric analyses of calcium phosphate cement compared to PMMA for vertebral augmentation in a validated animal model.Eur Spine J 2011; 20:376-382.
[12]
Montazerian M, Dutra ZE.History and trends of bioactive glass-ceramics.J Biomed Mater Res A 2016; 104(5):1231-1249.
[13]
Daculsi G, Durand M, Fabre T, Vogt F, Uzel AP, Rouvillain JL.Development and clinical cases of injectable bone void filler used in orthopaedic.IRBM 2012; 33(4):254-262.
[14]
Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, et al.Injectable hydrogels for cartilage and bone tissue engineering.Bone Res 2017; 5(1):17014.
[15]
Vishnu M Priya, Sivshanmugam A, Boccaccini AR, Goudouri OM, Sun W, Hwang N, et al.Injectable osteogenic and angiogenic nanocomposite hydrogels for irregular bone defects.Biomed Mater 2016; 11(3):035017.
[16]
Bongio M, van JJJP den Beucken, Leeuwenburgh SCG, Jansen JA.Development of bone substitute materials: from ‘biocompatible’ to ‘instructive’.J Mater Chem 2010; 20(40):8747.
[17]
Hayashi K, Matsuguchi N, Uenoyama K, Sugioka Y.Re-evaluation of the biocompatibility of bioinert ceramics in vivo.Biomaterials 1992; 13(4):195-200.
[18]
Chowdhury S, Vohra YK, Lemons JE, Ueno M, Ikeda J.Accelerating aging of zirconia femoral head implants: change of surface structure and mechanical properties.J Biomed Mater Res 2007; 81(2):486-492.
[19]
Piconi C, Maccauro G.Zirconia as a ceramic biomaterial.Biomaterials 1999; 20(1):1-25.
[20]
Hench LL.The story of bioglass.J Mater Sci Mater Med 2006; 17(11):967-978.
[21]
Kokubo T.Bioactive glass ceramics: properties and applications.Biomaterials 1991; 12(2):155-163.
[22]
Daculsi G.Smart scaffolds: the future of bioceramic.J Mater Sci Mater Med 2015; 26(4):154.
[23]
Mahlooji E, Atapour M, Labbaf S.Electrophoretic deposition of bioactive glass—chitosan nanocomposite coatings on Ti-6Al-4V for orthopedic applications.Carbohydr Polym 2019; 226:115299.
[24]
Gatti AM, Zaffe D, Poli GP.Behaviour of tricalcium phosphate and hydroxyapatite granules in sheep bone defects.Biomaterials 1990; 11(7):513-517.
[25]
Wu Y, Yang L, Chen L, Geng M, Xing Z, Chen S, et al.Core–shell structured porous calcium phosphate bioceramic spheres for enhanced bone regeneration.ACS Appl Mater Interfaces 2022; 14(42):47491-47506.
[26]
Begley CT, Doherty MJ, Mollan RA, Wilson DJ.Comparative study of the osteoinductive properties of bioceramic, coral and processed bone graft substitutes.Biomaterials 1995; 16(15):1181-1185.
[27]
Carey LE, Xu HH, Takagi S, Chow LC.Premixed rapid-setting calcium phosphate composites for bone repair.Biomaterials 2005; 26(24):5002-5014.
[28]
Koju N, Sikder P, Gaihre B, Bhaduri SB.Smart injectable self-setting monetite based bioceramics for orthopedic applications.Materials 2018; 11(7):1258.
[29]
Bohner M, Baroud G.Injectability of calcium phosphate pastes.Biomaterials 2005; 26(13):1553-1563.
[30]
Ishikawa K, Matsuya S, Nakagawa M, Udoh K, Suzuki K.Basic properties of apatite cement containing spherical tetracalcium phosphate made with plasma melting method.J Mater Sci Mater Med 2004; 15(1):13-17.
[31]
Aberg J, Brisby H, Henriksson HB, Lindahl A, Thomsen P, Engqvist H.Premixed acidic calcium phosphate cement: characterization of strength and microstructure.J Biomed Mater Res 2010; 93(2):436-441.
[32]
Han B, Ma PW, Zhang LL, Yin YJ, Yao KD, Zhang FJ, et al.β-TCP/MCPM-based premixed calcium phosphate cements.Acta Biomater 2009; 5(8):3165-3177.
[33]
Luo J, Engqvist H, Persson C.A ready-to-use acidic, brushite-forming calcium phosphate cement.Acta Biomater 2018; 81:304-314.
[34]
Lundager HE Madsen, Christensson F.Precipitation of calcium phosphate at 40 °C from neutral solution.J Cryst Growth 1991; 114(4):613-618.
[35]
Sakae T, Nagata H, Sudo T.The crystal structure of synthetic calcium phosphate-sulfate hydrate, Ca<2) HPO<4) SO<4). 4H<2) O, and its relation to brushite and gypsum.Am Min 1978; 63(5–6):520-527.
[36]
Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A.Synthesis methods for nanosized hydroxyapatite with diverse structures.Acta Biomater 2013; 9(8):7591-7621.
[37]
Gallinetti S, Canal C, Ginebra MP.Development and characterization of biphasic hydroxyapatite/β-TCP cements.J Am Ceram Soc 2014; 97(4):1065-1073.
[38]
Sariibrahimoglu K, Wolke JG, Leeuwenburgh SC, Yubao L, Jansen JA.Injectable biphasic calcium phosphate cements as a potential bone substitute.J Biomed Mater Res 2014; 102(3):415-422.
[39]
Komlev VS, Barinov SM, Bozo II, Deev RV, Eremin II, Fedotov AY, et al.Bioceramics composed of octacalcium phosphate demonstrate enhanced biological behavior.ACS Appl Mater Interfaces 2014; 6(19):16610-16620.
[40]
Chen S, Wang S, Li H, Forsberg K.Eu3+ doped monetite and its use as fluorescent agent for dental restorations.Ceram Int 2018; 44(9):10510-10516.
[41]
Yu T, Zeng S, Liu X, Shi H, Ye J, Zhou C.Application of Sr-doped octacalcium phosphate as a novel Sr carrier in the α-tricalcium phosphate bone cement.Ceram Int 2017; 43(15):12579-12587.
[42]
Xu S, Lin K, Wang Z, Chang J, Wang L, Lu J, et al.Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics.Biomaterials 2008; 29(17):2588-2596.
[43]
Li H, Xue K, Kong N, Liu K, Chang J.Silicate bioceramics enhanced vascularization and osteogenesis through stimulating interactions between endothelia cells and bone marrow stromal cells.Biomaterials 2014; 35(12):3803-3818.
[44]
Chen S, Shi L, Luo J, Engqvist H.Novel fast-setting mineral trioxide aggregate: its formulation, chemical–physical properties, and cytocompatibility.ACS Appl Mater Interfaces 2018; 10(24):20334-20341.
[45]
Prati C, Gandolfi MG.Calcium silicate bioactive cements: biological perspectives and clinical applications.Dent Mater 2015; 31(4):351-370.
[46]
Setbon HM, Devaux J, Iserentant A, Leloup G, Leprince JG.Influence of composition on setting kinetics of new injectable and/or fast setting tricalcium silicate cements.Dent Mater 2014; 30(12):1291-1303.
[47]
Charnley J.Anchorage of the femoral head prosthesis to the shaft of the femur. J Bone Joint Surg, 1960; 42-B(1):28-30.
[48]
Tai CL, Lai PL, Lin WD, Tsai TT, Lee YC, Liu MY, et al.Modification of mechanical properties, polymerization temperature, and handling time of polymethylmethacrylate cement for enhancing applicability in vertebroplasty.BioMed Res Int 2016; 2016:7901562.
[49]
Kim SB, Kim YJ, Yoon TL, Park SA, Cho IH, Kim EJ, et al.The characteristics of a hydroxyapatite-chitosan-PMMA bone cement.Biomaterials 2004; 25(26):5715-5723.
[50]
Boger A, Bohner M, Heini P, Verrier S, Schneider E.Properties of an injectable low modulus PMMA bone cement for osteoporotic bone.J Biomed Mater Res, 86B 2008; 474-482.
[51]
Lopez A, Hoess A, Thersleff T, Ott M, Engqvist H, Persson C.Low-modulus PMMA bone cement modified with castor oil.Biomed Mater Eng 2011; 21(5–6):323-332.
[52]
Tsukeoka T, Suzuki M, Ohtsuki C, Sugino A, Tsuneizumi Y, Miyagi J, et al.Mechanical and histological evaluation of a PMMA-based bone cement modified with gamma-methacryloxypropyltrimethoxysilane and calcium acetate.Biomaterials 2006; 27(21):3897-3903.
[53]
Liu Z, Tang Y, Kang T, Rao M, Li K, Wang Q, et al.Synergistic effect of HA and BMP-2 mimicking peptide on the bioactivity of HA/PMMA bone cement.Colloids Surf B 2015; 131:39-46.
[54]
Chen L, Zhai D, Huan Z, Ma N, Zhu H, Wu C, et al.Silicate bioceramic/PMMA composite bone cement with distinctive physicochemical and bioactive properties.RSC Advances 2015; 5(47):37314-37322.
[55]
Cui X, Huang C, Zhang M, Ruan C, Peng S, Li L, et al.Enhanced osteointegration of poly(methylmethacrylate) bone cements by incorporating strontium-containing borate bioactive glass.J R Soc Interface 2017; 14(131):20161057.
[56]
Engstrand J, Persson C, Engqvist H.The effect of composition on mechanical properties of brushite cements.J Mech Behav Biomed Mater 2014; 29:81-90.
[57]
O R’Neill, McCarthy HO, Montufar EB, Ginebra MP, Wilson DI, Lennon A, et al.Critical review: injectability of calcium phosphate pastes and cements.Acta Biomater 2017; 50:1-19.
[58]
El-Fiqi A, Kim JH, Perez RA, Kim HW.Novel bioactive nanocomposite cement formulations with potential properties: incorporation of the nanoparticle form of mesoporous bioactive glass into calcium phosphate cements.J Mater Chem B 2015; 3(7):1321-1334.
[59]
Gbureck U, Spatz K, Thull R, Barralet JE.Rheological enhancement of mechanically activated alpha-tricalcium phosphate cements. J Biomed Mater Res, 2005; 73B(1):1-6.
[60]
Mohammadi M, Hesaraki S, Hafezi-Ardakani M.Investigation of biocompatible nanosized materials for development of strong calcium phosphate bone cement: comparison of nano-titania, nano-silicon carbide and amorphous nano-silica.Ceram Int 2014; 40(6):8377-8387.
[61]
Kruger R, Groll J.Fiber reinforced calcium phosphate cements—on the way to degradable load bearing bone substitutes?.Biomaterials 2012; 33(25):5887-5900.
[62]
Canal C, Ginebra MP.Fibre-reinforced calcium phosphate cements: a review.J Mech Behav Biomed Mater 2011; 4(8):1658-1671.
[63]
Kucko NW, de SS Lacerda, Sobral T Marques, Herber RP, van JJJP den Beuken, Zuo Y, et al.Tough and osteocompatible calcium phosphate cements reinforced with poly(vinyl alcohol) fibers.ACS Biomater Sci Eng 2019; 5(5):2491-2505.
[64]
Motisuke M, Santos VR, Bazanini NC, Bertran CA.Apatite bone cement reinforced with calcium silicate fibers.J Mater Sci Mater Med 2014; 25(10):2357-2363.
[65]
Gallinetti S, Mestres G, Canal C, Persson C, Ginebra MP.A novel strategy to enhance interfacial adhesion in fiber-reinforced calcium phosphate cement.J Mech Behav Biomed Mater 2017; 75:495-503.
[66]
Liu C, Shao H, Chen F, Zheng H.Effects of the granularity of raw materials on the hydration and hardening process of calcium phosphate cement.Biomaterials 2003; 24(23):4103-4113.
[67]
Montufar EB, Maazouz Y, Ginebra MP.Relevance of the setting reaction to the injectability of tricalcium phosphate pastes.Acta Biomater 2013; 9(4):6188-6198.
[68]
Jahandideh R, Behnamghader A, Hesaraki S.The effect of carboxylic acids and phosphate salts additives on the properties of chondroitin sulfate calcium phosphate cements.Ceram Int 2023; 49(6):9219-9230.
[69]
Gbureck U, Barralet JE, Spatz K, Grover LM, Thull R.Ionic modification of calcium phosphate cement viscosity. Part I: hypodermic injection and strength improvement of apatite cement.Biomaterials 2004; 25(11):2187-2195.
[70]
Fernandez E, Sarda S, Hamcerencu M, Vlad MD, Gel M, Valls S, et al.High-strength apatitic cement by modification with superplasticizers.Biomaterials 2005; 26(15):2289-2296.
[71]
Chen WC, Ju CP, Wang JC, Hung CC, Lin JHC.Brittle and ductile adjustable cement derived from calcium phosphate cement/polyacrylic acid composites.Dent Mater 2008; 24(12):1616-1622.
[72]
Gao C, Liu H, Luo ZP, Sajilafu YH, Yang L.Modification of calcium phosphate cement with poly(gamma-glutamic acid) and its strontium salt for kyphoplasty application.Mater Sci Eng C 2017; 80:352-361.
[73]
Wang J, Liu C, Liu Y, Zhang S.Double-network interpenetrating bone cement via in situ hybridization protocol.Adv Funct Mater 2010; 20(22):3997-4011.
[74]
Rodel M, Tessmar J, Groll J, Gbureck U.Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement.Acta Biomater 2018; 79:182-201.
[75]
Unosson J, Engqvist H.Development of a resorbable calcium phosphate cement with load bearing capacity.Bioceram Dev Appl 2014; 4:74.
[76]
Bahn SL.Plaster: a bone substitute.Oral Surg Oral Med Oral Pathol 1966; 21(5):672-681.
[77]
Coetzee AS.Regeneration of bone in the presence of calcium sulfate.Arch Otolaryngol 1980; 106(7):405-409.
[78]
Jung HM, Song GA, Lee YK, Baek JH, Ryoo HM, Kim GS, et al.Modulation of the resorption and osteoconductivity of alpha-calcium sulfate by histone deacetylase inhibitors.Biomaterials 2010; 31(1):29-37.
[79]
Ruan Z, Yao D, Xu Q, Liu L, Tian Z, Zhu Y.Effects of mesoporous bioglass on physicochemical and biological properties of calcium sulfate bone cements.Appl Mater Today 2017; 9:612-621.
[80]
Khatua C, Sengupta S, Kundu B, Bhattacharya D, Balla VK.Enhanced strength, in vitro bone cell differentiation and mineralization of injectable bone cement reinforced with multiferroic particles.Mater Des 2019; 167:107628.
[81]
Hu NM, Chen Z, Liu X, Liu H, Lian X, Wang X, et al.Mechanical properties and in vitro bioactivity of injectable and self-setting calcium sulfate/nano-HA/collagen bone graft substitute.J Mech Behav Biomed Mater 2012; 12:119-128.
[82]
Huan Z, Chang J.Self-setting properties and in vitro bioactivity of calcium sulfate hemihydrate-tricalcium silicate composite bone cements.Acta Biomater 2007; 3(6):952-960.
[83]
Bohner M.New hydraulic cements based on α-tricalcium phosphate–calcium sulfate dihydrate mixtures.Biomaterials 2004; 25(4):741-749.
[84]
Yang G, Liu J, Li F, Pan Z, Ni X, Shen Y, et al.Bioactive calcium sulfate/magnesium phosphate cement for bone substitute applications.Mater Sci Eng C 2014; 35:70-76.
[85]
Ding SJ, Shie MY, Hoshiba T, Kawazoe N, Chen G, Chang HC.Osteogenic differentiation and immune response of human bone-marrow-derived mesenchymal stem cells on injectable calcium-silicate-based bone grafts.Tissue Eng Part A 2010; 16(7):2343-2354.
[86]
Chen CC, Lai MH, Wang WC, Ding SJ.Properties of anti-washout-type calcium silicate bone cements containing gelatin.J Mater Sci Mater Med 2010; 21(4):1057-1068.
[87]
Xu C, Wang X, Zhou J, Huan Z, Chang J.Bioactive tricalcium silicate/alginate composite bone cements with enhanced physicochemical properties.J Biomed Mater Res 2018; 106(1):237-244.
[88]
Ding SJ, Shie MY, Wang CY.Novel fast-setting calcium silicate bone cements with high bioactivity and enhanced osteogenesis in vitro.J Mater Chem 2009; 19(8):1183.
[89]
Mestres G, Ginebra MP.Novel magnesium phosphate cements with high early strength and antibacterial properties.Acta Biomater 2011; 7(4):1853-1861.
[90]
Moseke C, Saratsis V, Gbureck U.Injectability and mechanical properties of magnesium phosphate cements.J Mater Sci Mater Med 2011; 22(12):2591-2598.
[91]
Liao J, Lu S, Duan X, Xie Y, Zhang Y, Li Y, et al.Affecting mechanism of chitosan on water resistance of magnesium phosphate cement.Int J Appl Ceram Technol 2018; 15(2):514-521.
[92]
Lu X, Chen B.Experimental study of magnesium phosphate cements modified by metakaolin.Constr Build Mater 2016; 123:719-726.
[93]
Wang S, Xu C, Yu S, Wu X, Jie Z, Dai H.Citric acid enhances the physical properties, cytocompatibility and osteogenesis of magnesium calcium phosphate cement.J Mech Behav Biomed Mater 2019; 94:42-50.
[94]
Liu W, Zhai D, Huan Z, Wu C, Chang J.Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility.Acta Biomater 2015; 21:217-227.
[95]
Utech S, Boccaccini AR.A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers.J Mater Sci 2015; 51(1):271-310.
[96]
Nejadnik MR, Yang X, Bongio M, Alghamdi HS, van JJ den Beucken, Huysmans MC, et al.Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles.Biomaterials 2014; 35(25):6918-6929.
[97]
Wang H, Bongio M, Farbod K, Nijhuis AW, van J den Beucken, Boerman OC, et al.Development of injectable organic/inorganic colloidal composite gels made of self-assembling gelatin nanospheres and calcium phosphate nanocrystals.Acta Biomater 2014; 10(1):508-519.
[98]
Boyer C, Figueiredo L, Pace R, Lesoeur J, Rouillon T, Visage CL, et al.Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering.Acta Biomater 2018; 65:112-122.
[99]
Zhao Y, Cui Z, Liu B, Xiang J, Qiu D, Tian Y, et al.An injectable strong hydrogel for bone reconstruction.Adv Healthc Mater 2019; 8(17):e1900709.
[100]
Cui X, Zhang Y, Wang H, Gu Y, Li L, Zhou J, et al.An injectable borate bioactive glass cement for bone repair: preparation, bioactivity and setting mechanism.J Non-Cryst Solids 2016; 432:150-157.
[101]
Gaharwar AK, Dammu SA, Canter JM, Wu CJ, Schmidt G.Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles.Biomacromolecules 2011; 12(5):1641-1650.
[102]
Kretlow JD, Klouda L, Mikos AG.Injectable matrices and scaffolds for drug delivery in tissue engineering.Adv Drug Deliv Rev 2007; 59(4–5):263-273.
[103]
Ifkovits JL, Burdick JA.Review: photopolymerizable and degradable biomaterials for tissue engineering applications.Tissue Eng 2007; 13(10):2369-2385.
[104]
Zhang M, Yang Y, Li M, Shang Q, Xie R, Yu J, et al.Toughening double-network hydrogels by polyelectrolytes.Adv Mater 2023; 35(26):e2301551.
[105]
Ullah F, Othman MB, Javed F, Ahmad Z, Md AH.Classification, processing and application of hydrogels: a review.Mater Sci Eng C 2015; 57:414-433.
[106]
Cui ZK, Kim S, Baljon JJ, Wu BM, Aghaloo T, Lee M.Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering.Nat Commun 2019; 10(1):3523.
[107]
Wu J, Zheng K, Huang X, Liu J, Liu H, Boccaccini AR, et al.Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in-situ bone formation in rat calvarial bone defects.Acta Biomater 2019; 91:60-71.
[108]
Mao AS, Shin JW, Mooney DJ.Effects of substrate stiffness and cell–cell contact on mesenchymal stem cell differentiation.Biomaterials 2016; 98:184-191.
[109]
Ingavle GC, Gionet-Gonzales M, Vorwald CE, Bohannon LK, Clark K, Galuppo LD, et al.Injectable mineralized microsphere-loaded composite hydrogels for bone repair in a sheep bone defect model.Biomaterials 2019; 197:119-128.
[110]
Hasani-Sadrabadi MM, Sarrion P, Pouraghaei S, Chau Y, Ansari S, Li S, et al.An engineered cell-laden adhesive hydrogel promotes craniofacial bone tissue regeneration in rats.Sci Transl Med 2020; 12(534):eaay6853.
[111]
Liu C, Wu J, Gan D, Li Z, Shen J, Tang P, et al.The characteristics of mussel-inspired nHA/OSA injectable hydrogel and repaired bone defect in rabbit.J Biomed Mater Res 2019; 108(5):1814-1825.
[112]
Mayol L, Quaglia F, Borzacchiello A, Ambrosio L, La MI Rotonda.A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: rheological, mucoadhesive and in vitro release properties.Eur J Pharm Biopharm 2008; 70(1):199-206.
[113]
Jung HH, Park K, Han DK.Preparation of TGF-beta1-conjugated biodegradable pluronic F127 hydrogel and its application with adipose-derived stem cells.J Control Release 2010; 147(1):84-91.
[114]
Tan H, Ramirez CM, Miljkovic N, Li H, Rubin JP, Marra KG.Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering.Biomaterials 2009; 30(36):6844-6853.
[115]
Bulpitt P, Aeschlimann D.New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels.J Biomed Mater Res 1999; 47(2):152-169.
[116]
Martinez-Sanz E, Ossipov DA, Hilborn J, Larsson S, Jonsson KB, Varghese OP.Bone reservoir: injectable hyaluronic acid hydrogel for minimal invasive bone augmentation.J Control Release 2011; 152(2):232-240.
[117]
Lei Y, Gojgini S, Lam J, Segura T.The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels.Biomaterials 2011; 32(1):39-47.
[118]
Jin R, Teixeira LS, Dijkstra PJ, van CA Blitterswijk, Karperien M, Feijen J.Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering.Biomaterials 2010; 31(11):3103-3113.
[119]
Pek YS, Kurisawa M, Gao S, Chung JE, Ying JY.The development of a nanocrystalline apatite reinforced crosslinked hyaluronic acid-tyramine composite as an injectable bone cement.Biomaterials 2009; 30(5):822-828.
[120]
De R Souza, Zahedi P, Allen CJ, Piquette-Miller M.Biocompatibility of injectable chitosan-phospholipid implant systems.Biomaterials 2009; 30(23–24):3818-3824.
[121]
Cho J, Heuzey MC, Begin A, Carreau PJ.Physical gelation of chitosan in the presence of beta-glycerophosphate: the effect of temperature.Biomacromolecules 2005; 6(6):3267-3275.
[122]
Ta HT, Dass CR, Larson I, Choong PF, Dunstan DE.A chitosan-dipotassium orthophosphate hydrogel for the delivery of Doxorubicin in the treatment of osteosarcoma.Biomaterials 2009; 30(21):3605-3613.
[123]
Chiu YL, Chen SC, Su CJ, Hsiao CW, Chen YM, Chen HL, et al.pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility.Biomaterials 2009; 30(28):4877-4888.
[124]
Bhattarai N, Gunn J, Zhang M.Chitosan-based hydrogels for controlled, localized drug delivery.Adv Drug Deliv Rev 2010; 62(1):83-99.
[125]
Grellier M, Granja PL, Fricain JC, Bidarra SJ, Renard M, Bareille R, et al.The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect.Biomaterials 2009; 30(19):3271-3278.
[126]
Lee KY, Bouhadir KH, Mooney DJ.Controlled degradation of hydrogels using multi-functional cross-linking molecules.Biomaterials 2004; 25(13):2461-2466.
[127]
LeRoux MA, Guilak F, Setton LA.Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration.J Biomed Mater Res 1999; 47(1):46-53.
[128]
Sakai S, Hirose K, Moriyama K, Kawakami K.Control of cellular adhesiveness in an alginate-based hydrogel by varying peroxidase and H2O2 concentrations during gelation.Acta Biomater 2010; 6(4):1446-1452.
[129]
Sakai S, Kawakami K.Synthesis and characterization of both ionically and enzymatically cross-linkable alginate.Acta Biomater 2007; 3(4):495-501.
[130]
O ED’Cearbhaill, Murphy M, Barry F, McHugh PE, Barron V.Behavior of human mesenchymal stem cells in fibrin-based vascular tissue engineering constructs.Ann Biomed Eng 2010; 38(3):649-657.
[131]
Ohta M, Suzuki Y, Chou H, Ishikawa N, Suzuki S, Tanihara M, et al.Novel heparin/alginate gel combined with basic fibroblast growth factor promotes nerve regeneration in rat sciatic nerve.J Biomed Mater Res 2004; 71(4):661-668.
[132]
Jin R, Moreira LS Teixeira, Dijkstra PJ, van CA Blitterswijk, Karperien M, Feijen J.Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels.J Control Release 2011; 152(1):186-195.
[133]
Kim M, Kim SE, Kang SS, Kim YH, Tae G.The use of de-differentiated chondrocytes delivered by a heparin-based hydrogel to regenerate cartilage in partial-thickness defects.Biomaterials 2011; 32(31):7883-7896.
[134]
Nie T, Baldwin A, Yamaguchi N, Kiick KL.Production of heparin-functionalized hydrogels for the development of responsive and controlled growth factor delivery systems.J Control Release 2007; 122(3):287-296.
[135]
Fujita M, Ishihara M, Simizu M, Obara K, Ishizuka T, Saito Y, et al.Vascularization in vivo caused by the controlled release of fibroblast growth factor-2 from an injectable chitosan/non-anticoagulant heparin hydrogel.Biomaterials 2004; 25(4):699-706.
[136]
Lee KY, Mooney DJ.Hydrogels for tissue engineering.Chem Rev 2001; 101(7):1869-1879.
[137]
Chen T, Small DA, McDermott MK, Bentley WE, Payne GF.Enzymatic methods for in situ cell entrapment and cell release.Biomacromolecules 2003; 4(6):1558-1563.
[138]
Wang LS, Chung JE, Chan PP, Kurisawa M.Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture.Biomaterials 2010; 31(6):1148-1157.
[139]
Liu Y, Chan-Park MB.Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering.Biomaterials 2009; 30(2):196-207.
[140]
Zhao Y, Han L, Yan J, Li Z, Wang F, Xia Y, et al.Irradiation sterilized gelatin–water–glycerol ternary gel as an injectable carrier for bone tissue engineering.Adv Healthc Mater 2017; 6(2):201600749.
[141]
Arnold MP, Daniels AU, Ronken S, García HA, Friederich NF, Kurokawa T, et al.Acrylamide polymer double-network hydrogels: candidate cartilage repair materials with cartilage-like dynamic stiffness and attractive surgery-related attachment mechanics.Cartilage 2011; 2(4):374-383.
[142]
Yang Y, Wang X, Yang F, Shen H, Wu D.A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels.Adv Mater 2016; 28(33):7178-7184.
[143]
Sun JY, Zhao X, Illeperuma WR, Chaudhuri O, Oh KH, Mooney DJ, et al.Highly stretchable and tough hydrogels.Nature 2012; 489(7414):133-136.
[144]
Cui N, Qian J, Xu W, Xu M, Zhao N, Liu T, et al.Preparation, characterization, and biocompatibility evaluation of poly(Nvarepsilon-acryloyl-L-lysine)/hyaluronic acid interpenetrating network hydrogels.Carbohydr Polym 2016; 136:1017-1026.
[145]
Jaiswal MK, Xavier JR, Carrow JK, Desai P, Alge D, Gaharwar AK.Mechanically stiff nanocomposite hydrogels at ultralow nanoparticle content.ACS Nano 2016; 10(1):246-256.
[146]
Si Y, Wang L, Wang X, Tang N, Yu J, Ding B.Ultrahigh-water-content, superelastic, and shape-memory nanofiber-assembled hydrogels exhibiting pressure-responsive conductivity.Adv Mater 2017; 29(24):1700339.
[147]
Navaei A, Saini H, Christenson W, Sullivan RT, Ros R, Nikkhah M.Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.Acta Biomater 2016; 41:133-146.
[148]
Konwar A, Kalita S, Kotoky J, Chowdhury D.Chitosan-iron oxide coated graphene oxide nanocomposite hydrogel: a robust and soft antimicrobial biofilm.ACS Appl Mater Interfaces 2016; 8(32):20625-20634.
[149]
Desai RM, Koshy ST, Hilderbrand SA, Mooney DJ, Joshi NS.Versatile click alginate hydrogels crosslinked via tetrazine-norbornene chemistry.Biomaterials 2015; 50:30-37.
[150]
Yu F, Cao X, Zeng L, Zhang Q, Chen X.An interpenetrating HA/G/CS biomimic hydrogel via Diels–Alder click chemistry for cartilage tissue engineering.Carbohydr Polym 2013; 97(1):188-195.
[151]
Feng Q, Wei K, Lin S, Xu Z, Sun Y, Shi P, et al.Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue regeneration.Biomaterials 2016; 101:217-228.
[152]
Bai X, Gao M, Syed S, Zhuang J, Xu X, Zhang XQ.Bioactive hydrogels for bone regeneration.Bioact Mater 2018; 3(4):401-417.
[153]
Dethe MR, Prabakaran A, Ahmed H, Agrawal M, Roy U, Alexander A.PCL–PEG copolymer based injectable thermosensitive hydrogels.J Control Release 2022; 343:217-236.
[154]
Collins MN, Ren G, Young K, Pina S, Reis RL, Oliveira JM.Scaffold fabrication technologies and structure/function properties in bone tissue engineering.Adv Funct Mater 2021; 31(21):2010609.
[155]
Johnson CT, Wroe JA, Agarwal R, Martin KE, Guldberg RE, Donlan RM, et al.Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by Staphylococcus aureus and supports fracture healing.Proc Natl Acad Sci USA 2018; 115(22):E4960-E4969.
[156]
Chauhan N, Gupta P, Arora L, Pal D, Singh Y.Dexamethasone-loaded, injectable pullulan-poly(ethylene glycol) hydrogels for bone tissue regeneration in chronic inflammatory conditions.Mater Sci Eng C 2021; 130:112463.
[157]
Wu YL, Chen X, Wang W, Loh XJ.Engineering bioresponsive hydrogels toward healthcare applications.Macromol Chem Phys 2016; 217(2):175-188.
[158]
He C, Kim SW, Lee DS.In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery.J Control Release 2008; 127(3):189-207.
[159]
Fu S, Ni P, Wang B, Chu B, Zheng L, Luo F, et al.Injectable and thermo-sensitive PEG–PCL–PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration.Biomaterials 2012; 33(19):4801-4809.
[160]
Zhao X, Olsen I, Li H, Gellynck K, Buxton PG, Knowles JC, et al.Reactive calcium-phosphate-containing poly(ester-co-ether) methacrylate bone adhesives: chemical, mechanical and biological considerations.Acta Biomater 2010; 6(3):845-855.
[161]
Xu T, Yang Y, Yeung EHL, Chen Q, Bei HP, Yang Q, et al.Injectable, self-contained, subaqueously cross-linking laminous adhesives for biophysical-chemical modulation of osteochondral microenvironment.Adv Funct Mater 2023; 33(23):2213428.
[162]
Dawson E, Mapili G, Erickson K, Taqvi S, Roy K.Biomaterials for stem cell differentiation.Adv Drug Deliv Rev 2008; 60(2):215-228.
[163]
Pierschbacher MD, Ruoslahti E.Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule.Nature 1984; 309(5963):30-33.
[164]
Hersel U, Dahmen C, Kessler H.RGD modified polymers: biomaterials for stimulated cell adhesion and beyond.Biomaterials 2003; 24(24):4385-4415.
[165]
Shin H, Temenoff JS, Bowden GC, Zygourakis K, Farach-Carson MC, Yaszemski MJ, et al.Osteogenic differentiation of rat bone marrow stromal cells cultured on Arg-Gly-Asp modified hydrogels without dexamethasone and beta-glycerol phosphate.Biomaterials 2005; 26(17):3645-3654.
[166]
Wang DA, Williams CG, Yang F, Cher N, Lee H, Elisseeff JH.Bioresponsive phosphoester hydrogels for bone tissue engineering.Tissue Eng 2005; 11(1–2):201-213.
[167]
Wang J, Mao HQ, Leong KW.A novel biodegradable gene carrier based on polyphosphoester.J Am Chem Soc 2001; 123(38):9480-9481.
[168]
Morrison SJ, Kimble J.Asymmetric and symmetric stem-cell divisions in development and cancer.Nature 2006; 441(7097):1068-1074.
[169]
Lu D, Mahmood A, Wang L, Li Y, Lu M, Chopp M.Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome.Neuroreport 2001; 12(3):559-563.
[170]
James S, Fox J, Afsari F, Lee J, Clough S, Knight C, et al.Multiparameter analysis of human bone marrow stromal cells identifies distinct immunomodulatory and differentiation-competent subtypes.Stem Cell Reports 2015; 4(6):1004-1015.
[171]
Zhou M, Xi J, Cheng Y, Sun D, Shu P, Chi S, et al.Reprogrammed mesenchymal stem cells derived from iPSCs promote bone repair in steroid-associated osteonecrosis of the femoral head.Stem Cell Res Ther 2021; 12(1):175.
[172]
Huang Z, Gu H, Yin X, Gao L, Zhang K, Zhang Y, et al.Bone regeneration using injectable poly(γ-benzyl-L-glutamate) microspheres loaded with adipose-derived stem cells in a mouse femoral non-union model.Am J Transl Res 2019; 11(5):2641-2656.
[173]
Shokrolahi F, Khodabakhshi K, Shokrollahi P, Badiani R, Moghadam ZM.Atorvastatin loaded PLGA microspheres: preparation, HAp coating, drug release and effect on osteogenic differentiation of ADMSCs.Int J Pharm 2019; 565:95-107.
[174]
Yuan Z, Yuan X, Zhao Y, Cai Q, Wang Y, Luo R, et al.Injectable GelMA cryogel microspheres for modularized cell delivery and potential vascularized bone regeneration.Small 2021; 17(11):e2006596.
[175]
An C, Liu W, Zhang Y, Pang B, Liu H, Zhang Y, et al.Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration.Acta Biomater 2020; 111:181-196.
[176]
Hou Y, Xie W, Achazi K, Cuellar-Camacho JL, Melzig MF, Chen W, et al.Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells.Acta Biomater 2018; 77:28-37.
[177]
Diniz IMA, Carreira ACO, Sipert CR, Uehara CM, Moreira MSN, Freire L, et al.Photobiomodulation of mesenchymal stem cells encapsulated in an injectable rhBMP4-loaded hydrogel directs hard tissue bioengineering.J Cell Physiol 2018; 233(6):4907-4918.
[178]
Kumar A, Nune KC, Misra RDK.Design and biological functionality of a novel hybrid Ti-6Al-4V/hydrogel system for reconstruction of bone defects.J Tissue Eng Regen Med 2018; 12(4):1133-1144.
[179]
Yuan S, Han Y, Xiang D, Wang B, Chen Y, Hao Y.An injectable hydroxypropyl-β-cyclodextrin cross-linked gelatin-based hydrogel loaded bone mesenchymal stem cell for osteogenic and in vivo bone regeneration of femoral head necrosis.Nanomedicine 2022; 41:102521.
[180]
Chai S, Huang J, Mahmut A, Wang B, Yao Y, Zhang X, et al.Injectable photo-crosslinked bioactive BMSCs-BMP2-GelMA scaffolds for bone defect repair.Front Bioeng Biotechnol 2022; 10:875363.
[181]
Dashtimoghadam E, Fahimipour F, Tongas N, Tayebi L.Microfluidic fabrication of microcarriers with sequential delivery of VEGF and BMP-2 for bone regeneration.Sci Rep 2020; 10(1):11764.
[182]
Datta S, Rameshbabu AP, Bankoti K, Roy M, Gupta C, Jana S, et al.Decellularized bone matrix/oleoyl chitosan derived supramolecular injectable hydrogel promotes efficient bone integration.Mater Sci Eng C 2021; 119:111604.
[183]
Feng Q, Xu J, Zhang K, Yao H, Zheng N, Zheng L, et al.Dynamic and cell-infiltratable hydrogels as injectable carrier of therapeutic cells and drugs for treating challenging bone defects.ACS Cent Sci 2019; 5(3):440-450.
[184]
Zhang K, Jia Z, Yang B, Feng Q, Xu X, Yuan W, et al.Adaptable hydrogels mediate cofactor-assisted activation of biomarker-responsive drug delivery via positive feedback for enhanced tissue regeneration.Adv Sci 2018; 5(12):1800875.
[185]
Ren Z, Wang Y, Ma S, Duan S, Yang X, Gao P, et al.Effective bone regeneration using thermosensitive poly(N-isopropylacrylamide) grafted gelatin as injectable carrier for bone mesenchymal stem cells.ACS Appl Mater Interfaces 2015; 7(34):19006-19015.
[186]
Si M, Xia Y, Cong M, Wang D, Hou Y, Ma H.In situ co-delivery of doxorubicin and cisplatin by injectable thermosensitive hydrogels for enhanced osteosarcoma treatment.Int J Nanomedicine 2022; 17:1309-1322.
[187]
Wu D, Qin H, Wang Z, Yu M, Liu Z, Peng H, et al.Bone mesenchymal stem cell-derived sEV-encapsulated thermosensitive hydrogels accelerate osteogenesis and angiogenesis by release of exosomal miR-21.Front Bioeng Biotechnol 2021; 9:829136.
[188]
Huang Z, Zhao Z, Lang J, Wang W, Fu Y, Wang W.Therapeutic study of thermosensitive hydrogel loaded with super-activated platelet lysate combined with core decompression technology for the treatment of femoral head necrosis.Stem Cells Int 2021; 2021:7951616.
[189]
Tao J, Zhang Y, Shen A, Yang Y, Diao L, Wang L, et al.Injectable chitosan-based thermosensitive hydrogel/nanoparticle-loaded system for local delivery of vancomycin in the treatment of osteomyelitis.Int J Nanomedicine 2020; 15:5855-5871.
[190]
Ventura R, Padalhin A, Kim B, Park M, Lee B.Evaluation of bone regeneration potential of injectable extracellular matrix (ECM) from porcine dermis loaded with biphasic calcium phosphate (BCP) powder.Mater Sci Eng C 2020; 110:110663.
[191]
Yao Q, Liu Y, Pan Y, Li Y, Xu L, Zhong Y, et al.Long-term induction of endogenous BMPs growth factor from antibacterial dual network hydrogels for fast large bone defect repair.J Colloid Interface Sci 2022; 607:1500-1515.
[192]
Dos FD Santos, de J Oliveira, Pinto B, Kumar V, Cardoso V, Fernandes S, et al.Evaluation of antitumor activity and cardiac toxicity of a bone-targeted ph-sensitive liposomal formulation in a bone metastasis tumor model in mice.Nanomedicine 2017; 13(5):1693-1701.
[193]
Hu J, Jiang Y, Tan S, Zhu K, Cai T, Zhan T, et al.Selenium-doped calcium phosphate biomineral reverses multidrug resistance to enhance bone tumor chemotherapy.Nanomedicine 2021; 32:102322.
[194]
Bai S, Cheng Y, Liu D, Ji Q, Liu M, Zhang B, et al.Bone-targeted PAMAM nanoparticle to treat bone metastases of lung cancer.Nanomedicine 2020; 15(9):833-849.
[195]
Sivashanmugam A, Charoenlarp P, Deepthi S, Rajendran A, Nair S, Iseki S, et al.Injectable shear-thinning CaSO/FGF-18-incorporated chitin-PLGA hydrogel enhances bone regeneration in mice cranial bone defect model.ACS Appl Mater Interfaces 2017; 9(49):42639-42652.
[196]
Wang Q, Wang J, Lu Q, Detamore MS, Berkland C.Injectable PLGA based colloidal gels for zero-order dexamethasone release in cranial defects.Biomaterials 2010; 31(18):4980-4986.
[197]
Wang Y.Bio-resorbable thermal sensitive hydrogel (BioGel) for minimally invasive therapy.N Biotechnol 2016; 33:S11.
[198]
Li Q, Ning Z, Ren J, Liao W.Structural design and physicochemical foundations of hydrogels for biomedical applications.Curr Med Chem 2018; 25(8):963-981.
[199]
Sood N, Bhardwaj A, Mehta S, Mehta A.Stimuli-responsive hydrogels in drug delivery and tissue engineering.Drug Deliv 2016; 23(3):758-780.
[200]
Yoshioka H, Mori Y, Tsukikawa S, Kubota S.Thermoreversible gelation on cooling and on heating of an aqueous gelatin-poly(N-isopropylacrylamide) conjugate.Polym Adv Technol 1998; 9(2):155-158.
[201]
Vernengo J, Fussell GW, Smith NG, Lowman AM.Evaluation of novel injectable hydrogels for nucleus pulposus replacement.J Biomed Mater Res 2008; 84(1):64-69.
[202]
Watanabe J, Kashii M, Hirao M, Oka K, Sugamoto K, Yoshikawa H, et al.Quick-forming hydroxyapatite/agarose gel composites induce bone regeneration.J Biomed Mater Res, 2007; 83A(3):845-852.
[203]
Huang Z, Yu B, Feng QL, Li SJ, Chen Y, Luo LQ.In situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells.Carbohydr Polym 2011; 85(1):261-267.
[204]
Sajadi-Javan ZS, Varshosaz J, Mirian M, Manshaei M, Aminzadeh A.Thermo-responsive hydrogels based on methylcellulose/Persian gum loaded with taxifolin enhance bone regeneration: an in vitro/In vivo study.Cellulose 2022; 29(4):2413-2433.
[205]
Yuan B, Zhang Y, Wang Q, Ren G, Wang Y, Zhou S, et al.Thermosensitive vancomycin@PLGA-PEG-PLGA/HA hydrogel as an all-in-one treatment for osteomyelitis.Int J Pharm 2022; 627:122225.
[206]
Lu Y, Sun W, Gu Z.Stimuli-responsive nanomaterials for therapeutic protein delivery.J Control Release 2014; 194:1-19.
[207]
Mura S, Nicolas J, Couvreur P.Stimuli-responsive nanocarriers for drug delivery.Nat Mater 2013; 12(11):991-1003.
[208]
Hoffman AS.Stimuli-responsive polymers: biomedical applications and challenges for clinical translation.Adv Drug Deliv Rev 2013; 65(1):10-16.
[209]
Tapeinos C, Battaglini M, Prato M, La G Rosa, Scarpellini A, Ciofani G.CeO2 nanoparticles-loaded pH-responsive microparticles with antitumoral properties as therapeutic modulators for osteosarcoma.ACS Omega 2018; 3(8):8952-8962.
[210]
Martínez-Carmona M, Lozano D, Colilla M, Vallet-Regí M.Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment.Acta Biomater 2018; 65:393-404.
[211]
Mendoza-Reinoso V, McCauley LK, Fournier PGJ.Contribution of macrophages and T cells in skeletal metastasis.Cancers 2020; 12(4):1014.
[212]
Wang M, Cai X, Yang J, Wang C, Tong L, Xiao J, et al.A targeted and pH-responsive bortezomib nanomedicine in the treatment of metastatic bone tumors.ACS Appl Mater Interfaces 2018; 10(48):41003-41011.
[213]
Zhu J, Huo Q, Xu M, Yang F, Li Y, Shi H, et al.Bortezomib-catechol conjugated prodrug micelles: combining bone targeting and aryl boronate-based pH-responsive drug release for cancer bone-metastasis therapy.Nanoscale 2018; 10(38):18387-18397.
[214]
Chung MF, Chia WT, Liu HY, Hsiao CW, Hsiao HC, Yang CM, et al.Inflammation-induced drug release by using a pH-responsive gas-generating hollow-microsphere system for the treatment of osteomyelitis.Adv Healthc Mater 2014; 3(11):1854-1861.
[215]
Zhao J, Zhao M, Yu C, Zhang X, Liu J, Cheng X, et al.Multifunctional folate receptor-targeting and pH-responsive nanocarriers loaded with methotrexate for treatment of rheumatoid arthritis.Int J Nanomedicine 2017; 12:6735-6746.
[216]
Xu H, Matysiak S.Effect of pH on chitosan hydrogel polymer network structure.Chem Commun 2017; 53:7373-7376.
[217]
Kocak FZ, Talari ACS, Yar M, Rehman IU.In-situ forming pH and thermosensitive injectable hydrogels to stimulate angiogenesis: potential candidates for fast bone regeneration applications.Int J Mol Sci 2020; 21(5):1633.
[218]
Zhao C, Qazvini NT, Sadati M, Zeng Z, Huang S, De AL La Lastra, et al.A pH-triggered, self-assembled, and bioprintable hybrid hydrogel scaffold for mesenchymal stem cell based bone tissue engineering.ACS Appl Mater Interfaces 2019; 11(9):8749-8762.
[219]
Milani AH, Freemont AJ, Hoyland JA, Adlam DJ, Saunders BR.Injectable doubly cross-linked microgels for improving the mechanical properties of degenerated intervertebral discs.Biomacromolecules 2012; 13(9):2793-2801.
[220]
Kim HK, Shim WS, Kim SE, Lee KH, Kang E, Kim JH, et al.Injectable in situ-forming pH/thermo-sensitive hydrogel for bone tissue engineering.Tissue Eng Part A 2009; 15(4):923-933.
[221]
Lu Y, Aimetti AA, Langer R, Gu Z.Bioresponsive materials.Nat Rev Mater 2017; 2(1):16075.
[222]
Aulisa L, Dong H, Hartgerink JD.Self-assembly of multidomain peptides: sequence variation allows control over cross-linking and viscoelasticity.Biomacromolecules 2009; 10(9):2694-2698.
[223]
Guvendiren M, Lu HD, Burdick JA.Shear-thinning hydrogels for biomedical applications.Soft Matter 2012; 8(2):260-272.
[224]
Sivashanmugam A, Charoenlarp P, Deepthi S, Rajendran A, Nair SV, Iseki S, et al.Injectable shear-thinning CaSO4/FGF-18-incorporated chitin-PLGA hydrogel enhances bone regeneration in mice cranial bone defect model.ACS Appl Mater Interfaces 2017; 9(49):42639-42652.
[225]
Arun R Kumar, Sivashanmugam A, Deepthi S, Iseki S, Chennazhi KP, Nair SV, et al.Injectable chitin-poly(epsilon-caprolactone)/nanohydroxyapatite composite microgels prepared by simple regeneration technique for bone tissue engineering.ACS Appl Mater Interfaces 2015; 7(18):9399-9409.
[226]
Dennis SC, Detamore MS, Kieweg SL, Berkland CJ.Mapping glycosaminoglycan-hydroxyapatite colloidal gels as potential tissue defect fillers.Langmuir 2014; 30(12):3528-3537.
[227]
Uman S, Dhand A, Burdick JA.Recent advances in shear-thinning and self-healing hydrogels for biomedical applications.J Appl Polym Sci 2019; 137(25):48668.
[228]
Hou S, Wang X, Park S, Jin X, Ma PX.Rapid self-integrating, injectable hydrogel for tissue complex regeneration.Adv Healthc Mater 2015; 4(10):1491-1495.
[229]
Alarcin E, Lee TY, Karuthedom S, Mohammadi M, Brennan MA, Lee DH, et al.Injectable shear-thinning hydrogels for delivering osteogenic and angiogenic cells and growth factors.Biomater Sci 2018; 6(6):1604-1615.
[230]
Combes C, Tadier S, Galliard H, Girod-Fullana S, Charvillat C, Rey C, et al.Rheological properties of calcium carbonate self-setting injectable paste.Acta Biomater 2010; 6(3):920-927.
[231]
Zhang ZN, Shao HP, Lin T, Zhang YM, He JZ, Wang LH.3D gel printing of porous calcium silicate scaffold for bone tissue engineering.J Mater Sci 2019; 54(14):10430-10436.
[232]
Ryabenkova Y, Pinnock A, Quadros PA, Goodchild RL, Mobus G, Crawford A, et al.The relationship between particle morphology and rheological properties in injectable nano-hydroxyapatite bone graft substitutes.Mater Sci Eng C 2017; 75:1083-1090.
[233]
Lukaszczyk J, Janicki B, Lopez A, Skolucka K, Wojdyla H, Persson C, et al.Novel injectable biomaterials for bone augmentation based on isosorbide dimethacrylic monomers.Mater Sci Eng C 2014; 40:76-84.
[234]
Geven MA, Sprecher C, Guillaume O, Eglin D, Grijpma DW.Micro-porous composite scaffolds of photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite prepared by low-temperature extrusion-based additive manufacturing.Polym Adv Technol 2017; 28(10):1226-1232.
[235]
Du Y, Guo JL, Wang J, Mikos AG, Zhang S.Hierarchically designed bone scaffolds: from internal cues to external stimuli.Biomaterials 2019; 218:119334.
[236]
Gurel G Pekozer, Torun G Kose, Hasirci V.Influence of co-culture on osteogenesis and angiogenesis of bone marrow mesenchymal stem cells and aortic endothelial cells.Microvasc Res 2016; 108:1-9.
[237]
Yegappan R, Selvaprithiviraj V, Amirthalingam S, Mohandas A, Hwang NS, Jayakumar R.Injectable angiogenic and osteogenic carrageenan nanocomposite hydrogel for bone tissue engineering.Int J Biol Macromol 2019; 122:320-328.
[238]
Liu Y, Zhu Z, Pei X, Zhang X, Cheng X, Hu S, et al.ZIF-8-modified multifunctional bone-adhesive hydrogels promoting angiogenesis and osteogenesis for bone regeneration.ACS Appl Mater Interfaces 2020; 12(33):36978-36995.
[239]
Chen S, Wang H, Liu D, Bai J, Haugen HJ, Li B, et al.Early osteoimmunomodulation by mucin hydrogels augments the healing and revascularization of rat critical-size calvarial bone defects.Bioact Mater 2023; 25:176-188.
[240]
Yu S, Yao S, Wen Y, Wang Y, Wang H, Xu Q.Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats.Sci Rep 2016; 6(1):1-13.
[241]
Rauch MF, Hynes SR, Bertram J, Redmond A, Robinson R, Williams C, et al.Engineering angiogenesis following spinal cord injury: a coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood–spinal cord barrier.Eur J Neurosci 2009; 29(1):132-145.
[242]
Nih LR, Gojgini S, Carmichael ST, Segura T.Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke.Nat Mater 2018; 17(7):642-651.
[243]
Kuroda Y, Kawai T, Goto K, Matsuda S.Clinical application of injectable growth factor for bone regeneration: a systematic review.Inflamm Regen 2019; 39(1):20.
[244]
Li D, Xie K, Zhang L, Yao X, Li H, Xu Q, et al.Dual blockade of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) exhibits potent anti-angiogenic effects.Cancer Lett 2016; 377(2):164-173.
[245]
Wong AL, Haroon ZA, Werner S, Dewhirst MW, Greenberg CS, Peters KG.Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues.Circ Res 1997; 81(4):567-574.
[246]
Herrera JJ, Sundberg LM, Zentilin L, Giacca M, Narayana PA.Sustained expression of vascular endothelial growth factor and angiopoietin-1 improves blood–spinal cord barrier integrity and functional recovery after spinal cord injury.J Neurotrauma 2010; 27(11):2067-2076.
[247]
Han S, Arnold SA, Sithu SD, Mahoney ET, Geralds JT, Tran P, et al.Rescuing vasculature with intravenous angiopoietin-1 and αvβ3 integrin peptide is protective after spinal cord injury.Brain 2010; 133(4):1026-1042.
[248]
Chen X, Wang M, Chen F, Wang J, Li X, Liang J, et al.Correlations between macrophage polarization and osteoinduction of porous calcium phosphate ceramics.Acta Biomater 2020; 103:318-332.
[249]
Qiu P, Li M, Chen K, Fang B, Chen P, Tang Z, et al.Periosteal matrix-derived hydrogel promotes bone repair through an early immune regulation coupled with enhanced angio- and osteogenesis.Biomaterials 2020; 227:119552.
[250]
Zhang J, Shi H, Zhang N, Hu L, Jing W, Pan J.Interleukin-4-loaded hydrogel scaffold regulates macrophages polarization to promote bone mesenchymal stem cells osteogenic differentiation via TGF-β1/Smad pathway for repair of bone defect.Cell Prolif 2020; 53(10):e12907.
[251]
Zou M, Sun J, Xiang Z.Induction of M2-type macrophage differentiation for bone defect repair via an interpenetration network hydrogel with a GO-based controlled release system.Adv Healthc Mater 2021; 10(6):2001502.
[252]
Huang L, Zhang J, Hu J, Zhao T, Gu Z.Biomimetic gelatin methacrylate/nano fish bone hybrid hydrogel for bone regeneration via osteoimmunomodulation.ACS Biomater Sci Eng 2020; 6(6):3270-3274.
[253]
Wu Z, Bai J, Ge G, Wang T, Feng S, Ma Q, et al.Regulating macrophage polarization in high glucose microenvironment using lithium-modified bioglass-hydrogel for diabetic bone regeneration.Adv Healthc Mater 2022; 11(13):2200298.
[254]
De PD Melo, Habibovic P.Biomineralization-inspired material design for bone regeneration.Adv Healthc Mater 2018; 7(22):1800700.
[255]
Zhao Y, Li Z, Jiang Y, Liu H, Feng Y, Wang Z, et al.Bioinspired mineral hydrogels as nanocomposite scaffolds for the promotion of osteogenic marker expression and the induction of bone regeneration in osteoporosis.Acta Biomater 2020; 113:614-626.
[256]
Xu TG, Liu DC, Wang Y, Chen S, Li B, Zhang F, et al.Tungsten carbide-enhanced radiopaque and biocompatible PMMA bone cement and its application in vertebroplasty.Compos Commun 2023; 40:101615.
[257]
Wei M, Hsu YI, Asoh TA, Sung MH, Uyama H.Design of injectable poly(γ-glutamic acid)/chondroitin sulfate hydrogels with mineralization ability.ACS Appl Bio Mater 2022; 5(4):1508-1518.
[258]
Wang H, Hu B, Li H, Feng G, Pan S, Chen Z, et al.Biomimetic mineralized hydroxyapatite nanofiber-incorporated methacrylated gelatin hydrogel with improved mechanical and osteoinductive performances for bone regeneration.Int J Nanomed 2022; 17:1511-1529.
[259]
Abouzeid RE, Salama A, El-Fakharany EM, Guarino V.Mineralized polyvinyl alcohol/sodium alginate hydrogels incorporating cellulose nanofibrils for bone and wound healing.Molecules 2022; 27(3):697.
[260]
Liu P, Bao T, Sun L, Wang Z, Sun J, Peng W, et al.In situ mineralized PLGA/zwitterionic hydrogel composite scaffold enables high-efficiency rhBMP-2 release for critical-sized bone healing.Biomater Sci 2022; 10(3):781-793.
[261]
Lin K, Sheikh R, Romanazzo S, Roohani I.3D printing of bioceramic scaffolds-barriers to the clinical translation: from promise to reality, and future perspectives.Materials 2019; 12(17):2660.
[262]
Fu Z, Cui J, Zhao B, Shen SGF, Lin K.An overview of polyester/hydroxyapatite composites for bone tissue repairing.J Orthop Translat 2021; 28:118-130.
[263]
Ding L, Wang H, Li J, Liu D, Bai J, Yuan Z, et al.Preparation and characterizations of an injectable and biodegradable high-strength iron-bearing brushite cement for bone repair and vertebral augmentation applications.Biomater Sci 2022; 11(1):96-107.
[264]
Zhao Z, Zhao Q, Gu B, Yin C, Shen K, Tang H, et al.Minimally invasive implantation and decreased inflammation reduce osteoinduction of biomaterial.Theranostics 2020; 10(8):3533-3545.
[265]
Ghosh M, Halperin-Sternfeld M, Grinberg I, Adler-Abramovich L.Injectable alginate-peptide composite hydrogel as a scaffold for bone tissue regeneration.Nanomaterials 2019; 9(4):3533-3545.
[266]
Li Y, Pan Q, Xu J, He X, Li HA, Oldridge DA, et al.Overview of methods for enhancing bone regeneration in distraction osteogenesis: potential roles of biometals.J Orthop Translat 2021; 27:110-118.
[267]
Chen M, Zhang Y, Zhang W, Li J.Polyhedral oligomeric silsesquioxane-incorporated gelatin hydrogel promotes angiogenesis during vascularized bone regeneration.ACS Appl Mater Interfaces 2020; 12(20):22410-22425.
[268]
Cypher TJ, Grossman JP.Biological principles of bone graft healing.J Foot Ankle Surg 1996; 35(5):413-417.
[269]
Yuan J, Maturavongsadit P, Zhou Z, Lv B, Lin Y, Yang J, et al.Hyaluronic acid-based hydrogels with tobacco mosaic virus containing cell adhesive peptide induce bone repair in normal and osteoporotic rats.Biomater Transl 2020; 1(1):89-98.
[270]
Giannoudis PV, Dinopoulos H, Tsiridis E.Bone substitutes: an update.Injury 2005; 36(Suppl 3):S20-S27.
[271]
Steijvers E, Ghei A, Xia Z.Manufacturing artificial bone allografts: a perspective.Biomater Transl 2022; 3(1):65-80.
[272]
Ding L, Wang H, Zhang W, Li J, Liu D, Han F, et al.Calcium phosphate bone cement with enhanced physicochemical properties via in situ formation of an interpenetrating network.J Mater Chem B 2021; 9(34):6802-6810.
[273]
Pacelli S, Basu S, Whitlow J, Chakravarti A, Acosta F, Varshney A, et al.Strategies to develop endogenous stem cell-recruiting bioactive materials for tissue repair and regeneration.Adv Drug Deliv Rev 2017; 120:50-70.
[274]
Lewis G.Viscoelastic properties of injectable bone cements for orthopaedic applications: state-of-the-art review.J Biomed Mater Res 2011; 98(1):171-191.
[275]
Lai PL, Chen LH, Chen WJ, Chu IM.Chemical and physical properties of bone cement for vertebroplasty.Biomed J 2013; 36(4):162-167.
[276]
Jensen ME, Evans AJ, Mathis JM, Kallmes DF, Cloft HJ, Dion JE.Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects.AJNR Am J Neuroradiol 1997; 18(10):1897-1904.
[277]
Edidin AA, Ong KL, Lau E, Kurtz SM.Mortality risk for operated and nonoperated vertebral fracture patients in the medicare population.J Bone Miner Res 2011; 26(7):1617-1626.
[278]
Webb JC, Spencer RF.The role of polymethylmethacrylate bone cement in modern orthopaedic surgery.J Bone Joint Surg 2007; 89(7):851-857.
[279]
Chen S, Grandfield K, Yu S, Engqvist H, Xia W.Synthesis of calcium phosphate crystals with thin nacreous structure.CrystEngComm 2016; 18(6):1064-1069.
[280]
Chen S, Liu D, Fu L, Ni B, Chen Z, Knaus J, et al.Formation of amorphous iron-calcium phosphate with high stability.Adv Mater 2023; 35(33):2301422.
[281]
Ramly E, Alfonso A, Kantar R, Wang M, Siso J, Ibrahim A, et al.Safety and efficacy of recombinant human bone morphogenetic protein-2 (rhBMP-2) in craniofacial surgery.Plast Reconstr Surg Glob Open 2019; 7(8):e2347.
[282]
Riley EH, Lane JM, Urist MR, Lyons KM, Lieberman JR.Bone morphogenetic protein-2: biology and applications.Clin Orthop Relat Res 1996; 324:39-46.
[283]
Wang G, Yuan Z, Yu L, Yu Y, Zhou P, Chu G, et al.Mechanically conditioned cell sheets cultured on thermo-responsive surfaces promote bone regeneration.Biomater Transl 2023; 4(1):27-40.
[284]
Alonso N, Tanikawa D, Freitas S Rda, Canan L, Ozawa T, Rocha D.Evaluation of maxillary alveolar reconstruction using a resorbable collagen sponge with recombinant human bone morphogenetic protein-2 in cleft lip and palate patients.Tissue Eng Part C 2010; 16(5):1183-1189.
[285]
Canan L Jr, da FR Silva, Alonso N, Tanikawa D, Rocha D, Coelho J.Human bone morphogenetic protein-2 use for maxillary reconstruction in cleft lip and palate patients.J Craniofac Surg 2012; 23(6):1627-1633.
[286]
Hissnauer T, Stiel N, Babin K, Rupprecht M, Ridderbusch K, Rueger J, et al.Recombinant human bone morphogenetic protein-2 (rhBMP-2) for the treatment of nonunion of the femur in children and adolescents: a retrospective analysis.BioMed Res Int 2017; 2017:3046842.
[287]
Zalavras CG, Patzakis MJ, Holtom P.Local antibiotic therapy in the treatment of open fractures and osteomyelitis.Clin Orthop Relat Res 2004; 427:86-93.
[288]
Cancienne JM, Burrus MT, Weiss DB, Yarboro SR.Applications of local antibiotics in orthopedic trauma.Orthop Clin North Am 2015; 46(4):495-510.
[289]
Ostermann P, Henry S, Seligson D.The role of local antibiotic therapy in the management of compound fractures.Clin Orthop Relat Res 1993; 295:102-111.
[290]
Wininger D, Fass R.Antibiotic-impregnated cement and beads for orthopedic infections.Antimicrob Agents Chemother 1996; 40(12):2675-2679.
[291]
Hake M, Young H, Hak D, Stahel P, Hammerberg E, Mauffrey C.Local antibiotic therapy strategies in orthopaedic trauma: practical tips and tricks and review of the literature.Injury 2015; 46(8):1447-1456.
[292]
Mitchell BD, Streeten EA.Clinical impact of recent genetic discoveries in osteoporosis.Appl Clin Genet 2013; 6:75-85.
[293]
Chen S, Pujari-Palmer S, Rubino S, Westlund V, Ott M, Engqvist H, et al.Highly repeatable synthesis of nHA with high aspect ratio.Mater Lett 2015; 159:163-167.
[294]
Polikeit A, Nolte LP, Ferguson SJ.The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis.Spine 2003; 28(10):991-996.
[295]
Xu X, Song J.Segmental long bone regeneration guided by degradable synthetic polymeric scaffolds.Biomater Transl 2020; 1(1):33-45.
[296]
Bistolfi A, Ferracini R, Albanese C, Verne E, Miola M.PMMA-based bone cements and the problem of joint arthroplasty infections: status and new perspectives.Materials 2019; 12(23):4002.
[297]
Wang X, Kou JM, Yue Y, Weng XS, Qiu ZY, Zhang XF.Clinical outcome comparison of polymethylmethacrylate bone cement with and without mineralized collagen modification for osteoporotic vertebral compression fractures.Medicine 2018; 97(37):e12204.
[298]
Sun X, Wu Z, He D, Shen K, Liu X, Li H, et al.Bioactive injectable polymethylmethacrylate/silicate bioceramic hybrid cements for percutaneous vertebroplasty and kyphoplasty.J Mech Behav Biomed Mater 2019; 96:125-135.
[299]
Gumpert R, Bodo K, Spuller E, Poglitsch T, Bindl R, Ignatius A, et al.Demineralization after balloon kyphoplasty with calcium phosphate cement: a histological evaluation in ten patients.Eur Spine J 2014; 23(6):1361-1368.
[300]
Schröter L, Kaiser F, Stein S, Gbureck U, Ignatius A.Biological and mechanical performance and degradation characteristics of calcium phosphate cements in large animals and humans.Acta Biomater 2020; 117:1-20.
[301]
Makvandi P, Ghaemy M, Mohseni M.Synthesis and characterization of photo-curable bis-quaternary ammonium dimethacrylate with antimicrobial activity for dental restoration materials.Eur Polym J 2016; 74:81-90.
[302]
Ramos A, Duarte RJ, Mesnard M.Prediction at long-term condyle screw fixation of temporomandibular joint implant: a numerical study.J Craniomaxillofac Surg 2015; 43(4):469-474.
[303]
Walsh WR, Svehla MJ, Russell J, Saito M, Nakashima T, Gillies RM, et al.Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness.Biomaterials 2004; 25(20):4929-4934.
[304]
Hu G, Xiao L, Fu H, Bi D, Ma H, Tong P.Study on injectable and degradable cement of calcium sulphate and calcium phosphate for bone repair.J Mater Sci Mater Med 2010; 21(2):627-634.
[305]
Renner SM, Lim TH, Kim WJ, Katolik L, An HS, Andersson GB.Augmentation of pedicle screw fixation strength using an injectable calcium phosphate cement as a function of injection timing and method.Spine 2004; 29(11):E212-E216.
[306]
Farrar DF.Bone adhesives for trauma surgery: a review of challenges and developments.Int J Adhes Adhes 2012; 33:89-97.
[307]
Rauschmann MA, Wichelhaus TA, Stirnal V, Dingeldein E, Zichner L, Schnettler R, et al.Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections.Biomaterials 2005; 26(15):2677-2684.
[308]
Yi X, Wang Y, Lu H, Li C, Zhu T.Augmentation of pedicle screw fixation strength using an injectable calcium sulfate cement: an in vivo study.Spine 2008; 33(23):2503-2509.
[309]
Sun H, Liu C, Li X, Liu H, Zhang W, Yang H, et al.A novel calcium phosphate-based nanocomposite for the augmentation of cement-injectable cannulated pedicle screws fixation: a cadaver and biomechanical study.J Orthop Translat 2020; 20:56-66.
[310]
Leung KS, Siu WS, Li SF, Qin L, Cheung WH, Tam KF, et al.An in vitro optimized injectable calcium phosphate cement for augmenting screw fixation in osteopenic goats.J Biomed Mater Res 2006; 78(1):153-160.
[311]
Pujari-Palmer M, Guo H, Wenner D, Autefage H, Spicer CD, Stevens MM, et al.A novel class of injectable bioceramics that glue tissues and biomaterials.Materials 2018; 11(12):2492.
[312]
Kirillova A, Kelly C, von N Windheim, Gall K.Bioinspired mineral–organic bioresorbable bone adhesive.Adv Healthc Mater 2018; 7(17):1800467.
[313]
Bai S, Zhang X, Lv X, Zhang M, Huang X, Shi Y, et al.Bioinspired mineral–organic bone adhesives for stable fracture fixation and accelerated bone regeneration.Adv Funct Mater 2019; 30(5):1908381.
[314]
Pan S, Yin J, Yu L, Zhang C, Zhu Y, Gao Y, et al.2D MXene-integrated 3D-printing scaffolds for augmented osteosarcoma phototherapy and accelerated tissue reconstruction.Adv Sci 2020; 7(2):1901511.
[315]
Bischoff I, Tsaryk R, Chai F, Furst R, Kirkpatrick CJ, Unger RE.In vitro evaluation of a biomaterial-based anticancer drug delivery system as an alternative to conventional post-surgery bone cancer treatment.Mater Sci Eng C 2018; 93:115-124.
[316]
Kim J, Kim J, Jeong C, Kim WJ.Synergistic nanomedicine by combined gene and photothermal therapy.Adv Drug Deliv Rev 2016; 98:99-112.
[317]
Fan W, Yung B, Huang P, Chen X.Nanotechnology for multimodal synergistic cancer therapy.Chem Rev 2017; 117(22):13566-13638.
[318]
Liu Y, Bhattarai P, Dai Z, Chen X.Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer.Chem Soc Rev 2019; 48(7):2053-2108.
[319]
Zhou B, Guo Z, Lin Z, Zhang L, Jiang BP, Shen XC.Recent insights into near-infrared light-responsive carbon dots for bioimaging and cancer phototherapy.Inorg Chem Front 2019; 6(5):1116-1128.
[320]
Cheng J, Wang W, Xu X, Lin Z, Xie C, Zhang Y, et al.AgBiS2 nanoparticles with synergistic photodynamic and bioimaging properties for enhanced malignant tumor phototherapy.Mater Sci Eng C 2020; 107:110324.
[321]
Gu W, Zhang T, Gao J, Wang Y, Li D, Zhao Z, et al.Albumin-bioinspired iridium oxide nanoplatform with high photothermal conversion efficiency for synergistic chemo-photothermal of osteosarcoma.Drug Deliv 2019; 26(1):918-927.
[322]
Kaur P, Aliru ML, Chadha AS, Asea A, Krishnan S.Hyperthermia using nanoparticles–promises and pitfalls.Int J Hyperther 2016; 32(1):76-88.
[323]
Moise S, Byrne JM, El AJ Haj, Telling ND.The potential of magnetic hyperthermia for triggering the differentiation of cancer cells.Nanoscale 2018; 10(44):20519-20525.
[324]
Au KM, Satterlee A, Min Y, Tian X, Kim YS, Caster JM, et al.Folate-targeted pH-responsive calcium zoledronate nanoscale metal–organic frameworks: turning a bone antiresorptive agent into an anticancer therapeutic.Biomaterials 2016; 82:178-193.
[325]
Wachtel M, Schafer BW.Targets for cancer therapy in childhood sarcomas.Cancer Treat Rev 2010; 36(4):318-327.
[326]
van BL Leeuwen, Kamps WA, Jansen HW, Hoekstra HJ.The effect of chemotherapy on the growing skeleton.Cancer Treat Rev 2000; 26(5):363-376.
[327]
Rainusso N, Wang LL, Yustein JT.The adolescent and young adult with cancer: state of the art–bone tumors.Curr Oncol Rep 2013; 15(4):296-307.
[328]
Chun R, Kurzman ID, Couto CG, Klausner J, Henry C, MacEwen EG.Cisplatin and doxorubicin combination chemotherapy for the treatment of canine osteosarcoma: a pilot study.J Vet Intern Med 2000; 14(5):495-498.
[329]
Hyun H, Park MH, Lim W, Kim SY, Jo D, Jung JS, et al.Injectable visible light-cured glycol chitosan hydrogels with controlled release of anticancer drugs for local cancer therapy in vivo: a feasible study.Artif Cells Nanomed Biotechnol 2018; 46(sup2):874-882.
[330]
Yoo Y, Yoon SJ, Kim SY, Lee DW, Um S, Hyun H, et al.A local drug delivery system based on visible light-cured glycol chitosan and doxorubicinhydrochloride for thyroid cancer treatment in vitro and in vivo.Drug Deliv 2018; 25(1):1664-1671.
[331]
Wu W, Dai Y, Liu H, Cheng R, Ni Q, Ye T, et al.Local release of gemcitabine via In situ UV-crosslinked lipid-strengthened hydrogel for inhibiting osteosarcoma.Drug Deliv 2018; 25(1):1642-1651.
[332]
Zheng Y, Cheng Y, Chen J, Ding J, Li M, Li C, et al.Injectable hydrogel-microsphere construct with sequential degradation for locally synergistic chemotherapy.ACS Appl Mater Interfaces 2017; 9(4):3487-3496.
[333]
Yoon SJ, Moon YJ, Chun HJ, Yang DH.Doxorubicin.hydrochloride/cisplatin-loaded hydrogel/nanosized (2-hydroxypropyl)-beta-cyclodextrin local drug-delivery system for osteosarcoma treatment in vivo.Nanomaterials 2019; 9(12):1652.
[334]
Yang Z, Yu S, Li D, Gong Y, Zang J, Liu J, et al.The effect of PLGA-based hydrogel scaffold for improving the drug maximum-tolerated dose for in situ osteosarcoma treatment.Colloids Surf B 2018; 172:387-394.
[335]
Song W, Tang Z, Zhang D, Yu H, Chen X.Coadministration of vascular disrupting agents and nanomedicines to eradicate tumors from peripheral and central regions.Small 2015; 11(31):3755-3761.
[336]
Chen SH, Liu TI, Chuang CL, Chen HH, Chiang WH, Chiu HC.Alendronate/folic acid-decorated polymeric nanoparticles for hierarchically targetable chemotherapy against bone metastatic breast cancer.J Mater Chem B 2020; 8(17):3789-3800.
[337]
Li J, Liu X, Zhou Z, Tan L, Wang X, Zheng Y, et al.Lysozyme-assisted photothermal eradication of methicillin-resistant staphylococcus aureus infection and accelerated tissue repair with natural melanosome nanostructures.ACS Nano 2019; 13(10):11153-11167.
[338]
Reding-Roman C, Hewlett M, Duxbury S, Gori F, Gudelj I, Beardmore R.The unconstrained evolution of fast and efficient antibiotic-resistant bacterial genomes.Nat Ecol Evol 2017; 1(3):1-11.
[339]
Zhang K, Wang S, Zhou C, Cheng L, Gao X, Xie X, et al.Advanced smart biomaterials and constructs for hard tissue engineering and regeneration.Bone Res 2018; 6(1):1-15.
[340]
Leijten J, Seo J, Yue K, Trujillo-de G Santiago, Tamayol A, Ruiz-Esparza GU, et al.Spatially and temporally controlled hydrogels for tissue engineering.Mater Sci Eng Rep 2017; 119:1-35.
[341]
Sun Y, Nan D, Jin H, Qu X.Recent advances of injectable hydrogels for drug delivery and tissue engineering applications.Polym Test 2020; 81:106283.
[342]
Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M.Biodegradable materials for bone repair and tissue engineering applications.Materials 2015; 8(9):5744-5794.
[343]
Tong X, Xu Y, Zhang T, Deng C, Xun J, Sun D, et al.Exosomes from CD133+ human urine-derived stem cells combined adhesive hydrogel facilitate rotator cuff healing by mediating bone marrow mesenchymal stem cells.J Orthop Translat 2023; 39:100-112.
[344]
Stefanov I, Perez-Rafael S, Hoyo J, Cailloux J, Santana OO Pérez, Hinojosa-Caballero D, et al.Multifunctional enzymatically generated hydrogels for chronic wound application.Biomacromolecules 2017; 18(5):1544-1555.
[345]
Zhang Y, Zhang J, Chen M, Gong H, Thamphiwatana S, Eckmann L, et al.A bioadhesive nanoparticle–hydrogel hybrid system for localized antimicrobial drug delivery.ACS Appl Mater Interfaces 2016; 8(28):18367-18374.
[346]
Hoque J, Bhattacharjee B, Prakash R, Paramanandham K, Haldar J.Dual function injectable hydrogel for controlled release of antibiotic and local antibacterial therapy.Biomacromolecules 2017; 19(2):267-278.
[347]
Nailor MD, Sobel JD.Antibiotics for Gram-positive bacterial infection: vancomycin, teicoplanin, quinupristin/dalfopristin, oxazolidinones, daptomycin, telavancin, and ceftaroline.Med Clin North Am 2011; 95(4):723-742.
[348]
Nordmann P, Poirel L, Toleman MA, Walsh TR.Does broad-spectrum β-lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by Gram-negative bacteria?.J Antimicrob Chemother 2011; 66(4):689-692.
[349]
Huki Mć, Seljmo D, Ramovic A, Ibri MAšimović, Dogan S, Hukic J, et al.The effect of lysozyme on reducing biofilms by Staphylococcus aureus, Pseudomonas aeruginosa, and Gardnerella vaginalis: an in vitro examination.Microb Drug Resist 2018; 24(4):353-358.
[350]
Kawai Y, Mickiewicz K, Errington J.Lysozyme counteracts β-lactam antibiotics by promoting the emergence of L-form bacteria.Cell 2018; 172(5):1038-1049.e10.
[351]
Chen FM, Zhang J, Zhang M, An Y, Chen F, Wu ZF.A review on endogenous regenerative technology in periodontal regenerative medicine.Biomaterials 2010; 31(31):7892-7927.
[352]
Rashki S, Asgarpour K, Tarrahimofrad H, Hashemipour M, Ebrahimi MS, Fathizadeh H, et al.Chitosan-based nanoparticles against bacterial infections.Carbohydr Polym 2021; 251:117108.
[353]
Li Y, Miao Y, Yang L, Zhao Y, Wu K, Lu Z, et al.Recent advances in the development and antimicrobial applications of metal-phenolic networks.Adv Sci 2022; 9(27):2202684.
[354]
Levchuk I, Kralova M, Rueda-Márquez JJ, Moreno-Andr Jés, Guti Sérrez-Alfaro, Dzik P, et al.Antimicrobial activity of printed composite TiO2/SiO2 and TiO2/SiO2/Au thin films under UVA-LED and natural solar radiation.Appl Catal B 2018; 239:609-618.
[355]
Dar GN, Umar A, Zaidi SA, Baskoutas S, Hwang SW, Abaker M, et al.Ultra-high sensitive ammonia chemical sensor based on ZnO nanopencils.Talanta 2012; 89:155-161.
[356]
Alves MM, Bouchami O, Tavares A, Córdoba L, Santos CF, Miragaia M, et al.New insights into antibiofilm effect of a nanosized ZnO coating against the pathogenic methicillin resistant Staphylococcus aureus.ACS Appl Mater Interfaces 2017; 9(34):28157-28167.
[357]
M. Martínez-Carmona, Y. Gun’ko, M. Vallet-Regí. ZnO nanostructures for drug delivery and theranostic applications. Nanomaterials, 8(4):268 (2018)
[358]
Yang T, Oliver S, Chen Y, Boyer C, Chandrawati R.Tuning crystallization and morphology of zinc oxide with polyvinylpyrrolidone: formation mechanisms and antimicrobial activity.J Colloid Interface Sci 2019; 546:43-52.
[359]
Zhang F, Li X, He N, Lin Q.Antibacterial properties of ZnO/calcium alginate composite and its application in wastewater treatment.J Nanosci Nanotechnol 2015; 15(5):3839-3845.
[360]
Makvandi P, Ali GW, Della F Sala, Abdel-Fattah WI, Borzacchiello A.Hyaluronic acid/corn silk extract based injectable nanocomposite: a biomimetic antibacterial scaffold for bone tissue regeneration.Mater Sci Eng C 2020; 107:110195.
AI Summary AI Mindmap
PDF(4294 KB)

Accesses

Citations

Detail

Sections
Recommended

/