Two-Dimensional Particle Assembly Based on the Synchronized Evolution of Centrosymmetric Off-Axis Acoustic Vortexes

Ning Ding, Gepu Guo, Juan Tu, Dong Zhang, Qingyu Ma

Engineering ›› 2025, Vol. 47 ›› Issue (4) : 139-151.

PDF(5386 KB)
PDF(5386 KB)
Engineering ›› 2025, Vol. 47 ›› Issue (4) : 139-151. DOI: 10.1016/j.eng.2024.01.032
Research

Two-Dimensional Particle Assembly Based on the Synchronized Evolution of Centrosymmetric Off-Axis Acoustic Vortexes

Author information +
History +

Abstract

Acoustic-vortex (AV) tweezers ensure stable particle trapping at a zero-pressure center, while particle assembly between two vortex cores is still prevented by the high-potential barrier. Although a one-dimensional low-pressure attractive path of particle assembly can be constructed by the interference between two independent cylindrical Bessel beams, it remains challenging to create two-dimensional (2D) neighboring vortexes using a source array in practical applications. In this paper, a three-step phase-reversal strategy of 2D particle assembly based on the synchronized evolution of a centrosymmetric array of M off-axis acoustic vortexes (OA-AVs) with a preset radial offset is proposed based on a ring array of planar sources. By introducing initial vortex phase differences of −2π/M and +2π/M to the vortex array, low-pressure patterns of an M-sided regular polygon and M-branched star are formed by connecting the vortex cores and the field center before and after the tangent state of adjacent OA-AVs. Center-oriented particle assembly is finally realized by a central AV constructed by coincident in-phase OA-AVs. The capability of particle manipulation in the lateral and radial directions is demonstrated by low-pressure patterns with acoustic radiation forces pointing to the field center during a synchronized central approach. The field evolution is certified by experimental field measurements for OA-AVs with different vortex numbers, initial vortex phase differences, and radial offsets using a ring array of 16 planar sources. The feasibility of particle assembly in two dimensions is also verified by the accurate manipulation of four particles using the low-pressure patterns of a four-sided polygon, a four-branched star, and a central AV in experiments. The three-step strategy paves a new way for 2D particle assembly based on the synchronized evolution of centrosymmetric OA-AVs using a simplified single-sided source array, exhibiting excellent potential for the precise navigation and manipulation of cells and particles in biomedical applications.

Graphical abstract

Keywords

Centrosymmetric array of off-axis acoustic vortexes / Phase-reversal strategy / Initial phase difference / Particle assembly / Single-sided ring array

Cite this article

Download citation ▾
Ning Ding, Gepu Guo, Juan Tu, Dong Zhang, Qingyu Ma. Two-Dimensional Particle Assembly Based on the Synchronized Evolution of Centrosymmetric Off-Axis Acoustic Vortexes. Engineering, 2025, 47(4): 139‒151 https://doi.org/10.1016/j.eng.2024.01.032

References

[1]
Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S.Observation of a single-beam gradient force optical trap for dielectric particles.Opt Lett 1986; 11(5):288-290.
[2]
Liu K, Maccaferri N, Shen Y, Li X, Zaccaria RP, Zhang X, et al.Particle trapping and beaming using a 3D nanotip excited with a plasmonic vortex.Opt Lett 2020; 45(4):823-826.
[3]
Shi Y, Zhao H, Chin LK, Zhang Y, Yap PH, Ser W, et al.Optical potential-well array for high-selectivity, massive trapping and sorting at nanoscale.Nano Lett 2020; 20(7):5193-5200.
[4]
Li H, Cao Y, Shi B, Zhu T, Geng Y, Feng R, et al.Momentum-topology-induced optical pulling force.Phys Rev Lett 2020; 124(14):143901.
[5]
Liu Y, Cheng DK, Sonek GJ, Berns MW, Chapman CF, Tromberg BJ.Evidence for localized cell heating induced by infrared optical tweezers.Biophys J 1995; 68(5):2137-2144.
[6]
Blázquez-Castro A.Optical tweezers: phototoxicity and thermal stress in cells and biomolecules.Micromachines 2019; 10(8):507.
[7]
Wu J.Acoustical tweezers.J Acoust Soc Am 1991; 89(5):2140-2143.
[8]
Takatori SC, De R Dier, Vermant J, Brady JF.Acoustic trapping of active matter.Nat Commun 2016; 7(1):10694.
[9]
Hwang JY, Kim J, Park JM, Lee C, Jung H, Lee J, et al.Cell deformation by single-beam acoustic trapping: a promising tool for measurements of cell mechanics.Sci Rep 2016; 6(1):27238.
[10]
Zhou Q, Zhang J, Ren X, Xu Z, Liu X.Multi-bottle beam generation using acoustic holographic lens.Appl Phys Lett 2020; 116(13):133502.
[11]
Wu M, Mao Z, Chen K, Bachman H, Chen Y, Rufo J, et al.Acoustic separation of nanoparticles in continuous flow.Adv Funct Mater 2017; 27(14):1606039.
[12]
Petersson F, Nilsson A, Holm C, Jönsson H, Laurell T.Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels.Analyst 2004; 129(10):938-943.
[13]
Yarin AL, Pfaffenlehner M, Tropea C.On the acoustic levitation of droplets.J Fluid Mech 1998; 356:65-91.
[14]
Watanabe A, Hasegawa K, Abe Y.Contactless fluid manipulation in air: droplet coalescence and active mixing by acoustic levitation.Sci Rep 2018; 8(1):10221.
[15]
Courtney CRP, Demore CEM, Wu H, Grinenko A, Wilcox PD, Cochran S, et al.Independent trapping and manipulation of microparticles using dexterous acoustic tweezers.Appl Phys Lett 2014; 104(15):154103.
[16]
Courtney CRP, Drinkwater BW, Demore CEM, Cochran S, Grinenko A, Wilcox PD.Dexterous manipulation of microparticles using Bessel-function acoustic pressure fields.Appl Phys Lett 2013; 102(12):123508.
[17]
Liu J, Liang B, Yang J, Yang J, Cheng J.Generation of non-aliased two-dimensional acoustic vortex with enclosed metasurface.Sci Rep 2020; 10(1):3827.
[18]
Liu P, Ming D, Tan CS, Lin B.Acoustic trapping with 3-D manipulation.Appl Acoust 2019; 155:216-221.
[19]
Courtney CRP, Ong CK, Drinkwater BW, Bernassau AL, Wilcox PD, Cumming DRS.Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves.Proc R Soc A 2012; 468(2138):337-360.
[20]
Marzo A, Barnes A, Drinkwater BW.TinyLev: a multi-emitter single-axis acoustic levitator.Rev Sci Instrum 2017; 88(8):085105.
[21]
Ding X, Lin SCS, Lapsley MI, Li S, Guo X, Chan CY, et al.Standing surface acoustic wave (SSAW) based multichannel cell sorting.Lab Chip 2012; 12(21):4228-4231.
[22]
Simon G, Pailhas Y, Andrade MAB, Reboud J, Marques-Hueso J, Desmulliez MPY, et al.Particle separation in surface acoustic wave microfluidic devices using reprogrammable, pseudo-standing waves.Appl Phys Lett 2018; 113(4):044101.
[23]
Shi J, Ahmed D, Mao X, Lin SCS, Lawit A, Huang TJ.Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).Lab Chip 2009; 9(20):2890-2895.
[24]
Naseer SM, Manbachi A, Samandari M, Walch P, Gao Y, Zhang YS, et al.Surface acoustic waves induced micropatterning of cells in gelatin methacryloyl (GelMA) hydrogels.Biofabrication 2017; 9(1):015020.
[25]
Silva GT, Lopes JH, Le JPão-Neto, Nichols MK, Drinkwater BW.Particle patterning by ultrasonic standing waves in a rectangular cavity.Phys Rev Appl 2019; 11(5):054044.
[26]
Marzo A, Seah SA, Drinkwater BW, Sahoo DR, Long B, Subramanian S.Holographic acoustic elements for manipulation of levitated objects.Nat Commun 2015; 6(1):8661.
[27]
Chen J, Yu F, Wang Z, Lin L.Multichannel ultrasound focusing delay control method based on variable-length shift register for airborne ultrasound tactile feedback.IEEE Access 2020; 8:24904-24913.
[28]
Hefner BT, Marston PL.An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems.J Acoust Soc Am 1999; 106(6):3313-3316.
[29]
Gspan S, Meyer A, Bernet S, Ritsch-Marte M.Optoacoustic generation of a helicoidal ultrasonic beam.J Acoust Soc Am 2004; 115(3):1142-1146.
[30]
Puranen T, Helander P, Meriläinen A, Maconi G, Penttilä A, Gritsevich M, et al.Multifrequency acoustic levitation.In: Proceedings of 2019 IEEE International Ultrasonics Symposium; 2019 Oct 6–9; Glasgow, U K. Piscataway: IEE E; 2019. p. 916–19.
[31]
Hong ZY, Yin JF, Zhai W, Yan N, Wang WL, Zhang J, et al.Dynamics of levitated objects in acoustic vortex fields.Sci Rep 2017; 7(1):7093.
[32]
Zhou C, Wang Q, Pu S, Li Y, Guo G, Chu H, et al.Focused acoustic vortex generated by a circular array of planar sector transducers using an acoustic lens, and its application in object manipulation.J Appl Phys 2020; 128(8):084901.
[33]
Marzo A, Drinkwater BW.Holographic acoustic tweezers.Proc Natl Acad Sci USA 2019; 116(1):84-89.
[34]
Zhang Y, Xie B, Liu W, Cheng H, Chen S, Tian J.Anomalous reflection and vortex beam generation by multi-bit coding acoustic metasurfaces.Appl Phys Lett 2019; 114(9):091905.
[35]
Li Y, Li W, Ma Q, Guo G, Tu J, Zhang D.Regulation of multiple off-axis acoustic vortices with a centered quasi-plane wave.J Appl Phys 2018; 124(11):114901.
[36]
Yang Y, Ma T, Li S, Zhang Q, Huang J, Liu Y, et al.Self-navigated 3D acoustic tweezers in complex media based on time reversal.Research 2021; 2021:9781394.
[37]
Maleev ID, Swartzlander GA.Composite optical vortices.J Opt Soc Am B 2003; 20(6):1169-1176.
[38]
Cheng K, B.Composite coherence vortexes in coherent and incoherent superpositions of two off-axis partially coherent vortex beams.J Mod Opt 2008; 55(17):2751-2764.
[39]
Cheng K, B.Composite coherence vortexes and their propagation in free space.Optik 2010; 121(7):589-594.
[40]
Gong Z, Baudoin M.Particle assembly with synchronized acoustical tweezers.Phys Rev Appl 2019; 12(2):024045.
[41]
Durnin J.Exact solutions for nondiffracting beams. I. The scalar theory.J Opt Soc Am A 1987; 4(4):651-654.
[42]
Wang T, Ke M, Li W, Yang Q, Qiu C, Liu Z.Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure.Appl Phys Lett 2016; 109(12):123506.
[43]
Xu Z, Xu W, Qian M, Cheng Q, Liu X.A flat acoustic lens to generate a Bessel-like beam.Ultrasonics 2017; 80:66-71.
[44]
Ding N, Ma Q, Li Y, Guo G, Tu J, Zhang D.Directional off-axis acoustic-vortex beams passing through a preassigned point.J Appl Phys 2021; 130(14):144901.
[45]
Kotlyar VV, Kovalev AA, Savelyeva AA.Topological charge of a superposition of identical parallel single-ringed Laguerre–Gaussian beams.Comput Opt 2022; 46(2):184-188.
[46]
Li X, Li Y, Ma Q, Guo G, Tu J, Zhang D.Principle and performance of orbital angular momentum communication of acoustic vortex beams based on single-ring transceiver arrays.J Appl Phys 2020; 127(12):124902.
[47]
.On the forces acting on a small particle in an acoustical field in an ideal fluid.Sov Phys Dokl 1962; 6:773-775.
[48]
Li Y, Guo G, Ma Q, Tu J, Zhang D.Deep-level stereoscopic multiple traps of acoustic vortices.J Appl Phys 2017; 121(16):164901.
[49]
Zhang Y, Wu Z, Yang K, Li P, Wen F, Gu Y.Splitting, generation, and annihilation of phase singularities in non-coaxial interference of Bessel–Gaussian beams.Phys Scr 2021; 96(12):125105.
[50]
Grinenko A, Wilcox PD, Courtney CRP, Drinkwater BW.Proof of principle study of ultrasonic particle manipulation by a circular array device.Proc R Soc A 2012; 468(2147):3571-3586.
[51]
Wang H, Szekerczes K, Afanasev A.Electromagnetic vortex topologies from sparse circular phased arrays.J Phys Commun 2022; 6(2):025005.
[52]
Wang H, Afanasev A.Topology and polarization of optical vortex fields from atomic phased arrays.Appl Sci 2023; 13(9):5672.
[53]
Yang L, Ma Q, Tu J, Zhang D.Phase-coded approach for controllable generation of acoustical vortices.J Appl Phys 2013; 113(15):154904.
[54]
Kalb DM, Galvez EJ.Composite vortices of displaced Laguerre–Gauss beams.In: Galvez EJ, Andrews DL, Glückstad J, editors. Proceedings volume 7227: complex light and optical forces III; 2009 Jan 28–29; San Jose, C A, US A. Bellingham: SPI E; 2009. p. 72270B.
[55]
Li J, Crivoi A, Peng X, Shen L, Pu Y, Fan Z, et al.Three dimensional acoustic tweezers with vortex streaming.Commun Phys 2021; 4(1):113.
[56]
Lo WC, Fan CH, Ho YJ, Lin CW, Yeh CK.Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles.Proc Natl Acad Sci USA 2021; 118(4):e2023188118.
[57]
Baresch D, Thomas JL, Marchiano R.Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers.Phys Rev Lett 2016; 116(2):024301.
[58]
Riaud A, Baudoin M, Bou O Matar, Becerra L, Thomas JL.Selective manipulation of microscopic particles with precursor swirling Rayleigh waves.Phys Rev Appl 2017; 7(2):024007.
[59]
Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A.Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves.Nat Commun 2015; 6(1):8686.
[60]
Yang Y, Yang Y, Liu D, Wang Y, Lu M, Zhang Q, et al.In-vivo programmable acoustic manipulation of genetically engineered bacteria.Nat Commun 2023; 14(1):3297.
AI Summary AI Mindmap
PDF(5386 KB)

Accesses

Citations

Detail

Sections
Recommended

/