Unveiling the Oldest Industrial Shale Gas Reservoir: Insights for the Enrichment Pattern and Exploration Direction of Lower Cambrian Shale Gas in the Sichuan Basin

Caineng Zou, Zhengfu Zhao, Songqi Pan, Jia Yin, Guanwen Lu, Fangliang Fu, Ming Yuan, Hanlin Liu, Guosheng Zhang, Cui Luo, Wei Wang, Zhenhua Jing

Engineering ›› 2024, Vol. 42 ›› Issue (11) : 278-294.

PDF(7575 KB)
PDF(7575 KB)
Engineering ›› 2024, Vol. 42 ›› Issue (11) : 278-294. DOI: 10.1016/j.eng.2024.03.007
Research
Review

Unveiling the Oldest Industrial Shale Gas Reservoir: Insights for the Enrichment Pattern and Exploration Direction of Lower Cambrian Shale Gas in the Sichuan Basin

Author information +
History +

Abstract

The lower Cambrian Qiongzhusi (Є1q) shale in the Sichuan Basin, formerly considered a source rock, recently achieved high gas production (7.388 × 105 m3·d−1) from well Z201 in the Deyang-Anyue rift trough (DART), marking an exploration breakthrough of the world’s oldest industrial shale gas reservoir. However, the shale gas enrichment mechanism within the DART is not fully understood. This study reviews the formation of the Qiongzhusi shale gas reservoirs within the DART by comparing them with cotemporaneous deposits outside the DART, and several findings are presented. The gas production interval was correlated with the main phase of the Cambrian explosion (lower Cambrian stage 3). In the early Cambrian ecosystem, dominant animals likely accelerated the settling rates of organic matter (OM) in the upper 1st member of Є1q (Є1q12) by feeding on small planktonic organisms and producing larger organic fragments and fecal pellets. High primary productivity and euxinic conditions contributed to OM enrichment in the lower 1st member of Є1q (Є1q11). Additionally, shale reservoirs inside the DART demonstrated better properties than those outside in terms of thickness, brittle minerals, gas content, and porosity. In particular, the abundant OM pores inside the DART facilitated shale gas enrichment, whereas the higher thermal maturity of the shales outside the DART possibly led to the graphitization and collapse of some OM pores. Meanwhile, the overpressure of high-production wells inside the DART generally reflects better shale gas preservation, benefiting from the shale’s self-sealing nature, “upper capping and lower plugging” configuration, and limited faults and microfractures. Considering these insights, we introduced a “ternary enrichment” model for the Qiongzhusi shale gas. Although the current high gas production of Z201 was found at the reservoir 3, two additional reservoirs were identified with significant potential, thus suggesting a “multilayer stereoscopic development” strategy in future shale gas exploration within the DART.

Graphical abstract

Keywords

Ultradeep shale gas / Sichuan Basin / Qiongzhusi shale / Deyang-Anyue rift trough / Well Z201 / Ternary enrichment / Multilayer stereoscopic development

Cite this article

Download citation ▾
Caineng Zou, Zhengfu Zhao, Songqi Pan, Jia Yin, Guanwen Lu, Fangliang Fu, Ming Yuan, Hanlin Liu, Guosheng Zhang, Cui Luo, Wei Wang, Zhenhua Jing. Unveiling the Oldest Industrial Shale Gas Reservoir: Insights for the Enrichment Pattern and Exploration Direction of Lower Cambrian Shale Gas in the Sichuan Basin. Engineering, 2024, 42(11): 278‒294 https://doi.org/10.1016/j.eng.2024.03.007

References

[1]
X.S. Guo, D.F. Hu, Y.P. Li, J.B. Duan, X.F. Zhang, X.J. Fan, et al. Theoretical progress and key technologies of onshore ultra-deep oil/gas exploration. Engineering, 5 (2019), pp. 458-470
[2]
C.Z. Jia, X.Q. Pang. Research processes and main development directions of deep hydrocarbon geological theories. Acta Petrol Sin, 36 (2015), pp. 1457-1469
[3]
C.N. Zou, Q. Zhao, L.Z. Cong, H.Y. Wang, Z.S. Shi, J. Wu, et al. Development progress, potential and prospect of shale gas in China. Nat Gas Ind, 41 (2021), pp. 1-14
[4]
C.N. Zou, Z. Qiu, J.Q. Zhang, Z.Y. Li, H.Y. Wei, B. Liu, et al. Unconventional petroleum sedimentology: a key to understanding unconventional hydrocarbon accumulation. Engineering, 18 (2022), pp. 62-78
[5]
X.H. Ma, X.W. Zhang, W. Xiong, Y.Y. Liu, J.L. Gao, R.Z. Yu, et al. Prospects and challenges of shale gas development in China. Pet Sci Bull, 4 (2023), pp. 491-501
[6]
C.N. Zou, R.K. Zhu, Z.Q. Chen, J.G. Ogg, S.T. Wu, D.Z. Dong, et al. Organic-matter-rich shales of China. Earth Sci Rev, 189 (2019), pp. 51-78
[7]
X.S. Guo, D.F. Hu, R.C. Huang, Z.H. Wei, J.B. Duan, X.F. Wei, et al. Deep and ultra-deep natural gas exploration in the Sichuan Basin: progress and prospect. Nat Gas Ind, 40 (2020), pp. 1-14
[8]
C.N. Zou, J.H. Du, C.C. Xu, Z.C. Wang, B.M. Zhang, G.Q. Wei, et al. Formation, distribution, resource potential, and discovery of Sinian-Cambrian giant gas field, Sichuan Basin, SW China. Petrol Explor Dev, 41 (2014), pp. 306-325
[9]
B. Horsfield, C.N. Zou, J. Li, S.Y. Yang, N. Mahlstedt, D. Misch, et al. Prediction of the gas-generating characteristics of the Qiongzhusi and Longmaxi Formations, Yangtze platform, southern China, using analogues. AAPG Bull, 105 (2021), pp. 945-985
[10]
S.F. Wang, D.Z. Dong, Y.M. Wang, X.J. Li, J.L. Huang, Q.Z. Guan. A comparative study of the geological feature of marine shale gas between China and the United States. Nat Gas Geosci, 26 (2015), pp. 1666-1678
[11]
C.J. Potter. Paleozoic shale gas resources in the Sichuan Basin, China. AAPG Bull, 102 (2018), pp. 987-1009
[12]
W.Y. Wang, X.Q. Pang, Y.P. Wang, Z.X. Chen, C.R. Li, X.H. Ma. Hydrocarbon expulsion model and resource potential evaluation of high-maturity marine source rocks in deep basins: example from the Ediacaran microbial dolomite in the Sichuan Basin, China. Petroleum Sci, 19 (2022), pp. 2618-2630
[13]
W.Y. Wang, X.Q. Pang, Z.X. Chen, D.X. Chen, T.Y. Zheng, B. Luo, et al. Quantitative prediction of oil and gas prospects of the Sinian—lower Paleozoic in the Sichuan Basin in central China. Energy, 174 (2019), pp. 861-872
[14]
J.X. Dai, Y.Y. Ni, Q.Y. Liu, X.Q. Wu, D.Y. Gong, F. Hong, et al. Sichuan super gas basin in southwest China. Petrol Explor Dev, 48 (2021), pp. 1251-1259
[15]
D.Z. Dong, S.K. Gao, J.L. Huang, Q.Z. Guan, S.F. Wang, Y.M. Wang. Discussion on the exploration & development prospect of shale gas in the Sichuan Basin. Nat Gas Ind B, 2 (2015), pp. 9-23
[16]
M. Li, Y.L. Liu, D.J. Feng, B.J. Shen, W. Du, W.P. Wei. Potential and future exploration direction of marine shale gas resources in China. Petrol Geol Exp, 45 (2023), pp. 1097-1108
[17]
X. Li, Z.X. Jiang, S. Jiang, S. Wang, Y.N. Miao, F. Wu, et al. Synergetic effects of matrix components and diagenetic processes on pore properties in the lower Cambrian shale in Sichuan Basin, south China. J Nat Gas Sci Eng, 94 (2021), Article 104072
[18]
X. Li, Z.X. Jiang, P.F. Wang, Y. Song, Z. Li, X.L. Tang, et al. Porosity-preserving mechanisms of marine shale in lower Cambrian of Sichuan Basin, south China. J Nat Gas Sci Eng, 55 (2018), pp. 191-205
[19]
J.Q. Tan, Z.H. Wang, W.H. Wang, J. Hilton, J.H. Guo, X.K. Wang. Depositional environment and hydrothermal controls on organic matter enrichment in the lower Cambrian Niutitang shale, southern China. AAPG Bulletin, 105 (2021), pp. 1329-1356
[20]
T.L. Guo, X. Liang, S.J. Ye, X.X. Dong, L.M. Wei, Y.T. Yang. Theory and practice of unconventional gas exploration in carrier beds: insight from the breakthrough of new type of shale gas and tight gas in Sichuan Basin, SW China. Petrol Explor Dev, 50 (2023), pp. 27-42
[21]
M.E. Curtis, B.J. Cardott, C.H. Sondergeld, C.S. Rai. Development of organic porosity in the Woodford shale with increasing thermal maturity. Int J Coal Geol, 103 (2012), pp. 26-31
[22]
Z.B. Liu, B. Gao, Y.Y. Zhang, W. Du, D.J. Feng, H.K. Nie. Types and distribution of the shale sedimentary facies of the lower Cambrian in upper Yangtze area, south China. Petrol Explor Dev, 44 (2017), pp. 20-31
[23]
S.Y. Luo, X.H. Chen, Y. Yue. Analysis of sedimentary-tectonic evolution characteristics and shale gas enrichment in Yichang area, middle Yangtz. Nat Gas Geosci, 31 (2020), pp. 1052-1068
[24]
H. Li, A. Liu, S.Y. Luo, X.H. Chen, L. Chen. Characteristics of the Cambrian Shuijingtuo shale reservoir on Yichang slope, western Hubei Province: a case study of well EYY1. Petrol Geol Exp, 41 (2019), pp. 76-82
[25]
F.R. Chen, Y. Zhang, Z.X. Xu, C. Tan, X.X. Zhou. Petroleum geological characteristics and main control factors of oil and gas accumulations in the global Precambrian-Cambrian petroliferous basin. J Jilin Uni B, 47 (2017), pp. 974-989
[26]
Ahlbrandt TS.The Sirte Basin Province of Libya-Sirte-Zelten total petroleum system. US Geol Surv Bull 2002;2202-F.
[27]
M.V.N. Chari, J.N. Sahu, B. Banerjee, P.L. Zutshi, K. Chandra. Evolution of the Cauvery basin, India from subsidence modelling. Mar Petrol Geol, 12 (1995), pp. 667-675
[28]
A. Sircar. Hydrocarbon production from fractured basement formations. Curr Sci, 87 (2004), pp. 147-151
[29]
Rodrigues S, Bluett J, Ferguson BR, Titus L, Golding SD.Maturation profile at the Glyde gas discovery in the southern McArthur Basin, Australia. In:Proceedings of International Conference & Exhibition; 2015 Sep 13-16; Melbourne, VIC, Australia. AAPG; 2015.
[30]
M. Croon, J. Bluett, L. Titus, R. Johnson. Formation evaluation case study: Glyde unconventional middle proterozoic play in the McArthur Basin, northern Australia. APPEA J, 55 (2015), p. 429
[31]
H. Zhou, W. Li, B.M. Zhang, J.J. Liu, S.H. Deng, S.B. Zhang, et al.. Formation and evolution of upper Sinian to lower Cambrian intraplate formal basin in Sichuan Basin. Acta Petrol Sin, 36 (2015), pp. 310-323
[32]
K. Ma, L. Wen, B.J. Zhang, Y. Li, J.Y. Zhong, Y.L. Wang, et al. Segmented evolution of Deyang-Anyue erosion rift trough in Sichuan Basin and its significance for oil and gas exploration, SW China. Petrol Explor Dev, 49 (2022), pp. 313-326
[33]
J.B. Duan, Q.H. Mei, B.S. Li, Z.R. Liang. Sinian-early Cambrian tectonic-sedimentary evolution in Sichuan Basin. Earth Sci, 44 (2019), pp. 738-755
[34]
G.X. Zhou, G.Q. Wei, G.Y. Hu, S.J. Wu, Y.J. Tian, C.Y. Dong. The development setting and the organic matter enrichment of the lower Cambrian shales from the western rift trough in Sichuan Basin. Nat Gas Geosci, 31 (2020), pp. 498-506
[35]
L.Y. Yang, J.J. Shen, K.Q. Chen, Y. Wang, Y.B. Ji, C.H. Wang, et al. Relationship between paleoenvironmental evolution and organic matter enrichment of shale of the lower Cambrian Qiongzhusi Formation in western Sichuan: evidence from mineral petrology and geochemistry. J Northeast Petrol Univ, 46 (2022), pp. 40-54
[36]
Y. Ding, Z.W. Li, S.G. Liu, J.M. Song, X.Q. Zhou, W. Sun, et al. Sequence stratigraphy and tectono-depositional evolution of a late Ediacaran epeiric platform in the upper Yangtze area, south China. Precambrian Res, 354 (2021), Article 106077
[37]
J.H. Du, Z.C. Wang, C.N. Zou, C.C. Xu, P. Shen, B.M. Zhang, et al. Discovery of intra-cratonic rift in the upper Yangtze and its control effect on the formation of Anyue giant gas field. Acta Petrol Sin, 37 (2016), pp. 1-16
[38]
L.J. Feng, C. Li, J. Huang, H.J. Chang, X.L. Chu. A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529-521Ma) Yangtze platform, south China. Precambrian Res, 246 (2014), pp. 123-133
[39]
K. Jiu, W.L. Ding, W.H. Huang, J.C. Zhang, W.T. Zeng. Formation environment and controlling factors of organic-rich shale of lower Cambrian in upper Yangtze region. Geoscience, 26 (2012), pp. 547-554
[40]
S.F. Wang, C.N. Zou, D.Z. Dong, Y.M. Wang, X.J. Li, J.L. Huang, et al. Multiple controls on the paleoenvironment of the early Cambrian marine black shales in the Sichuan Basin, SW China: geochemical and organic carbon isotopic evidence. Mar Petrol Geol, 66 (2015), pp. 660-672
[41]
R. Yeasmin, D.Z. Chen, Y. Fu, J.G. Wang, Z.H. Guo, C. Guo. Climatic-oceanic forcing on the organic accumulation across the shelf during the early Cambrian (age 2 through 3) in the mid-upper Yangtze block, NE Guizhou, south China. J Asian Earth Sci, 134 ( 2017), pp. 365-386
[42]
J.H. Zhao, Z.J. Jin, Q.H. Hu, K.Y. Liu, G.X. Liu, B. Gao, et al. Geological controls on the accumulation of shale gas: a case study of the early Cambrian shale in the upper Yangtze area. Mar Petrol Geol, 107 (2019), pp. 423-437
[43]
P.F. Jiang, J.F. Wu, Y.Q. Zhu, D.K. Zhang, W. Wu, R. Zhang, et al. Enrichment conditions and favorable areas for exploration and development of marine shale gas in Sichuan Basin. Acta Petrol Sin, 44 (2023), pp. 91-109
[44]
R.Y. Liu, W. Zhou, H. Xu, Q.M. Zhou, Q. Cao, W.L. Gao, et al. Control of the pattern of tectonic-depositional differentiation on shale gas reservoir characteristics within a sequence stratigraphic framework: a case study from the Qiongzhusi Formation in the southwestern Sichuan Basin. Acta Sedimentol Sin (2023), pp. 1-23
[45]
P. Gao, S.J. Li, G.G. Lash, D.T. Yan, Q. Zhou, X.M. Xiao. Stratigraphic framework, redox history, and organic matter accumulation of an early Cambrian intraplatfrom basin on the Yangtze platform, south China. Mar Petrol Geol, 130 (2021), Article 105095
[46]
R. Li, Y.X. Wang, Z.C. Wang, W.R. Xie, W.Z. Li, M.F. Gu, et al. Geological characteristics of the southern segment of the Late Sinian-early Cambrian Deyang-Anyue rift trough in Sichuan Basin, SW China. Petrol Explor Dev, 50 (2023), pp. 321-333
[47]
S.B. Liu, S.D. Jin, Y. Liu, A.Q. Chen. Astronomical forced sequence infill of early Cambrian Qiongzhusi organic-rich shale of Sichuan Basin, south China. Sediment Geol, 440 (2022), Article 106261
[48]
G.Y. Cao, Y. Liu, M.C. Hou, A.Q. Chen, S.L. Xu. Nitrogen cycle and paleoenvironmental implications in the Weiyuan area, southern Sichuan during the early Cambrian. Acta Sedimentol Sin (2023), pp. 1-15
[49]
Q.Y. Zhang, E.T. Liu, S.Q. Pan, H. Wang, Z.H. Jing, Z.F. Zhao, et al. Multiple controls on organic matter accumulation in the intraplatform basin of the early Cambrian Yangtze platform, south China. J Mar Sci Eng, 11 (2023), p. 1907
[50]
Taylor SR, McLennan SM.The continental crust: its composition and evolution. Oak Ridge: US Department of Energy; 1985.
[51]
S.D. Schoepfer, J. Shen, H.Y. Wei, R.V. Tyson, E. Ingall, T.J. Algeo. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. Earth Sci Rev, 149 (2015), pp. 23-52
[52]
C.D. Lohr, P.C. Hackley. Relating Tmax and hydrogen index to vitrinite and solid bitumen reflectance in hydrous pyrolysis residues: comparisons to natural thermal indices. Int J Coal Geol, 242 (2021), Article 103768
[53]
M.R. Stokes, B.J. Valentine, P.C. Hackley, A.M. Jubb. Relating systematic compositional variability to the textural occurrence of solid bitumen in shales. Int J Coal Geol, 261 (2022), Article 104068
[54]
Forchheimer P.Wasserbewegung durch boden. 45th ed. Düsseldorf: Zeitschrift des Vereines Deutscher Ingenieure; 1901. German.
[55]
L.J. Klinkenberge. The permeability of porous media to liquids and gases. Drilling Prod Prac (1941), pp. 200-213
[56]
C.N. Zou, Z. Yang, S.S. Sun, Q. Zhao, W.H. Bai, H. Liu, et al. “Exploring petroleum inside source kitchen”: shale oil and gas in Sichuan Basin. Sci China Earth Sci, 63 (2020), pp. 934-953
[57]
C.R. Marshall. Explaining the Cambrian “explosion” of animals. Annu Rev Earth Pl Sc, 34 (2006), pp. 355-384
[58]
D.G. Shu, Y. Isozaki, X.L. Zhang, J. Han, S. Maruyama. Birth and early evolution of metazoans. Gondwana Res, 25 (2014), pp. 884-895
[59]
M.Y. Zhu, A.H. Yang, J.L. Yuan, G.X. Li, J.M. Zhang, F.C. Zhao, et al. Cambrian integrative stratigraphy and timescale of China. Sci China Earth Sci, 62 (2019), pp. 25-60
[60]
Z.F. Zhao, P. Ahlberg, N. Thibault, T.W. Dahl, N.H. Schovsbo, A.T. Nielsen. High-resolution carbon isotope chemostratigraphy of the middle Cambrian to lowermost Ordovician in southern Scandinavia: implications for global correlation. Global Planet Change, 209 (2022), Article 103751
[61]
L.A. Hinnov. Astronomical metronome of geological consequence. Proc Nati Acad Sci USA, 115 (2018), pp. 6104-6106
[62]
Z.F. Zhao, N.R. Thibault, T.W. Dahl, N.H. Schovsbo, A.L. Sørensen, C.M. Rasmussen, et al. Synchronizing rock clocks in the late Cambrian. Nat Commun, 13 (2022), p. 1990
[63]
B.P. Tissot, D.H. Welte. Petroleum formation and occurrence. Springer Verlag, Heidelberg (2013)
[64]
K. Wang, L. Ma, K.G. Taylor. Nanoscale geochemical heterogeneity of organic matter in thermally-mature shales: an AFM-IR study. Fuel, 310 (2022), Article 122278
[65]
G.Q. Wei, W. Yang, W.R. Xie, N. Su, Z.Y. Xie, F.Y. Zeng, et al. Formation mechanisms, potentials and exploration practices of large lithologic gas reservoirs in and around an intracratonic rift: taking the Sinian-Cambrian of Sichuan Basin as an example. Petrol Explor Dev, 49 (2022), pp. 530-545
[66]
M.H. Yang, Y.H. Zuo, X.G. Duan, Z.Q. Li, J.Z. Zhang, L.R. Dang, et al. Hydrocarbon kitchen evolution of the lower Cambrian Qiongzhusi Formation in the Sichuan Basin and its enlightenment to hydrocarbon accumulation. Earth Science, 48 (2023), pp. 582-595
[67]
M. Yuan, S.Q. Pan, Z.H. Jing, S. Poetz, Q. Shi, Y.J. Han, et al. Geochemical distortion on shale oil maturity caused by oil migration: insights from the non-hydrocarbons revealed by FT-ICR MS. Int J Coal Geol, 266 (2023), Article 104142
[68]
Z.F. Zhao, X.Q. Pang, F.J. Jiang, K. Wang, L.L. Li, K. Zhang, et al. Hydrocarbon generation from confined pyrolysis of lower Permian Shanxi formation coal and coal measure mudstone in the Shenfu area, northeastern Ordos Basin, China. Mar Petrol Geol, 97 (2018), pp. 355-369
[69]
S. Rao, Y.N. Yang, S.B. Hu, Q. Wang. Thermal evolution history and shale gas accumulation significance of lower Cambrian Qiongzhusi formation in southwest Sichuan Basin. Earth Sci, 47 (2022), pp. 4319-4335
[70]
N.S. Qiu, W. Liu, X.D. Fu, W.Z. Li, Q.C. Xu, C.Q. Zhu. Maturity evolution of lower Cambrian Qiongzhusi formation shale of the Sichuan Basin. Mar Petrol Geol, 128 (2021), Article 105061
[71]
C.R. Li, X.Q. Pang, X.H. Ma, E.Z. Wang, T. Hu, Z.Y. Wu. Hydrocarbon generation and expulsion characteristics of the Lower Cambrian Qiongzhusi shale in the Sichuan Basin, central China: implications for conventional and unconventional natural gas resource potential. J Petrol Sci Engi, 204 (2021), Article 108610
[72]
S.I. Golyshev, N.A. Verkhovskaya, V.N. Burkova, E.Y. Matis. Stable carbon isotopes in source-bed organic matter of west and east Siberia. Org Geochem, 17 (1991), pp. 277-291
[73]
J.L. Huang, C.N. Zou, J.Z. Li, D.Z. Dong, S. Wang, S.Q. Wang, et al. Shale gas generation and potential of the lower Cambrian Qiongzhusi formation in southern Sichuan Basin. China. Petrol Explor Dev, 39 (2012), pp. 75-81
[74]
T.F. Pedersen, S.E. Calvert. Anoxia vs productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks?. AAPG Bull, 74 (1990), pp. 454-466
[75]
Tyson RV. The “productivity versus preservation” controversy: cause, flaws, and resolution. Deposition of organic-carbon-rich sediments: models mechanisms, and consequences. Maclean: SEPM Society for Sedimentary Geology; 2005.
[76]
Z.F. Zhao, X.Q. Pang, C.N. Zou, A.J. Dickson, A. Basu, Z.J. Guo, et al. Dynamic oceanic redox conditions across the late Cambrian SPICE event constrained by molybdenum and uranium isotopes. Earth Planet Sc Lett, 604 (2023), Article 118013
[77]
B.B. Sageman, A.E. Murphy, J.P. Werne, C.A.E. Straeten, D.J. Hollander, T.W. Lyons. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, middle-upper Devonian, Appalachian basin. Chem Geol, 195 (2003), pp. 229-273
[78]
T.J. Algeo, J.B. Maynard. Trace-element behavior and redox facies in core shales of upper Pennsylvanian Kansas-type cyclothems. Chem Geol, 206 (2004), pp. 289-318
[79]
Z.B. Liu, W. Du, B. Gao, Z.Q. Hu, Y.Y. Zhang, J. Wu, et al. Sedimentary model and distribution of organic-rich shale in the sequence stratigraphic framework: a case study of lower Cambrian in upper Yangtze region. J Jilin Uni B, 48 (2018), pp. 1-14
[80]
B.U. Haq, S.R. Schutter. A chronology of paleozoic sea-level changes. Science, 322 (2008), pp. 64-68
[81]
Cramer BD, Jarvis I. Carbon isotope stratigraphy. Geologic Time Scale 2020. Amsterdam: Elsevier; 2020.
[82]
Z.H. Li, M. Zhang, Z.Q. Chen, T.J. Algeo, L.S. Zhao, F.F. Zhang. Early Cambrian oceanic oxygenation and evolution of early animals: a critical review from the south China Craton. Global Planet Change, 204 (2021), Article 103561
[83]
M.Y. Zhu. The origin and Cambrian Explosion of animals: fossil evidences from China. Acta Palaeontol Sin, 49 (2010), pp. 269-287
[84]
T.J. Algeo, N. Tribovillard. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chem Geol, 268 (2009), pp. 211-225
[85]
S.W. Poulton, D.E. Canfield. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements, 7 (2011), pp. 107-112
[86]
D.Z. Chen, J.G. Wang, H.R. Qing, D.T. Yan, R.W. Li. Hydrothermal venting activities in the early Cambrian, south China: petrological, geochronological and stable isotopic constraints. Chem Geol, 258 (2009), pp. 168-181
[87]
P. Gao, He Zi, G.G.L. Lash,Q. Zhou. Xiao XM. Controls on silica enrichment of lower Cambrian organic-rich shale deposits. Mar Petrol Geol, 130 (2021), Article 105126
[88]
M. Adachi, K. Yamamoto, R. Sugisaki. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication od ocean ridge activity. Sediment Geol, 47 (1986), pp. 125-148
[89]
T.J. Algeo, T.W. Lyons. Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21 (2006), p. PA1016
[90]
P. Gao, Z.L. He, S.J. Li, G.G. Lash, B.Y. Li, B.Y. Huang, et al. Volcanic and hydrothermal activities recorded in phosphate nodules from the lower Cambrian Niutitang Formation black shales in south China. Palaeogeogr Palaeocl, 505 (2018), pp. 381-397
[91]
X. Chen, H.F. Ling, D. Vance, G.A. Shields-Zhou, M. Zhu, S.W. Poulton, et al. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nat Commun, 6 (2015), p. 7142
[92]
M. Fakhraee, N.J. Planavsky, C.T. Reinhard. The role of environmental factors in the long-term evolution of the marine biological pump. Nat Geosci, 13 (2020), pp. 812-816
[93]
T.M. Lenton, S.J. Daines. The effects of marine eukaryote evolution on phosphorus, carbon and oxygen cycling across the Proterozoic-Phanerozoic transition. Emerg Top Life Sci, 2 (2018), pp. 267-278
[94]
T.W. Lyons, C.T. Reinhard, N.J. Planavsky. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506 (2014), pp. 307-315
[95]
N.J. Butterfield. Oxygen, animals and aquatic bioturbation: an updated account. Geobiology, 16 (2018), pp. 3-16
[96]
T.M. Lenton, R.A. Boyle, S.W. Poulton, G.A. Shields-Zhou, N.J. Butterfield. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat Geosci, 7 (2014), pp. 257-265
[97]
Y.S. Li, G.D. Liu, Z.Z. Song, B.J. Zhang, M.L. Sun, X.W. Tian, et al. Organic matter enrichment due to high primary productivity in the deep-water shelf: insights from the lower Cambrian Qiongzhusi shales of the central Sichuan Basin, SW China. J Asian Earth Sci, 239 (2022), Article 105417
[98]
M. Mastalerz, A. Schimmelmann, A. Drobniak, Y.Y. Chen. Porosity of Devonian and Mississippian New Albany shale across a maturation gradient: insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bull, 97 (2013), pp. 1621-1643
[99]
J.B. Curtis. Fractured shale gas systems. AAPG Bull, 86 (2002), pp. 1921-1938
[100]
B. Gao, Z.B. Liu, Z.G. Shu, H.T. Liu, R.Y. Wang, Z.G. Jin, et al. Reservoir characteristics and exploration of the lower Cambrian shale gas in the middle-upper Yangtze area. Oil Gas Geol, 41 (2020), pp. 284-294
[101]
G.R. Chalmers, R.M. Bustin. Lower Cretaceous gas shales in northeastern British Columbia, part II: evaluation of regional potential gas resources. B Can Petrol Geol, 56 (2008), pp. 22-61
[102]
A. Adeyilola, S. Nordeng, C. Onwumelu, F. Nwachukwu, T. Gentzis. Geochemical, petrographic and petrophysical characterization of the lower bakken shale, divide county, north Dakota. Inr J Coal Geol, 224 (2020), Article 103477
[103]
K.L. Milliken, M. Rudnicki, D.N. Awwiller, T.W. Zhang. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania. AAPG Bull, 97 (2013), pp. 177-200
[104]
K. Wang, M. Chandler, J. Wang, P. Dowey, M. Storm, K.G. Taylor, et al. Time-lapse nanometre-scale 3D synchrotron imaging and image-based modelling of the response of shales to heating. Int J Coal Geol, 244 (2021), Article 103816
[105]
J. Klaver, G. Desbois, J.L. Urai, R. Littke. BIB-SEM study of the pore space morphology in early mature Posidonia shale from the Hils area, Germany. Inr J Coal Geol, 103 (2012), pp. 12-25
[106]
D.Z. Dong, Y.M. Wang, X.N. Huang, C.C. Zhang, Q.Z. Guan, J.L. Huang, et al. Discussion about geological characteristics, resource evaluation methods and its key parameters of shale gas in China. Nat Gas Geosci, 27 (2016), pp. 1583-1601
[107]
D.J. Soeder. The successful development of gas and oil resources from shales in north America. J Petrol Sci Engi, 163 (2018), pp. 399-420
[108]
M.P. Mudoi, S. Sinha, V. Parthasarthy.A review of gas adsorption on shale and the influencing factors of CH4 and CO2 adsorption. J Petrol Sci Engi, 217 (2022), Article 119937
[109]
U. Kuila, D.K. McCarty, A. Derkowski, T.B. Fischer, T. Topór, M. Prasad. Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks. Fuel, 135 (2014), pp. 359-373
[110]
F. Liang, W. Jiang, Y. Dai, Y. Chen, C. Luo, Q. Zhang, et al. Enrichment law and resource potential of shale gas of Qiongzhusi Formation in Weiyuan-Ziyang areas, Sichuan Basin. Nat Gas Geosci, 33 (2022), pp. 755-763
[111]
T.L. Guo. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas. Petrol Explor Dev, 43 (2016), pp. 349-359
[112]
X.S. Guo, D.F. Hu, Y.P. Li, Z.H. Wei, X.F. Wei, Z.J. Liu. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field. Petrol Explor Dev, 44 (2017), pp. 513-523
[113]
Z.X. Jiang, Y. Song, X.L. Tang, Z. Li, X.M. Wang, G.Z. Wang, et al. Controlling factors of marine shale gas differential enrichment in southern China. Petrol Explor Dev, 47 (2020), pp. 661-673
[114]
X.F. Wei, Y.P. Li, Z.H. Wei, R.B. Liu, G.C. Yu, Q.B. Wang. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery. Petrol Geol Exp, 39 (2017), pp. 147-153
[115]
L. Tang, Y. Song, S. Jiang, L.X. Li, Z. Li, Q.W. Li, et al. Sealing mechanism of the roof and floor for the Wufeng-Longmaxi shale gas in the southern Sichuan Basin. Energy Fuels, 34 (2020), pp. 6999-7018
[116]
K. Zhang, C.Z. Jia, Y. Song, S. Jiang, Z.X. Jiang, M. Wen, et al. Analysis of lower Cambrian shale gas composition, source and accumulation pattern in different tectonic backgrounds: a case study of Weiyuan Block in the upper Yangtze region and Xiuwu Basin in the lower Yangtze region. Fuel, 263 (2020), Article 115978
[117]
C.H. Fan, C. Zhong, Y. Zhang, Q.R. Qin, S. He. Geological factors controlling the accumulation and high yield of marine-facies shale gas: case study of the Wufeng-Longmaxi Formation in the Dingshan area of southeast Sichuan. China. Acta Geol Sin, 93 (2019), pp. 536-560
[118]
G.C. Yu, X.F. Wei, F. Li, Z.J. Liu. Disruptive effects of faulting on shale gas preservation in upper Yangtze region. Petrol Geol Exp, 42 (2020), pp. 355-362
[119]
H.W. Cao, H.G. Zhu, J. Liu, J. Liang, X.Y. Shu, C.H. Fan. Preservation conditions of Sinian-Cambrian oil and gas in complex structural area of southwest Sichuan. Petrol Geol Eng, 36 (2022), pp. 46-51
[120]
H.K. Nie, Z.L. He, R.Y. Wang, G.R. Zhang, Q. Chen, D.H. Li, et al. Temperature and origin of fluid inclusions in shale veins of Wufeng-Longmaxi Formations, Sichuan Basin, south China: implications for shale gas preservation and enrichment. J Petrol Sci Engi, 193 (2020), Article 107329
[121]
L.Q. Chen, J. Wu, Y.F. He, Q.Q. Jiang, W. Wu, C. Luo, et al. Fracture vein characteristics and paleofluid activities in the lower Cambrian Qiongzhusi shale in the central portion of the Mianyang-Changning intracratonic Sag, Sichuan Basin. Bull Geol Sci Technol, 42 (2023), pp. 142-152
[122]
T.L. Guo, X.P. He, P. Zeng, Y.Q. Gao, P.X. Zhang, G.S. He. Geological characteristics and beneficial development scheme of shale gas reservoirs in complex tectonic regions: a case study of Wufeng-Longmaxi Formations in Sichuan Basin and its periphery. Acta Petrol Sin, 41 (2020), pp. 1490-1500
[123]
J. Yin, L. Wei, S.S. Sun, Z.S. Shi, D.Z. Dong, Z.Y. Gao. Overpressure generation and evolution in deep Longmaxi Formation shale reservoir in southern Sichuan Basin: influences on pore development. Energies, 16 (2023), p. 2533
[124]
X.S. Guo. Rules of two-factor enrichment for marine shale gas in southern China: understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area. Acta Geol Sin, 88 (2014), pp. 1209-1218
[125]
H.Q. Pang, L. Xiong, L.M. Wei, H.L. Shi, X.X. Dong, T.C. Zhang, et al. Analysis of main geological factors for high yield and enrichment of deep shale gas in southern Sichuan: a case study of WeiRong shale gas field. Nat Gas Ind, 39 (2019), pp. 78-84
AI Summary AI Mindmap
PDF(7575 KB)

Accesses

Citations

Detail

Sections
Recommended

/