Robust, Flexible, and Superhydrophobic Fabrics for High-Efficiency and Ultrawide-Band Microwave Absorption

Zhong Zhang, Yaxin Meng, Xinrui Fang, Qing Wang, Xungai Wang, Haitao Niu, Hua Zhou

Engineering ›› 2024, Vol. 41 ›› Issue (10) : 161-171.

PDF(4465 KB)
PDF(4465 KB)
Engineering ›› 2024, Vol. 41 ›› Issue (10) : 161-171. DOI: 10.1016/j.eng.2024.03.009
Research
Article

Robust, Flexible, and Superhydrophobic Fabrics for High-Efficiency and Ultrawide-Band Microwave Absorption

Author information +
History +

Abstract

Microwave absorption (MA) materials are essential for protecting against harmful electromagnetic radiation. In this study, highly efficient and ultrawide-band microwave-absorbing fabrics with superhydrophobic surface features were developed using a facile dip-coating method involving in situ graphene oxide (GO) reduction, deposition of TiO2 nanoparticles, and subsequent coating of a mixture of polydimethylsiloxane (PDMS) and octadecylamine (ODA) on polyester fabrics. Owing to the presence of hierarchically structured surfaces and low-surface-energy materials, the resultant reduced GO (rGO)/TiO2-ODA/PDMS-coated fabrics demonstrate superhydrophobicity with a water contact angle of 159° and sliding angle of 5°. Under the synergistic effects of conduction loss, interface polarization loss, and surface roughness topography, the optimized fabrics show excellent microwave absorbing performances with a minimum reflection loss (RLmin) of −47.4 dB and a maximum effective absorption bandwidth (EABmax) of 7.7 GHz at a small rGO loading of 6.9 wt%. In addition, the rGO/TiO2-ODA/PDMS coating was robust, and the coated fabrics could withstand repeated washing, soiling, long-term ultraviolet irradiation, and chemical attacks without losing their superhydrophobicity and MA properties. Moreover, the coating imparts self-healing properties to the fabrics. This study provides a promising and effective route for the development of robust and flexible materials with microwave-absorbing properties.

Graphical abstract

Keywords

Microwave absorption / Superhydrophobic / Fabrics / Coating / Self-healing

Cite this article

Download citation ▾
Zhong Zhang, Yaxin Meng, Xinrui Fang, Qing Wang, Xungai Wang, Haitao Niu, Hua Zhou. Robust, Flexible, and Superhydrophobic Fabrics for High-Efficiency and Ultrawide-Band Microwave Absorption. Engineering, 2024, 41(10): 161‒171 https://doi.org/10.1016/j.eng.2024.03.009

References

[1]
J.C. Shu, W.Q. Cao, M.S. Cao. Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv Funct Mater, 31 (23) (2021), p. 2100470.
[2]
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, et al. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv Mater, 28 (3) (2016), pp. 486-490.
[3]
M. Qin, L. Zhang, X. Zhao, H. Wu. Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber. Adv Funct Mater, 31 (30) (2021), p. 2103436.
[4]
H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, et al. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv Mater, 26 (48) (2014), pp. 8120-8125.
[5]
X. Xu, S. Shi, Y. Tang, G. Wang, M. Zhou, G. Zhao, et al. Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv Sci, 8 (5) (2021), p. 2002658.
[6]
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv Mater, 27 (12) (2015), pp. 2049-2053.
[7]
Z. Gao, D. Lan, L. Zhang, H. Wu. Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption. Adv Funct Mater, 31 (50) (2021), p. 2106677.
[8]
H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen, D.W. Schubert, et al. Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano Micro Lett, 14 (1) (2022), p. 63.
[9]
Y.Q. Wang, H.B. Zhao, J.B. Cheng, B.W. Liu, Q. Fu, Y.Z. Wang. Hierarchical Ti3C2Tx@ZnO hollow spheres with excellent microwave absorption inspired by the visual phenomenon of eyeless urchins. Nano Micro Lett, 14 (1) (2022), p. 76.
[10]
C. Zhang, H. Li, Z. Zhuo, R. Dugnani, C. Sun, Y. Chen, et al. Facile fabrication of ultra-light and highly resilient PU/RGO foams for microwave absorption. RSC Advances, 7 (66) (2017), pp. 41321-41329.
[11]
Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang, T. Wang, et al. Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano Micro Lett, 13 (1) (2021), p. 144.
[12]
G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan, S. Zhao, et al. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano, 6 (12) (2012), pp. 11009-11017.
[13]
L. Feng, Y.L. Xu, W.S. Fegadolli, M.H. Lu, J.E. Oliveira, V.R. Almeida, et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat Mater, 12 (2) (2013), pp. 108-113.
[14]
Z. Zhang, L. Zhang, X. Chen, Z. Wu, Y. He, Y. Lv, et al. Broadband metamaterial absorber for low-frequency microwave absorption in the S-band and C-band. J Magn Magn Mater, 497 (2020), p. 166075.
[15]
Y. Cheng, X. Sun, S. Yang, D. Wang, L. Liang, S. Wang, et al. Multifunctional elastic rGO hybrid aerogels for microwave absorption, infrared stealth and heat insulation. Chem Eng J, 452 (2023), p. 139376.
[16]
X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, J.F. Liang, L. Guo, et al. Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl Mater Interfaces, 6 (10) (2014), pp. 7471-7478.
[17]
S. Wang, Y. Zhao, M. Gao, H. Xue, Y. Xu, C. Feng, et al. Green synthesis of porous cocoon-like rGO for enhanced microwave-absorbing performances. ACS Appl Mater Interfaces, 10 (49) (2018), pp. 42865-42874.
[18]
P. Liu, L. Wang, B. Cao, L. Li, K.L. Zhang, X.M. Bian, et al. Designing high-performance electromagnetic wave absorption materials based on polymeric graphene-based dielectric composites: from fabrication technology to periodic pattern design. J Mater Chem C, 5 (27) (2017), pp. 6745-6754.
[19]
Z. Song, X. Liu, X. Sun, Y. Li, X. Nie, W. Tang, et al. Alginate-templated synthesis of CoFe/carbon fiber composite and the effect of hierarchically porous structure on electromagnetic wave absorption performance. Carbon, 151 (2019), pp. 36-45.
[20]
X. Huang, J. Wei, Y. Zhang, B. Qian, Q. Jia, J. Liu, et al. Ultralight magnetic and dielectric aerogels achieved by metal-organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano Micro Lett, 14 (1) (2022), p. 107.
[21]
S. Zhou, Y. Huang, X. Liu, J. Yan, X. Feng. Synthesis and microwave absorption enhancement of CoNi@SiO2@C hierarchical structures. Ind Eng Chem Res, 57 (16) (2018), pp. 5507-5516.
[22]
Y. Zhang, W. Liu, B. Quan, G. Ji, J. Ma, D. Li, et al. Achieving the interfacial polarization on C/Fe3C heterojunction structures for highly efficient lightweight microwave absorption. J Colloid Interface Sci, 508 (2017), pp. 462-468.
[23]
Y. Yao, S. Jin, H. Zou, L. Li, X. Ma, G. Lv, et al. Polymer-based lightweight materials for electromagnetic interference shielding: a review. J Mater Sci, 56 (11) (2021), pp. 6549-6580.
[24]
Y. Guo, H. Liu, D. Wang, Z.M. El-Bahy, J.T. Althakafy, H.M. Abo-Dief, et al. Engineering hierarchical heterostructure material based on metal-organic frameworks and cotton fiber for high-efficient microwave absorber. Nano Res, 15 (8) (2022), pp. 6841-6850.
[25]
W.L. Song, X.T. Guan, L.Z. Fan, Y.B. Zhao, W.Q. Cao, C.Y. Wang, et al. Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon, 100 (2016), pp. 109-117.
[26]
ASTM D4966; Standard test method for abrasion resistance of textile fabrics. ASTM standard. Philadelphia: American Society of Testing Materials; 2003.
[27]
AATCC Test Method 61-2006: Colorfastness to laundering: accelerated. North Carolina: American Association of Textile Chemists and Colorists (AATCC); 2006.
[28]
AATCC-183: Transmittance or blocking of erythemally weighted ultraviolet radiation through fabrics. North Carolina: American Association of Textile Chemists and Colorists (AAATC); 2004.
[29]
A.I. Kryukov, N.N. Zin’chuk, A.V. Korzhak, S.Y. Kuchmii. The effect of the conditions of catalytic synthesis of nanoparticles of metallic silver on their plasmon resonance. Theor Exp Chem, 39 (1) (2003), pp. 9-14.
[30]
E. Baranovicova, A. Stasko, O. Nuyken. UV-induced reduction of Ag+ by diazene sulphonates: new method of metallisation of surfaces. Chem Zvesti, 70 (10) (2016), pp. 1425-1430.
[31]
J.D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno, A. Zurutuza, et al. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv Funct Mater, 25 (29) (2015), pp. 4664-4672.
[32]
X. Li, Z. Wu, W. You, L. Yang, R. Che. Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano Micro Lett, 14 (1) (2022), p. 73.
[33]
S. Gao, J. Huang, S. Li, H. Liu, F. Li, Y. Li, et al. Facile construction of robust fluorine-free superhydrophobic TiO2@fabrics with excellent anti-fouling, water-oil separation and UV-protective properties. Mater Des, 128 (2017), pp. 1-8.
[34]
H. Zhou, H. Niu, H. Wang, T. Lin. Self-healing superwetting surfaces, their fabrications, and properties. Chem Rev, 123 (2) (2023), pp. 663-700.
[35]
H. Zhou, H. Wang, H. Niu, A. Gestos, T. Lin. Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv Funct Mater, 23 (13) (2013), pp. 1664-1670.
[36]
H. Rabiei, S. Farhang Dehghan, M. Montazer, S.S. Khaloo, A.G. Koozekonan. UV protection properties of workwear fabrics coated with TiO2 nanoparticles. Front Public Health, 10 (2022), p. 929095.
[37]
J. Wan, J. Xu, S. Zhu, J. Li, B. Wang, J. Zeng, et al. Eco-friendly superhydrophobic composites with thermostability, UV resistance, and coating transparency. ACS Appl Mater Interfaces, 13 (51) (2021), pp. 61681-61692.
[38]
V. Babaahmadi, M. Montazer. Reduced graphene oxide/SnO2 nanocomposite on PET surface: synthesis, characterization and application as an electro-conductive and ultraviolet blocking textile. Colloids Surf A, 506 (2016), pp. 507-513.
[39]
W. Song, B. Wang, L. Fan, F. Ge, C. Wang. Graphene oxide/waterborne polyurethane composites for fine pattern fabrication and ultrastrong ultraviolet protection cotton fabric via screen printing. Appl Surf Sci, 463 (2019), pp. 403-411.
[40]
D. Wang, J. Ma, J. Liu, A. Tian, S. Fu. Intumescent flame-retardant and ultraviolet-blocking coating screen-printed on cotton fabric. Cellulose, 28 (4) (2021), pp. 2495-12404.
[41]
M.S. Cao, X.X. Wang, M. Zhang, W.Q. Cao, X.Y. Fang, J. Yuan. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv Mater, 32 (10) (2020), p. 1907156.
[42]
H. Lang, K. Zou, R. Chen, Y. Huang, Y. Peng. Role of interfacial water in the tribological behavior of graphene in an electric field. Nano Lett, 22 (15) (2022), pp. 6055-6061.
[43]
Z. Cheng, R. Wang, Y. Cao, Z. Cai, Z. Zhang, Y. Huang. Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO2 composite aerogel. Adv Funct Mater, 32 (40) (2022), p. 2205160.
[44]
H. Zhang, N. Luo, T. Liu, F. Chen, Q. Fu. Light-weight, low-loading and large-sheet reduced graphene oxide for high-efficiency microwave absorber. Carbon, 196 (2022), pp. 1024-1034.
[45]
Z.L. Hou, K. Du, Y. Zhang, S. Bi, J. Zhang. Nanoarchitectonics of MnO2 nanotubes as sea urchin-like aggregates for dielectric response and microwave absorption with a wide concentration domain. Nano Res, 16 (2) (2023), pp. 2604-2610.
[46]
C.J. Li, X. Wang, X. Liu, J. Zhang, S. Bi, Z.L. Hou. Broadband and strong microwave absorption combining excellent EMI shielding of VGCF/carbonyl iron composites derived from synergistic magnetic and dielectric losses. Carbon, 214 (2023), p. 118383.
[47]
M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon, 48 (3) (2010), pp. 788-796.
[48]
Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang. Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat Commun, 13 (1) (2022), p. 1227.
[49]
Y.S. Fang, J. Yuan, T.T. Liu, Q.Q. Wang, W.Q. Cao, M.S. Cao. Clipping electron transport and polarization relaxation of Ti3C2Tx based nanocomposites towards multifunction. Carbon, 201 (2023), pp. 371-380.
[50]
X.X. Wang, Q. Zheng, Y.J. Zheng, M.S. Cao. Green EMI shielding: dielectric/magnetic “genes” and design philosophy. Carbon, 206 (2023), pp. 124-141.
[51]
Y.C. Wang, Y.Z. Wang, J.C. Shu, W.Q. Cao, C.S. Li, M.S. Cao. Graphene implanted shape memory polymers with dielectric gene dominated highly efficient microwave drive. Adv Funct Mater, 33 (40) (2023), p. 2303560.
[52]
L. Wu, X. Liu, G. Wan, X. Peng, Z. He, S. Shi, et al. Ni/CNTs and carbon coating engineering to synergistically optimize the interfacial behaviors of TiO2 for thermal conductive microwave absorbers. Chem Eng J, 448 (2022), p. 137600.
[53]
C. Wu, J. Wang, X. Zhang, L. Kang, X. Cao, Y. Zhang, et al. Hollow gradient-structured iron-anchored carbon nanospheres for enhanced electromagnetic wave absorption. Nano Micro Lett, 15 (1) (2023), p. 7.
[54]
Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang, Y. Zhang. Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv Sci, 6 (8) (2019), p. 1801057.
[55]
X. Zeng, X. Cheng, R. Yu, G.D. Stucky. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon, 168 (2020), pp. 606-623.
[56]
L. Wu, S. Shi, G. Wang, P. Mou, X. Liu, J. Liu, et al. Carbon nanocoils/carbon foam as the dynamically frequency-tunable microwave absorbers with an ultrawide tuning range and absorption bandwidth. Adv Funct Mater, 32 (52) (2022), p. 2209898.
[57]
H. Zhang, H. Ji, G. Dai, J. Chen, J. Xu, N. Wang, et al. Nanoarchitectonics of integrated impedance gradient MXene/PPy/polyester composite fabric for enhanced microwave absorption performances. Compos Part A Appl S, 163 (2022), p. 107163.
[58]
J.B. Cheng, H.B. Zhao, A.N. Zhang, Y.Q. Wang, Y.Z. Wang. Porous carbon/Fe composites from waste fabric for high-efficiency electromagnetic wave absorption. J Mater Sci Technol, 126 (2022), pp. 266-274.
[59]
L. Liu, M. Wu, Q. Wu, J. Liu, J. Yang, J. Zhang. Conductive, superhydrophobic, and microwave-absorbing cotton fabric by dip-coating of aqueous silk nanofibers stabilized MWCNTs and octadecanoyl chain bonding. Cellulose, 29 (8) (2022), pp. 4687-4701.
[60]
Z. Lu, Y. Wang, X. Di, N. Wang, R. Cheng, L. Yang. Heterostructure design of carbon fiber@graphene@layered double hydroxides synergistic microstructure for lightweight and flexible microwave absorption. Carbon, 197 (2022), pp. 466-475.
[61]
J. Sun, L. Wang, Q. Yang, Y. Shen, X. Zhang. Preparation of copper-cobalt-nickel ferrite/graphene oxide/polyaniline composite and its applications in microwave absorption coating. Prog Org Coat, 141 (2020), p. 105552.
[62]
S. Wang, D. Li, Y. Zhou, L. Jiang. Hierarchical Ti3C2Tx MXene/Ni Chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano, 14 (7) (2020), pp. 8634-8645.
[63]
M. Yang, Y. Yuan, Y. Li, X. Sun, S. Wang, L. Liang, et al. Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework. Carbon, 161 (2020), pp. 517-527.
[64]
J. Yin, W. Ma, Z. Gao, X. Lei, C. Jia. A structural design method of 3D electromagnetic wave-absorbing woven fabrics. Polymers, 14 (13) (2022), p. 2635.
[65]
Z. Zhang, G. Wang, W. Gu, Y. Zhao, S. Tang, G. Ji. A breathable and flexible fiber cloth based on cellulose/polyaniline cellular membrane for microwave shielding and absorbing applications. J Colloid Interface Sci, 605 (2022), pp. 193-203.
AI Summary AI Mindmap
PDF(4465 KB)

Accesses

Citations

Detail

Sections
Recommended

/