DNA G-Quadruplexes as Targets for Natural Product Drug Discovery

Kai-Bo Wang, Yingying Wang, Jonathan Dickerhoff, Danzhou Yang

Engineering ›› 2024, Vol. 38 ›› Issue (7) : 39-51.

PDF(2679 KB)
PDF(2679 KB)
Engineering ›› 2024, Vol. 38 ›› Issue (7) : 39-51. DOI: 10.1016/j.eng.2024.03.015
Research
Review

DNA G-Quadruplexes as Targets for Natural Product Drug Discovery

Author information +
History +

Abstract

DNA guanine (G)-quadruplexes (G4s) are unique secondary structures formed by two or more stacked G-tetrads in G-rich DNA sequences. These structures have been found to play a crucial role in highly transcribed genes, especially in cancer-related oncogenes, making them attractive targets for cancer therapeutics. Significantly, targeting oncogene promoter G4 structures has emerged as a promising strategy to address the challenge of undruggable and drug-resistant proteins, such as MYC, BCL2, KRAS, and EGFR. Natural products have long been an important source of drug discovery, particularly in the fields of cancer and infectious diseases. Noteworthy progress has recently been made in the discovery of naturally occurring DNA G4-targeting drugs. Numerous DNA G4s, such as MYC-G4, BCL2-G4, KRAS-G4, PDGFR-β-G4, VEGF-G4, and telomeric-G4, have been identified as potential targets of natural products, including berberine, telomestatin, quindoline, sanguinarine, isaindigotone, and many others. Herein, we summarize and evaluate recent advancements in natural and nature-derived DNA G4 binders, focusing on understanding the structural recognition of DNA G4s by small molecules derived from nature. We also discuss the challenges and opportunities associated with developing drugs that target DNA G4s.

Graphical abstract

Keywords

G-quadruplex / Natural products / Alkaloids / Cancer / Promoter

Cite this article

Download citation ▾
Kai-Bo Wang, Yingying Wang, Jonathan Dickerhoff, Danzhou Yang. DNA G-Quadruplexes as Targets for Natural Product Drug Discovery. Engineering, 2024, 38(7): 39‒51 https://doi.org/10.1016/j.eng.2024.03.015

References

[1]
D. Sen, W. Gilbert. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature, 334 (6180) (1988), pp. 364-366
[2]
L.H. Hurley. DNA and associated targets for drug design. J Med Chem, 32 (9) (1989), pp. 2027-2033
[3]
M. Gellert, M.N. Lipsett, D.R. Davies. Helix formation by guanylic acid. Proc Natl Acad Sci USA, 48 (12) (1962), pp. 2013-2018
[4]
W.I. Sundquist, A. Klug. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature, 342 (6251) (1989), pp. 825-829
[5]
A.M. Zahler, J.R. Williamson, T.R. Cech, D.M. Prescott. Inhibition of telomerase by G-quartet DNA structures. Nature, 350 (6320) (1991), pp. 718-720
[6]
D. Sun, B. Thompson, B.E. Cathers, M. Salazar, S.M. Kerwin, J.O. Trent, et al. Inhibition of human telomerase by a G-quadruplex-interactive compound. J Med Chem, 40 (14) (1997), pp. 2113-2116
[7]
A. Siddiqui-Jain, C.L. Grand, D.J. Bearss, L.H. Hurley. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA, 99 (18) (2002), pp. 11593-11598
[8]
S. Neidle. Quadruplex nucleic acids as novel therapeutic targets. J Med Chem, 59 (13) (2016), pp. 5987-6011
[9]
S. Cogoi, M. Paramasivam, B. Spolaore, L.E. Xodo. Structural polymorphism within a regulatory element of the human KRAS promoter: formation of G4-DNA recognized by nuclear proteins. Nucleic Acids Res, 36 (11) (2008), pp. 3765-3780
[10]
Y. Qin, J.S. Fortin, D. Tye, M. Gleason-Guzman, T.A. Brooks, L.H. Hurley. Molecular cloning of the human platelet-derived growth factor receptor β (PDGFR-β) promoter and drug targeting of the G-quadruplex-forming region to repress PDGFR-β expression. Biochemistry, 49 (19) (2010), pp. 4208-4219
[11]
Y. Chen, P. Agrawal, R.V. Brown, E. Hatzakis, L. Hurley, D. Yang. The major G-quadruplex formed in the human platelet-derived growth factor receptor β promoter adopts a novel broken-strand structure in K+ solution. J Am Chem Soc, 134 (32) (2012), pp. 13220-13223
[12]
J. Dai, T.S. Dexheimer, D. Chen, M. Carver, A. Ambrus, R.A. Jones, et al. An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution. J Am Chem Soc, 128 (4) (2006), pp. 1096-1098
[13]
S. Rankin, A.P. Reszka, J. Huppert, M. Zloh, G.N. Parkinson, A.K. Todd, et al. Putative DNA quadruplex formation within the human c-kit oncogene. J Am Chem Soc, 127 (30) (2005), pp. 10584-10589
[14]
P. Agrawal, E. Hatzakis, K. Guo, M. Carver, D. Yang. Solution structure of the major G-quadruplex formed in the human VEGF promoter in K+: insights into loop interactions of the parallel G-quadruplexes. Nucleic Acids Res, 41 (22) (2013), pp. 10584-10592
[15]
Y. Liu, J. Li, Y. Zhang, Y. Wang, J. Chen, Y. Bian, et al. Structure of the major G-quadruplex in the human EGFR oncogene promoter adopts a unique folding topology with a distinctive snap-back loop. J Am Chem Soc, 145 (29) (2023), pp. 16228-16237
[16]
S.M. Mirkin. Expandable DNA repeats and human disease. Nature, 447 (7147) (2007), pp. 932-940
[17]
N. Maizels. G4-associated human diseases. EMBO Rep, 16 (8) (2015), pp. 910-922
[18]
S. Amrane, A. Kerkour, A. Bedrat, B. Vialet, M.L. Andreola, J.L. Mergny. Topology of a DNA G-quadruplex structure formed in the HIV-1 promoter: a potential target for anti-HIV drug development. J Am Chem Soc, 136 (14) (2014), pp. 5249-5252
[19]
E. Belmonte-Reche, M. Martínez-García, A. Guédin, M. Zuffo, M. Arévalo-Ruiz, F. Doria, et al. G-quadruplex identification in the genome of protozoan parasites points to naphthalene diimide ligands as new antiparasitic agents. J Med Chem, 61 (3) (2018), pp. 1231-1240
[20]
S. Muller, R. Rodriguez. G-quadruplex interacting small molecules and drugs: from bench toward bedside. Expert Rev Clin Pharmacol, 7 (5) (2014), pp. 663-679
[21]
A. Lorenzatti, E.J. Piga, M. Gismondi, A. Binolfi, E. Margarit, N.B. Calcaterra, et al. Genetic variations in G-quadruplex forming sequences affect the transcription of human disease-related genes. Nucleic Acids Res, 51 (22) (2023), pp. 12124-12139
[22]
S. Balasubramanian, L.H. Hurley, S. Neidle. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy?. Nat Rev Drug Discov, 10 (4) (2011), pp. 261-275
[23]
J. Spiegel, S. Adhikari, S. Balasubramanian. The structure and function of DNA G-quadruplexes. Trends Chem, 2 (2) (2020), pp. 123-136
[24]
L. Chen, J. Dickerhoff, S. Sakai, D. Yang. DNA G-quadruplex in human telomeres and oncogene promoters: structures, functions, and small molecule targeting. Acc Chem Res, 55 (18) (2022), pp. 2628-2646
[25]
S.L. Palumbo, S.W. Ebbinghaus, L.H. Hurley. Formation of a unique end-to-end stacked pair of G-quadruplexes in the hTERT core promoter with implications for inhibition of telomerase by G-quadruplex-interactive ligands. J Am Chem Soc, 131 (31) (2009), pp. 10878-10891
[26]
J. Robinson, F. Raguseo, S.P. Nuccio, D. Liano, M. Di Antonio. DNA G-quadruplex structures: more than simple roadblocks to transcription?. Nucleic Acids Res, 49 (15) (2021), pp. 8419-8431
[27]
R. Hansel-Hertsch, M. Di Antonio, S. Balasubramanian. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol, 18 (5) (2017), pp. 279-284
[28]
G. Biffi, D. Tannahill, J. McCafferty, S. Balasubramanian. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem, 5 (3) (2013), pp. 182-186
[29]
M. Di Antonio, A. Ponjavic, A. Radzevičius, R.T. Ranasinghe, M. Catalano, X. Zhang, et al. Single-molecule visualization of DNA G-quadruplex formation in live cells. Nat Chem, 12 (9) (2020), pp. 832-887
[30]
R. Hansel-Hertsch, D. Beraldi, S.V. Lensing, G. Marsico, K. Zyner, A. Parry, et al. G-quadruplex structures mark human regulatory chromatin. Nat Genet, 48 (10) (2016), pp. 1267-1272
[31]
K.W. Zheng, J. Zhang, Y. He, J. Gong, C. Wen, J. Chen, et al. Detection of genomic G-quadruplexes in living cells using a small artificial protein. Nucleic Acids Res, 48 (20) (2020), pp. 11706-11720
[32]
V.S. Chambers, G. Marsico, J.M. Boutell, M. Di Antonio, G.P. Smith, S. Balasubramanian. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat Biotechnol, 33 (8) (2015), pp. 877-881
[33]
A.M. Fleming, C.J. Burrows. Interplay of guanine oxidation and G-quadruplex folding in gene promoters. J Am Chem Soc, 142 (3) (2020), pp. 1115-1136
[34]
E. Wang, R. Thombre, Y. Shah, R. Latanich, J. Wang. G-quadruplexes as pathogenic drivers in neurodegenerative disorders. Nucleic Acids Res, 49 (9) (2021), pp. 4816-4830
[35]
R. Hänsel-Hertsch, A. Simeone, A. Shea, W.W.I. Hui, K.G. Zyner, G. Marsico, et al. Landscape of G-quadruplex DNA structural regions in breast cancer. Nat Genet, 52 (9) (2020), pp. 878-883
[36]
K.B. Wang, M.S.A. Elsayed, G. Wu, N. Deng, M. Cushman, D. Yang. Indenoisoquinoline topoisomerase inhibitors strongly bind and stabilize the MYC promoter G-quadruplex and downregulate MYC. J Am Chem Soc, 141 (28) (2019), pp. 11059-11070
[37]
K.B. Wang, Y. Liu, J. Li, C. Xiao, Y. Wang, W. Gu, et al. Structural insight into the bulge-containing KRAS oncogene promoter G-quadruplex bound to berberine and coptisine. Nat Commun, 13 (1) (2022), p. 6016
[38]
A.G. Atanasov, S.B. Zotchev, V.M. Dirsch, C.T. Supuran. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov, 20 (3) (2021), pp. 200-216
[39]
D.J. Newman, G.M. Cragg. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod, 83 (3) (2020), pp. 770-803
[40]
Y. Gao, H. Peng, L. Li, F. Wang, J. Meng, H. Huang, et al. Screening of high-efficiency and low-toxicity antitumor active components in Macleaya cordata seeds based on the competitive effect of drugs on double targets by a new laminar flow chip. Analyst, 146 (15) (2021), pp. 4934-4944
[41]
J.L. Zhou, Y.J. Lu, T.M. Ou, J.M. Zhou, Z.S. Huang, X.F. Zhu, et al. Synthesis and evaluation of quindoline derivatives as G-quadruplex inducing and stabilizing ligands and potential inhibitors of telomerase. J Med Chem, 48 (23) (2005), pp. 7315-7321
[42]
M.Y. Kim, H. Vankayalapati, K. Shin-ya, K. Wierzba, L.H. Hurley. Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. J Am Chem Soc, 124 (10) (2002), pp. 2098-2099
[43]
L. Zhang, H. Liu, Y. Shao, C. Lin, H. Jia, G. Chen, et al. Selective lighting up of epiberberine alkaloid fluorescence by fluorophore-switching aptamer and stoichiometric targeting of human telomeric DNA G-quadruplex multimer. Anal Chem, 87 (1) (2015), pp. 730-737
[44]
L. Liu, J. Li, Y. He. Multifunctional epiberberine mediates multi-therapeutic effects. Fitoterapia, 147 (2020), Article 104771
[45]
V.L. Makarov, Y. Hirose, J.P. Langmore. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell, 88 (5) (1997), pp. 657-666
[46]
J. Nandakumar, T.R. Cech. Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol, 14 (2) (2013), pp. 69-82
[47]
E.H. Blackburn. Telomere states and cell fates. Nature, 408 (6808) (2000), pp. 53-56
[48]
J.A. Hackett, D.M. Feldser, C.W. Greider. Telomere dysfunction increases mutation rate and genomic instability. Cell, 106 (3) (2001), pp. 275-286
[49]
E.H. Blackburn. Telomeres and telomerase: the means to the end (Nobel lecture). Angew Chem Int Ed Engl, 49 (41) (2010), pp. 7405-7421
[50]
A. Ambrus, D. Chen, J. Dai, T. Bialis, R.A. Jones, D. Yang. Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res, 34 (9) (2006), pp. 2723-2735
[51]
J. Dai, C. Punchihewa, A. Ambrus, D. Chen, R.A. Jones, D. Yang. Structure of the intramolecular human telomeric G-quadruplex in potassium solution: a novel adenine triple formation. Nucleic Acids Res, 35 (7) (2007), pp. 2440-2450
[52]
T. Doi, K. Shibata, M. Yoshida, M. Takagi, M. Tera, K. Nagasawa, et al. (S)-stereoisomer of telomestatin as a potent G-quadruplex binder and telomerase inhibitor. Org Biomol Chem, 9 (2) (2011), pp. 387-393
[53]
N. Deng, J. Xia, L. Wickstrom, C. Lin, K. Wang, P. He, et al. Ligand selectivity in the recognition of protoberberine alkaloids by hybrid-2 human telomeric G-quadruplex: binding free energy calculation, fluorescence binding, and NMR experiments. Molecules, 24 (8) (2019), p. 1574
[54]
X. Ji, H. Sun, H. Zhou, J. Xiang, Y. Tang, C. Zhao. The interaction of telomeric DNA and C-MYC22 G-quadruplex with 11 natural alkaloids. Nucleic Acid Ther, 22 (2) (2012), pp. 127-136
[55]
D. Gomez, M.F. O’Donohue, T. Wenner, C. Douarre, J. Macadré, P. Koebel, et al. The G-quadruplex ligand telomestatin inhibits POT1 binding to telomeric sequences in vitro and induces GFP-POT1 dissociation from telomeres in human cells. Cancer Res, 66 (14) (2006), pp. 6908-6912
[56]
N. Binz, T. Shalaby, P. Rivera, K. Shin-ya, M.A. Grotzer. Telomerase inhibition, telomere shortening, cell growth suppression and induction of apoptosis by telomestatin in childhood neuroblastoma cells. Eur J Cancer, 41 (18) (2005), pp. 2873-2881
[57]
M. Tera, H. Ishizuka, M. Takagi, M. Suganuma, K. Shin-ya, K. Nagasawa. Macrocyclic hexaoxazoles as sequence- and mode-selective G-quadruplex binders. Angew Chem Int Ed Engl, 47 (30) (2008), pp. 5557-5560
[58]
J.H. Tan, T.M. Ou, J.Q. Hou, Y.J. Lu, S.L. Huang, H.B. Luo, et al. Isaindigotone derivatives: a new class of highly selective ligands for telomeric G-quadruplex DNA. J Med Chem, 52 (9) (2009), pp. 2825-2835
[59]
K. Shin-ya, K. Wierzba, K. Matsuo, T. Ohtani, Y. Yamada, K. Furihata, et al. Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. J Am Chem Soc, 123 (6) (2001), pp. 1262-1263
[60]
W.J. Chung, B. Heddi, M. Tera, K. Iida, K. Nagasawa, A.T. Phan. Solution structure of an intramolecular (3 + 1) human telomeric G-quadruplex bound to a telomestatin derivative. J Am Chem Soc, 135 (36) (2013), pp. 13495-13501
[61]
J. Linder, T.P. Garner, H.E. Williams, M.S. Searle, C.J. Moody. Telomestatin: formal total synthesis and cation-mediated interaction of its seco-derivatives with G-quadruplexes. J Am Chem Soc, 133 (4) (2011), pp. 1044-1051
[62]
T. Doi, M. Yoshida, K. Shin-ya, T. Takahashi. Total synthesis of (R)-telomestatin. Org Lett, 8 (18) (2006), pp. 4165-4167
[63]
K. Iida, K. Nagasawa. Macrocyclic polyoxazoles as G-quadruplex ligands. Chem Rec, 13 (6) (2013), pp. 539-548
[64]
M. Tera, K. Iida, H. Ishizuka, M. Takagi, M. Suganuma, T. Doi, et al. Synthesis of a potent G-quadruplex-binding macrocyclic heptaoxazole. ChemBioChem, 10 (3) (2009), pp. 431-435
[65]
K. Iida, T. Nakamura, W. Yoshida, M. Tera, K. Nakabayashi, K. Hata, et al. Fluorescent-ligand-mediated screening of G-quadruplex structures using a DNA microarray. Angew Chem Int Ed Engl, 52 (46) (2013), pp. 12052-12055
[66]
Y. Ma, K. Iida, S. Sasaki, T. Hirokawa, B. Heddi, A. Phan, et al. Synthesis and telomeric G-quadruplex-stabilizing ability of macrocyclic hexaoxazoles bearing three side chains. Molecules, 24 (2) (2019), p. 263
[67]
J. Abraham Punnoose, Y. Ma, Y. Li, M. Sakuma, S. Mandal, K. Nagasawa, et al. Adaptive and specific recognition of telomeric G-quadruplexes via polyvalency induced unstacking of binding units. J Am Chem Soc, 139 (22) (2017), pp. 7476-7484
[68]
K. Iida, S. Majima, T. Nakamura, H. Seimiya, K. Nagasawa. Evaluation of the interaction between long telomeric DNA and macrocyclic hexaoxazole (6OTD) dimer of a G-quadruplex ligand. Molecules, 18 (4) (2013), pp. 4328-4341
[69]
S.G. Rzuczek, D.S. Pilch, A. Liu, L. Liu, E.J. LaVoie, J.E. Rice. Macrocyclic pyridyl polyoxazoles: selective RNA and DNA G-quadruplex ligands as antitumor agents. J Med Chem, 53 (9) (2010), pp. 3632-3644
[70]
M. Sakuma, Y. Ma, Y. Tsushima, K. Iida, T. Hirokawa, K. Nagasawa. Design and synthesis of unsymmetric macrocyclic hexaoxazole compounds with an ability to induce distinct G-quadruplex topologies in telomeric DNA. Org Biomol Chem, 14 (22) (2016), pp. 5109-5116
[71]
G.W. Slack, R.D. Gascoyne. MYC and aggressive B-cell lymphomas. Adv Anat Pathol, 18 (3) (2011), pp. 219-228
[72]
C.V. Dang. MYC on the path to cancer. Cell, 149 (1) (2012), pp. 22-35
[73]
T.A. Brooks, L.H. Hurley. The role of supercoiling in transcriptional control of MYC and its importance in molecular therapeutics. Nat Rev Cancer, 9 (12) (2009), pp. 849-861
[74]
C.V. Dang, E.P. Reddy, K.M. Shokat, L. Soucek. Drugging the ‘undruggable’ cancer targets. Nat Rev Cancer, 17 (8) (2017), pp. 502-508
[75]
A. Ambrus, D. Chen, J. Dai, R.A. Jones, D. Yang. Solution structure of the biologically relevant G-quadruplex element in the human c-MYC promoter.Implications for G-quadruplex stabilization. Biochemistry, 44 (6) (2005), pp. 2048-2058
[76]
J. Dai, M. Carver, L.H. Hurley, D. Yang. Solution structure of a 2:1 quindoline-c-MYC G-quadruplex: insights into G-quadruplex-interactive small molecule drug design. J Am Chem Soc, 133 (44) (2011), pp. 17673-17680
[77]
A.N. Tackie, G.L. Boye, M.H.M. Sharaf, P.L. Schiff Jr, R.C. Crouch, T.D. Spitzer, et al. Cryptospirolepine, a unique spiro-nonacyclic alkaloid isolated from Cryptolepis sanguinolenta. J Nat Prod, 56 (5) (1993), pp. 653-670
[78]
D.E. Bierer, D.M. Fort, C.D. Mendez, J. Luo, P.A. Imbach, L.G. Dubenko, et al. Ethnobotanical-directed discovery of the antihyperglycemic properties of cryptolepine: its isolation from Cryptolepis sanguinolenta, synthesis, and in vitro and in vivo activities. J Med Chem, 41 (6) (1998), pp. 894-901
[79]
V. Caprio, B. Guyen, Y. Opoku-Boahen, J. Mann, S.M. Gowan, L.M. Kelland, et al. A novel inhibitor of human telomerase derived from 10H-indolo[3,2-b]-quinoline. Bioorg Med Chem Lett, 10 (18) (2000), pp. 2063-2066
[80]
B. Guyen, C.M. Schultes, P. Hazel, J. Mann, S. Neidle. Synthesis and evaluation of analogues of 10H-indolo[3,2-b]quinoline as G-quadruplex stabilising ligands and potential inhibitors of the enzyme telomerase. Org Biomol Chem, 2 (7) (2004), pp. 981-988
[81]
T.M. Ou, Y.J. Lu, C. Zhang, Z.S. Huang, X.D. Wang, J.H. Tan, et al. Stabilization of G-quadruplex DNA and down-regulation of oncogene c-myc by quindoline derivatives. J Med Chem, 50 (7) (2007), pp. 1465-1474
[82]
A. Funke, J. Dickerhoff, K. Weisz. Towards the development of structure-selective G-quadruplex-binding indolo[3,2-b]quinolines. Chemistry, 22 (9) (2016), pp. 3170-3181
[83]
Q. Zhai, C. Gao, J. Ding, Y. Zhang, B. Islam, W. Lan, et al. Selective recognition of c-MYC Pu 22 G-quadruplex by a fluorescent probe. Nucleic Acids Res, 47 (5) (2019), pp. 2190-2204
[84]
K.B. Wang, D.H. Li, P. Hu, W.J. Wang, C. Lin, J. Wang, et al. A series of β-carboline alkaloids from the seeds of Peganum harmala show G-quadruplex interactions. Org Lett, 18 (14) (2016), pp. 3398-3401
[85]
H.Y. Liu, A.C. Chen, Q.K. Yin, Z. Li, S.M. Huang, G. Du, et al. New disubstituted quindoline derivatives inhibiting burkitt’s lymphoma cell proliferation by impeding c-MYC transcription. J Med Chem, 60 (13) (2017), pp. 5438-5454
[86]
J. Amato, R. Morigi, B. Pagano, A. Pagano, S. Ohnmacht, A. De Magis, et al. Toward the development of specific G-quadruplex binders: synthesis, biophysical, and biological studies of new hydrazone derivatives. J Med Chem, 59 (12) (2016), pp. 5706-5720
[87]
M.L. Li, J.M. Yuan, H. Yuan, B.H. Wu, S.L. Huang, Q.J. Li, et al. Design, synthesis, and evaluation of new sugar-substituted imidazole derivatives as selective c-MYC transcription repressors targeting the promoter G-quadruplex. J Med Chem, 65 (19) (2022), pp. 12675-12700
[88]
M.H. Hu, J.H. Lin. New dibenzoquinoxalines inhibit triple-negative breast cancer growth by dual targeting of topoisomerase 1 and the c-MYC G-quadruplex. J Med Chem, 64 (10) (2021), pp. 6720-6729
[89]
S. Ray, D. Tillo, R.E. Boer, N. Assad, M. Barshai, G. Wu, et al. Custom DNA microarrays reveal diverse binding preferences of proteins and small molecules to thousands of G-quadruplexes. ACS Chem Biol, 15 (4) (2020), pp. 925-935
[90]
S. Pelliccia, J. Amato, D. Capasso, S. Di Gaetano, A. Massarotti, M. Piccolo, et al. Bio-inspired dual-selective BCL-2/c-MYC G-quadruplex binders: design, synthesis, and anticancer activity of drug-like imidazo[2,1-i]purine derivatives. J Med Chem, 63 (5) (2020), pp. 2035-2050
[91]
C. Zhang, J. Sheng, G. Li, L. Zhao, Y. Wang, W. Yang, et al. Effects of berberine and its derivatives on cancer: a systems pharmacology review. Front Pharmacol, 10 (2019), p. 1461
[92]
M. Tillhon, L.M. Guamán Ortiz, P. Lombardi, A.I. Scovassi. Berberine: new perspectives for old remedies. Biochem Pharmacol, 84 (10) (2012), pp. 1260-1267
[93]
K.B. Wang, J. Dickerhoff, D. Yang. Solution structure of ternary complex of berberine bound to a dGMP-fill-in vacancy G-quadruplex formed in the PDGFR-β promoter. J Am Chem Soc, 143 (40) (2021), pp. 16549-16555
[94]
C. Bazzicalupi, M. Ferraroni, A.R. Bilia, F. Scheggi, P. Gratteri. The crystal structure of human telomeric DNA complexed with berberine: an interesting case of stacked ligand to G-tetrad ratio higher than 1:1. Nucleic Acids Res, 41 (1) (2013), pp. 632-638
[95]
C.Q. Zhou, J.W. Yang, C. Dong, Y.M. Wang, B. Sun, J.X. Chen, et al. Highly selective, sensitive and fluorescent sensing of dimeric G-quadruplexes by a dimeric berberine. Org Biomol Chem, 14 (1) (2016), pp. 191-197
[96]
M. Ferraroni, C. Bazzicalupi, F. Papi, G. Fiorillo, L.M. Guamán-Ortiz, A. Nocentini, et al. Solution and solid-state analysis of binding of 13-substituted berberine analogues to human telomeric G-quadruplexes. Chem Asian J, 11 (7) (2016), pp. 1107-1115
[97]
J. Dickerhoff, N. Brundridge, S.A. McLuckey, D. Yang. Berberine molecular recognition of the parallel MYC G-quadruplex in solution. J Med Chem, 64 (21) (2021), pp. 16205-16212
[98]
A.R. Moore, S.C. Rosenberg, F. McCormick, S. Malek. RAS-targeted therapies: is the undruggable drugged?. Nat Rev Drug Discov, 19 (8) (2020), pp. 533-552
[99]
X.M. Li, K. Zheng, J. Zhang, H. Liu, Y. He, B. Yuan, et al. Guanine-vacancy-bearing G-quadruplexes responsive to guanine derivatives. Proc Natl Acad Sci USA, 112 (47) (2015), pp. 14581-14586
[100]
B. Heddi, N. Martín-Pintado, Z. Serimbetov, T.M. Kari, A.T. Phan. G-quadruplexes with (4n-1) guanines in the G-tetrad core: formation of a G-triad·water complex and implication for small-molecule binding. Nucleic Acids Res, 44 (2) (2016), pp. 910-916
[101]
K.B. Wang, J. Dickerhoff, G. Wu, D. Yang. PDGFR-β promoter forms a vacancy G-quadruplex that can be filled in by dGMP: solution structure and molecular recognition of guanine metabolites and drugs. J Am Chem Soc, 142 (11) (2020), pp. 5204-5211
[102]
K.B. Wang, Y. Liu, Y. Li, J. Dickerhoff, J. Li, M.H. Yang, et al. Oxidative damage induces a vacancy G-quadruplex that binds guanine metabolites: solution structure of a cGMP fill-in vacancy G-quadruplex in the oxidized BLM gene promoter. J Am Chem Soc, 144 (14) (2022), pp. 6361-6372
[103]
F.R. Winnerdy, P. Das, B. Heddi, A.T. Phan. Solution structures of a G-quadruplex bound to linear- and cyclic-dinucleotides. J Am Chem Soc, 141 (45) (2019), pp. 18038-18047
[104]
Y.D. He, K. Zheng, C. Wen, X. Li, J. Gong, Y. Hao, et al. Selective targeting of guanine-vacancy-bearing G-quadruplexes by G-quartet complementation and stabilization with a guanine-peptide conjugate. J Am Chem Soc, 142 (26) (2020), pp. 11394-11403
[105]
J.N. Chen, Y. He, H. Liang, T. Cai, Q. Chen, K. Zheng. Regulation of PDGFR-β gene expression by targeting the G-vacancy bearing G-quadruplex in promoter. Nucleic Acids Res, 49 (22) (2021), pp. 12634-12643
[106]
C. Lin, G. Wu, K. Wang, B. Onel, S. Sakai, Y. Shao, et al. Molecular recognition of the hybrid-2 human telomeric G-quadruplex by epiberberine: insights into conversion of telomeric G-quadruplex structures. Angew Chem Int Ed Engl, 57 (34) (2018), pp. 10888-10893
[107]
L. Martino, A. Virno, B. Pagano, A. Virgilio, S. Di Micco, A. Galeone, et al. Structural and thermodynamic studies of the interaction of distamycin A with the parallel quadruplex structure [d(TGGGGT)]4. J Am Chem Soc, 129 (51) (2007), pp. 16048-16056
[108]
W. Li, Y. Li, Z. Liu, B. Lin, H. Yi, F. Xu, et al. Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity. Nucleic Acids Res, 44 (15) (2016), pp. 7373-7384
[109]
F. Wang, C. Wang, Y. Liu, W. Lan, H. Han, R. Wang, et al. Colchicine selective interaction with oncogene RET G-quadruplex revealed by NMR. Chem Commun, 56 (14) (2020), pp. 2099-2102
[110]
A. Tawani, A. Amanullah, A. Mishra, A. Kumar. Evidences for Piperine inhibiting cancer by targeting human G-quadruplex DNA sequences. Sci Rep, 6 (1) (2016), p. 39239
[111]
T. Han, X. Cao, J. Xu, H. Pei, H. Zhang, Y. Tang. Separation of the potential G-quadruplex ligands from the butanol extract of Zanthoxylum ailanthoides Sieb. & Zucc. by countercurrent chromatography and preparative high performance liquid chromatography. J Chromatogr A, 1507 (2017), pp. 104-114
[112]
C. Qian, H. Fu, K.A. Kovalchik, H. Li, D.D.Y. Chen. Specific binding constant and stoichiometry determination in free solution by mass spectrometry and capillary electrophoresis frontal analysis. Anal Chem, 89 (17) (2017), pp. 9483-9490
[113]
P. Yang, X. Wang, Z. Gu, H. Li, D.D.Y. Chen, X. Yang. Evaluation of the binding of natural products with thrombin binding aptamer G-quadruplex using electrospray ionization mass spectrometry and spectroscopic methods. Talanta, 200 (2019), pp. 424-431
[114]
X. Cui, S. Lin, G. Yuan. Spectroscopic probing of recognition of the G-quadruplex in c-kit promoter by small-molecule natural products. Int J Biol Macromol, 50 (4) (2012), pp. 996-1001
[115]
S.K. Wang, Y. Wu, X.Q. Wang, G.T. Kuang, Q. Zhang, S.L. Lin, et al. Discovery of small molecules for repressing cap-independent translation of human vascular endothelial growth factor (hVEGF) as novel antitumor agents. J Med Chem, 60 (13) (2017), pp. 5306-5319
[116]
T. Che, S.B. Chen, J.L. Tu, B. Wang, Y.Q. Wang, Y. Zhang, et al. Discovery of novel schizocommunin derivatives as telomeric G-quadruplex ligands that trigger telomere dysfunction and the deoxyribonucleic acid (DNA) damage response. J Med Chem, 61 (8) (2018), pp. 3436-3453
[117]
J.C. Grigg, N. Shumayrikh, D. Sen. G-quadruplex structures formed by expanded hexanucleotide repeat RNA and DNA from the neurodegenerative disease-linked C9orf72 gene efficiently sequester and activate heme. PLoS One, 9 (9) (2014), p. e106449
[118]
H. Yaku, T. Murashima, D. Miyoshi, N. Sugimoto. Specific binding of anionic porphyrin and phthalocyanine to the G-quadruplex with a variety of in vitro and in vivo applications. Molecules, 17 (9) (2012), pp. 10586-10613
[119]
S.N. Georgiades, N.H. Abd Karim, K. Suntharalingam, R. Vilar. Interaction of metal complexes with G-quadruplex DNA. Angew Chem Int Ed, 49 (24) (2010), pp. 4020-4034
[120]
I.M. Dixon, F. Lopez, A.M. Tejera, J.P. Estève, M.A. Blasco, G. Pratviel, et al. A G-quadruplex ligand with 10 000-fold selectivity over duplex DNA. J Am Chem Soc, 129 (6) (2007), pp. 1502-1503
[121]
J. Alzeer, B.R. Vummidi, P.J. Roth, N.W. Luedtke. Guanidinium-modified phthalocyanines as high-affinity G-quadruplex fluorescent probes and transcriptional regulators. Angew Chem Int Ed Engl, 48 (49) (2009), pp. 9362-9365
[122]
Q. Cao, Y. Li, E. Freisinger, P.Z. Qin, R.K.O. Sigel, Z.W. Mao. G-quadruplex DNA targeted metal complexes acting as potential anticancer drugs. Inorg Chem Front, 4 (1) (2017), pp. 10-32
[123]
X.H. Zheng, Q. Cao, Y.L. Ding, Y.F. Zhong, G. Mu, P.Z. Qin, et al. Platinum(II) clovers targeting G-quadruplexes and their anticancer activities. Dalton Trans, 44 (1) (2015), pp. 50-53
[124]
L.N. Wen, M.X. Xie. Spectroscopic investigation of the interaction between G-quadruplex of KRAS promoter sequence and three isoquinoline alkaloids. Spectrochim Acta A Mol Biomol Spectrosc, 171 (2017), pp. 287-296
[125]
J. Jana, S. Mondal, P. Bhattacharjee, P. Sengupta, T. Roychowdhury, P. Saha, et al. Chelerythrine down regulates expression of VEGFA, BCL2 and KRAS by arresting G-quadruplex structures at their promoter regions. Sci Rep, 7 (1) (2017), p. 40706
[126]
N. Singh, B. Sharma. Toxicological effects of berberine and sanguinarine. Front Mol Biosci, 5 (2018), p. 21
[127]
Y. Shi, L. Li, C. Wang, J. Huang, L. Feng, X. Chen, et al. Developmental toxicity induced by chelerythrine in zebrafish embryos via activating oxidative stress and apoptosis pathways. Comp Biochem Physiol C Toxicol Pharmacol, 273 (2023), Article 109719
[128]
Z. Li, J.H. Tan, J.H. He, Y. Long, T.M. Ou, D. Li, et al. Disubstituted quinazoline derivatives as a new type of highly selective ligands for telomeric G-quadruplex DNA. Eur J Med Chem, 47 (2012), pp. 299-311
[129]
Y.J. Lu, T.M. Ou, J.H. Tan, J.Q. Hou, W.Y. Shao, D. Peng, et al. 5-N-methylated quindoline derivatives as telomeric G-quadruplex stabilizing ligands: effects of 5-N positive charge on quadruplex binding affinity and cell proliferation. J Med Chem, 51 (20) (2008), pp. 6381-6392
[130]
G. Han, L. Chen, Q. Wang, M. Wu, Y. Liu, Q. Wang. Design, synthesis, and antitobacco mosaic virus activity of water-soluble chiral quaternary ammonium salts of phenanthroindolizidines alkaloids. J Agric Food Chem, 66 (4) (2018), pp. 780-788
[131]
W. Peng, Z.Y. Sun, Q. Zhang, S.Q. Cheng, S.K. Wang, X.N. Wang, et al. Design, synthesis, and evaluation of novel p-(methylthio)styryl substituted quindoline derivatives as neuroblastoma RAS (NRAS) repressors via specific stabilizing the RNA G-quadruplex. J Med Chem, 61 (15) (2018), pp. 6629-6646
[132]
C. Shan, J.W. Yan, Y.Q. Wang, T. Che, Z.L. Huang, A.C. Chen, et al. Design, synthesis, and evaluation of isaindigotone derivatives to downregulate c-myc transcription via disrupting the interaction of NM23-H 2 with G-quadruplex. J Med Chem, 60 (4) (2017), pp. 1292-1308
[133]
M. Franceschin, L. Cianni, M. Pitorri, E. Micheli, S. Cacchione, C. Frezza, et al. Natural aromatic compounds as scaffolds to develop selective G-quadruplex ligands: from previously reported berberine derivatives to new palmatine analogues. Molecules, 23 (6) (2018), p. 1423
[134]
M.P. Barrett, C.G. Gemmell, C.J. Suckling. Minor groove binders as anti-infective agents. Pharmacol Ther, 139 (1) (2013), pp. 12-23
[135]
P.G. Baraldi, A. Bovero, F. Fruttarolo, D. Preti, M.A. Tabrizi, M.G. Pavani, et al. DNA minor groove binders as potential antitumor and antimicrobial agents. Med Res Rev, 24 (4) (2004), pp. 475-528
[136]
X. Cai, P.J. Gray Jr, D.D. Von Hoff. DNA minor groove binders: back in the groove. Cancer Treat Rev, 35 (5) (2009), pp. 437-450
[137]
H.Y. Alniss. Thermodynamics of DNA minor groove binders. J Med Chem, 62 (2) (2019), pp. 385-402
[138]
T.Q. Ngoc Nguyen, K.W. Lim, A.T. Phan. Duplex formation in a G-quadruplex bulge. Nucleic Acids Res, 48 (18) (2020), pp. 10567-10575
[139]
J. Jana, S. Mohr, Y.M. Vianney, K. Weisz. Structural motifs and intramolecular interactions in non-canonical G-quadruplexes. RSC Chem Biol, 2 (2) (2021), pp. 338-353
[140]
Y.M. Vianney, K. Weisz. Indoloquinoline ligands favor intercalation at quadruplex-duplex interfaces. Chemistry, 28 (7) (2022), p. e202103718
[141]
T.Q.N. Nguyen, K.W. Lim, A.T. Phan. A dual-specific targeting approach based on the simultaneous recognition of duplex and quadruplex motifs. Sci Rep, 7 (1) (2017), p. 11969
[142]
S. Asamitsu, S. Obata, A.T. Phan, K. Hashiya, T. Bando, H. Sugiyama. Simultaneous binding of hybrid molecules constructed with dual DNA-binding components to a G-quadruplex and its proximal duplex. Chemistry, 24 (17) (2018), pp. 4428-4435
[143]
S. Bazzi, J. Novotny, Y.P. Yurenko, R. Marek. Designing a new class of bases for nucleic acid quadruplexes and quadruplex-active ligands. Chemistry, 21 (26) (2015), pp. 9414-9425
[144]
M. Tassinari, M. Zuffo, M. Nadai, V. Pirota, A.C. Sevilla Montalvo, F. Doria, et al. Selective targeting of mutually exclusive DNA G-quadruplexes: HIV-1 LTR as paradigmatic model. Nucleic Acids Res, 48 (9) (2020), pp. 4627-4642
[145]
S.B. Chen, M.H. Hu, G.C. Liu, J. Wang, T.M. Ou, L.Q. Gu, et al. Visualization of RNA G-quadruplex structures in cells with an engineered fluorogenic hybridization probe. J Am Chem Soc, 138 (33) (2016), pp. 10382-10385
[146]
L.Y. Liu, T.Z. Ma, Y.L. Zeng, W. Liu, H. Zhang, Z.W. Mao. Organic-platinum hybrids for covalent binding of G-quadruplexes: structural basis and application to cancer immunotherapy. Angew Chem Int Ed Engl, 62 (36) (2023), p. e202305645
[147]
J.F. Betzer, F. Nuter, M. Chtchigrovsky, F. Hamon, G. Kellermann, S. Ali, et al. Linking of antitumor trans NHC-Pt(II) complexes to G-quadruplex DNA ligand for telomeric targeting. Bioconjug Chem, 27 (6) (2016), pp. 1456-1470
[148]
V. Sanchez-Martin, A.S. David, O.G. Matilde, S.L. Ana, L.R. Angel, P.C. Virginia, et al. Targeting ribosomal G-quadruplexes with naphthalene-diimides as RNA polymerase I inhibitors for colorectal cancer treatment. Cell Chem Biol, 28 (12) (2021), p. 1807
[149]
S. Muller, D.A. Sanders, M. Di Antonio, S. Matsis, J.F. Riou, R. Rodriguez, et al. Pyridostatin analogues promote telomere dysfunction and long-term growth inhibition in human cancer cells. Org Biomol Chem, 10 (32) (2012), pp. 6537-6546
[150]
K. Shinohara, Y. Sannohe, S. Kaieda, K. Tanaka, H. Osuga, H. Tahara, et al. A chiral wedge molecule inhibits telomerase activity. J Am Chem Soc, 132 (11) (2010), pp. 3778-3782
[151]
C. Zhao, H. Song, P. Scott, A. Zhao, H. Tateishi-Karimata, N. Sugimoto, et al. Mirror-image dependence: targeting enantiomeric G-quadruplex DNA using triplex metallohelices. Angew Chem Int Ed Engl, 57 (48) (2018), pp. 15723-15727
[152]
K. Xiong, C. Ouyang, J. Liu, J. Karges, X. Lin, X. Chen, et al. Chiral Ru(II)-Pt(II) complexes inducing telomere dysfunction against cisplatin-resistant cancer cells. Angew Chem Int Ed Engl, 61 (33) (2022), p. e202204866
[153]
H. Yu, X. Wang, M. Fu, J. Ren, X. Qu. Chiral metallo-supramolecular complexes selectively recognize human telomeric G-quadruplex DNA. Nucleic Acids Res, 36 (17) (2008), pp. 5695-5703
[154]
A. Zhao, S.E. Howson, C. Zhao, J. Ren, P. Scott, C. Wang, et al. Chiral metallohelices enantioselectively target hybrid human telomeric G-quadruplex DNA. Nucleic Acids Res, 45 (9) (2017), pp. 5026-5035
[155]
J. Wang, Y. Chen, J. Ren, C. Zhao, X. Qu. G-quadruplex binding enantiomers show chiral selective interactions with human telomere. Nucleic Acids Res, 42 (6) (2014), pp. 3792-3802
[156]
S. Bhambhani, K.R. Kondhare, A.P. Giri. Diversity in chemical structures and biological properties of plant alkaloids. Molecules, 26 (11) (2021), p. 3374
[157]
S.K. Daley, G.A. Cordell. Biologically significant and recently isolated alkaloids from endophytic fungi. J Nat Prod, 84 (3) (2021), pp. 871-897
[158]
E. Plazas, M.M. Avila, D.R. Munoz, S.L. Cuca. Natural isoquinoline alkaloids: pharmacological features and multi-target potential for complex diseases. Pharmacol Res, 177 (2022), Article 106126
[159]
J. Zhang, S.L. Morris-Natschke, D. Ma, X.F. Shang, C.J. Yang, Y.Q. Liu, et al. Biologically active indolizidine alkaloids. Med Res Rev, 41 (2) (2021), pp. 928-960
[160]
J. Chen, S. Lv, J. Liu, Y. Yu, H. Wang, H. Zhang. An overview of bioactive 1,3-oxazole-containing alkaloids from marine organisms. Pharmaceuticals, 14 (12) (2021), p. 1274
[161]
M.C. Almeida, D. Resende, P.M. da Costa, M.M.M. Pinto, E. Sousa. Tryptophan derived natural marine alkaloids and synthetic derivatives as promising antimicrobial agents. Eur J Med Chem, 209 (2021), Article 112945
[162]
A. Thawabteh, S. Juma, M. Bader, D. Karaman, L. Scrano, S. Bufo, et al. The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins, 11 (11) (2019), p. 656
[163]
Y.M. Ma, X.A. Liang, Y. Kong, B. Jia. Structural diversity and biological activities of indole diketopiperazine alkaloids from fungi. J Agric Food Chem, 64 (35) (2016), pp. 6659-6671
[164]
Y. Hu, S. Chen, F. Yang, S. Dong. Marine indole alkaloids-isolation, structure and bioactivities. Mar Drugs, 19 (12) (2021), p. 658
[165]
N. Netz, T. Opatz. Marine indole alkaloids. Mar Drugs, 13 (8) (2015), pp. 4814-4914
[166]
K. Xu, X.L. Yuan, C. Li, A.X. Li. Recent discovery of heterocyclic alkaloids from marine-derived aspergillus species. Mar Drugs, 18 (1) (2020), p. 54
[167]
N. Tajuddeen, G. Bringmann. N,C-coupled naphthylisoquinoline alkaloids: a versatile new class of axially chiral natural products. Nat Prod Rep, 38 (12) (2021), pp. 2154-2186
[168]
S.A. Ohnmacht, S. Neidle. Small-molecule quadruplex-targeted drug discovery. Bioorg Med Chem Lett, 24 (12) (2014), pp. 2602-2612
[169]
H. Xu, M. Di Antonio, S. McKinney, V. Mathew, B. Ho, N.J. O’Neil, et al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/ 2 deficient tumours. Nat Commun, 8 (1) (2017), p. 14432
[170]
C. Marchetti, K.G. Zyner, S.A. Ohnmacht, M. Robson, S.M. Haider, J.P. Morton, et al. Targeting multiple effector pathways in pancreatic ductal adenocarcinoma with a G-quadruplex-binding small molecule. J Med Chem, 61 (6) (2018), pp. 2500-2517
[171]
F. Martinez-Jimenez, F. Muiños, I. Sentís, J. Deu-Pons, I. Reyes-Salazar, C. Arnedo-Pac, et al. A compendium of mutational cancer driver genes. Nat Rev Cancer, 20 (10) (2020), pp. 555-572
[172]
W.IB. Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science, 297 (5578) (2002), pp. 63-64
[173]
I.B. Weinstein, A.K. Joe. Mechanisms of disease: oncogene addiction—a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol, 3 (8) (2006), pp. 448-457
[174]
D. Varshney, J. Spiegel, K. Zyner, D. Tannahill, S. Balasubramanian. The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol, 21 (8) (2020), pp. 459-474
[175]
B. Lemmens, R. van Schendel, M. Tijsterman. Mutagenic consequences of a single G-quadruplex demonstrate mitotic inheritance of DNA replication fork barriers. Nat Commun, 6 (1) (2015), p. 8909
[176]
P. Wulfridge, Q. Yan, N. Rell, J. Doherty, S. Jacobson, S. Offley, et al. G-quadruplexes associated with R-loops promote CTCF binding. Mol Cell, 83 (17) (2023), pp. 3064-3079.e5
[177]
Y. Hou, F. Li, R. Zhang, S. Li, H. Liu, Z.S. Qin, et al. Integrative characterization of G-quadruplexes in the three-dimensional chromatin structure. Epigenetics, 14 (9) (2019), pp. 894-911
[178]
J.D. Williams, D. Houserova, B.R. Johnson, B. Dyniewski, A. Berroyer, H. French, et al. Characterization of long G4-rich enhancer-associated genomic regions engaging in a novel loop:loop ‘G 4 Kissing’ interaction. Nucleic Acids Res, 48 (11) (2020), pp. 5907-5925
[179]
H. Hegyi. Enhancer-promoter interaction facilitated by transiently forming G-quadruplexes. Sci Rep, 5 (1) (2015), p. 9165
[180]
D. Liano, S. Chowdhury, M. Di Antonio. Cockayne syndrome B protein selectively resolves and interact with intermolecular DNA G-quadruplex structures. J Am Chem Soc, 143 (49) (2021), pp. 20988-21002
[181]
C.Y. Lee, C. McNerney, K. Ma, W. Zhao, A. Wang, S. Myong. R-loop induced G-quadruplex in non-template promotes transcription by successive R-loop formation. Nat Commun, 11 (1) (2020), p. 3392
[182]
W. Wu, N. Rokutanda, J. Takeuchi, Y. Lai, R. Maruyama, Y. Togashi, et al. HERC2 facilitates BLM and WRN helicase complex interaction with RPA to suppress G-quadruplex DNA. Cancer Res, 78 (22) (2018), pp. 6371-6385
[183]
M.J. Law, K.M. Lower, H.P.J. Voon, J.R. Hughes, D. Garrick, V. Viprakasit, et al. ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner. Cell, 143 (3) (2010), pp. 367-378
[184]
A.L. Valton, M.N. Prioleau. G-quadruplexes in DNA replication: a problem or a necessity?. Trends Genet, 32 (11) (2016), pp. 697-706
AI Summary AI Mindmap
PDF(2679 KB)

Accesses

Citations

Detail

Sections
Recommended

/