Magnetic Interactions with Strain Gradient in Ultrathin Pr0.67Sr0.33MnO3 Films

Bangmin Zhang, Ping Yang, Jun Ding, Jingsheng Chen, Gan Moog Chow

Engineering ›› 2024, Vol. 40 ›› Issue (9) : 158-165.

PDF(2341 KB)
PDF(2341 KB)
Engineering ›› 2024, Vol. 40 ›› Issue (9) : 158-165. DOI: 10.1016/j.eng.2024.04.014
Research
Article

Magnetic Interactions with Strain Gradient in Ultrathin Pr0.67Sr0.33MnO3 Films

Author information +
History +

Abstract

Strain gradient is a normal phenomenon around a heterostructural interface in ultrathin film, and it is important to determine its effect on magnetic interactions to understand interfacial coupling. In this work, ultrathin Pr0.67Sr0.33MnO3 (PSMO) films on different substrates are studied. For PSMO film under different in-plane strain conditions, the saturated magnetization and Curie temperature can be qualitatively explained by double-exchange interaction and the Jahn-Teller distortion. However, the difference in the saturated magnetization with zero field cooling and 5 T field cooling is proportional to the strain gradient. Strain-gradient-induced structural disorder is proposed to enhance phonon-electron antiferromagnetic interactions and the corresponding antiferromagnetic-to-ferromagnetic phase transition via a strong magnetic field during the field cooling process. A non-monotonous structural transition of the MnO6 octahedral rotation can enlarge the strain gradient in PSMO film on a SrTiO3 substrate. This work demonstrates the existence of the flexomagnetic effect in ultrathin manganite film, which should be applicable to other complex oxide systems.

Graphical abstract

Keywords

Strain gradient / Manganite film / Octahedral rotation / Flexomagnetic / Magnetic interactions / Phase transition

Cite this article

Download citation ▾
Bangmin Zhang, Ping Yang, Jun Ding, Jingsheng Chen, Gan Moog Chow. Magnetic Interactions with Strain Gradient in Ultrathin Pr0.67Sr0.33MnO3 Films. Engineering, 2024, 40(9): 158‒165 https://doi.org/10.1016/j.eng.2024.04.014

References

[1]
Zhang J, Zhong Z, Guan X, Shen X, Zhang J, Han F, et al. Symmetry mismatchdriven perpendicular magnetic anisotropy for perovskite/brownmillerite heterostructures. Nat Commun 2018; 9(1):1923.
[2]
Muff S, Pilet N, Fanciulli M, Weber AP, Wessler C, Ristić Z, et al. Influence of ferroelectric order on the surface electronic structure of BaTiO3 films studied by photoemission spectroscopy. Phys Rev B 2018;98(4):045132.
[3]
Li D, Lee K, Wang BY, Osada M, Crossley S, Lee HR, et al. Superconductivity in an infinite-layer nickelate. Nature 2019; 572(7771):624-7.
[4]
Zhang B, Wu L, Yin WG, Sun CJ, Yang P, Venkatesan T, et al. Interfacial couplinginduced ferromagnetic insulator phase in manganite film. Nano Lett 2016; 16 (7):4174-80.
[5]
Molegraaf HJA, Hoffman J, Vaz CAF, Gariglio S, van der Marel D, Ahn CH, et al. Magnetoelectric effects in complex oxides with competing ground states. Adv Mater 2009; 21(34):3470-4.
[6]
Vaz CAF, Walker FJ, Ahn CH, Ismail-Beigi S. Intrinsic interfacial phenomena in manganite heterostructures. J Phys Condens Matter 2015; 27(12):123001.
[7]
Chen P, Cosgriff MP, Zhang Q, Callori SJ, Adams BW, Dufresne EM, et al. Fielddependent domain distortion and interlayer polarization distribution in PbTiO3/SrTiO3 superlattices. Phys Rev Lett 2013; 110(4):047601.
[8]
Wang B, Gu YJ, Zhang SJ, Chen LQ. Flexoelectricity in solids: progress, challenges, and perspectives. Prog Mater Sci 2019; 106:100570.
[9]
Eliseev EA, Morozovska AN, Glinchuk MD, Blinc R. Spontaneous flexoelectric/ flexomagnetic effect in nanoferroics. Phys Rev B 2009; 79(16):165433.
[10]
Kabychenkov AF, Lisovskii FV. Flexomagnetic and flexoantiferromagnetic effects in centrosymmetric antiferromagnetic materials. Tech Phys 2019; 64 (7):980-3.
[11]
Lee JH, Kim KE, Jang BK, Ünal AA, Valencia S, Kronast F, et al. Strain-gradientinduced magnetic anisotropy in straight-stripe mixed-phase bismuth ferrites: insight into flexomagnetism. Phys Rev B 2017; 96(6):064402.
[12]
Zhang JX, Zeches RJ, He Q, Chu YH, Ramesh R. Nanoscale phase boundaries: a new twist to novel functionalities. Nanoscale 2012; 4(20):6196-204.
[13]
Dagotto E, Hotta T, Moreo A. Colossal magnetoresistant materials: the key role of phase separation. Phys Rep 2001; 344(1-3):1-153.
[14]
Coey JMD, Viret M, von Molnár S. Mixed-valence manganites. Adv Phys 1999; 48(2):167-293.
[15]
Anderson PW, Hasegawa H. Consideration on double exchange. Phys Rev 1955; 100(2):675-81.
[16]
Pavarini E, Koch E. Origin of Jahn-Teller distortion and orbital order in LaMnO3. Phys Rev Lett 2010; 104(8):086402.
[17]
Röder H, Zang J, Bishop AR. Lattice effects in the colossal-magnetoresistance manganites. Phys Rev Lett 1996; 76(8):1356-9.
[18]
Millis AJ, Littlewood PB, Shraiman BI. Double exchange alone does not explain the resistivity of La1-xSrxMnO3. Phys Rev Lett 1995; 74(25):5144-7.
[19]
Anderson PW. Antiferromagnetism. Theory of superexchange interaction. Phys Rev 1950; 79(2):350-6.
[20]
Li Q, Wang HS, Hu YF, Wertz E. Anomalous anisotropic magnetoresistance in Pr0.67Sr0.33MnO3 thin films. J Appl Phys 2000; 87(9):5573-5.
[21]
Chen A, Wang Q, Fitzsimmons MR, Enriquez E, Weigand M, Harrell Z, et al. Hidden interface driven exchange coupling in oxide heterostructures. Adv Mater 2017; 29(26):1700672.
[22]
Martin C, Maignan A, Hervieu M, Raveau B. Magnetic phase diagrams of L1-xAxMnO3 manganites (L = Pr, Sm; A = Ca, Sr). Phys Rev B 1999;60 (17):12191-9.
[23]
Millis AJ, Darling T, Migliori A. Quantifying strain dependence in ‘‘colossal” magnetoresistance manganites. J Appl Phys 1998; 83(3):1588-91.
[24]
Wang HS, Wertz E, Hu YF, Li Q, Schlom DG. Role of strain in magnetotransport properties of Pr0.67Sr0.33MnO3 thin films. J Appl Phys 2000; 87(10):7409-14.
[25]
Desnenko VA, Sirenko VA, Troyanchuk IO, Fedorchenko AV, Yeremenko AV. Low-temperature relaxation of magnetization in manganite Pr0.4Bi0.3Ca0.3MnO3. Low Temp Phys 2018; 44(9):962-5.
[26]
He J, Borisevich A, Kalinin SV, Pennycook SJ, Pantelides ST. Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys Rev Lett 2010; 105(22):227203.
[27]
Rondinelli JM, Spaldin NA. Substrate coherency driven octahedral rotations in perovskite oxide films. Phys Rev B 2010; 82(11):113402.
[28]
Herklotz A, Wong AT, Meyer T, Biegalski MD, Lee HN, Ward TZ. Controlling octahedral rotations in a perovskite via strain doping. Sci Rep 2016; 6 (1):26491.
[29]
Li W, Zhu B, Zhu R, Wang Q, Lu P, Sun Y, et al. Atomic-scale control of electronic structure and ferromagnetic insulating state in perovskite oxide superlattices by long-range tuning of BO6 octahedra. Adv Funct Mater 2020; 30 (40):2001984.
[30]
Moon EJ, He Q, Ghosh S, Kirby BJ, Pantelides ST, Borisevich AY, et al. Structural ‘‘d doping” to control local magnetization in isovalent oxide heterostructures. Phys Rev Lett 2017; 119(19):197204.
[31]
Guo H, Wang Z, Dong S, Ghosh S, Saghayezhian M, Chen L, et al. Interfaceinduced multiferroism by design in complex oxide superlattices. Proc Natl Acad Sci USA 2017; 114(26):E5062-9.
[32]
Şen C, Alvarez G, Aliaga H, Dagotto E. Colossal magnetoresistance observed in Monte Carlo simulations of the one- and two-orbital models for manganites. Phys Rev B 2006; 73(22):224441.
[33]
Yu X, Wu L, Zhang B, Zhou H, Dong Y, Wu X, et al. Thickness-dependent polarization-induced intrinsic magnetoelectric effects in La0.67Sr0.33MnO3/PbZr0.52Ti0.48O3 heterostructures. Phys Rev B 2019; 100(10):104405.
[34]
Jeon BC, Lee D, Lee MH, Yang SM, Chae SC, Song TK, et al. Flexoelectric effect in the reversal of self-polarization and associated changes in the electronic functional properties of BiFeO 3 thin films. Adv Mater 2013; 25(39):5643-9.
[35]
Catalan G, Noheda B, McAneney J, Sinnamon LJ, Gregg JM. Strain gradients in epitaxial ferroelectrics. Phys Rev B 2005; 72(2):020102.
[36]
Baldini M, Capogna L, Capone M, Arcangeletti E, Petrillo C, Goncharenko I, et al. Pressure induced magnetic phase separation in La0.75Ca0.25MnO3 manganite. J Phys Condens Matter 2012; 24(4):045601.
[37]
Zhang L, Chen J, Fan L, Diéguez O, Cao J, Pan Z, et al. Giant polarization in supertetragonal thin films through interphase strain. Science 2018; 361 (6401):494-7.
[38]
Wu PC, Huang R, Hsieh YH, Wang B, Yen M, Ho SZ, et al. Electrical polarization induced by atomically engineered compositional gradient in complex oxide solid solution. NPG Asia Mater 2019; 11(1):17.
[39]
Shi W, Guo Y, Zhang Z, Guo W. Strain gradient mediated magnetism and polarization in monolayer VSe2. J Phys Chem C 2019; 123(40):24988-93.
[40]
Şen C, Alvarez G, Dagotto E. Competing ferromagnetic and charge-ordered states in models for manganites: the origin of the colossal magnetoresistance effect. Phys Rev Lett 2007; 98(12):127202.
[41]
Zhang B, Wu L, Feng X, Li C, Miao X, Hui Y, et al. Tuning irreversible magnetoresistance in Pr0.67Sr0.33MnO 3 film via octahedral rotation. ACS Appl Mater Interfaces 2020; 12(38):43222-30.
[42]
Zhang B, Sun CJ, Yang P, Lu W, Fisher BL, Venkatesan T, et al. Strain modulated anisotropic electronic charge transfer in perovskite Pr0.67Sr0.33MnO3 thin films. Phys Rev B 2014; 89(19):195140.
[43]
Hu T, Deng Q, Shen S. Probing flexoelectricity via a split Hopkinson pressure bar experiment. Appl Phys Lett 2018; 112(24):242902.
[44]
Hu T, Deng Q, Liang X, Shen S. Measuring the flexoelectric coefficient of bulk barium titanate from a shock wave experiment. J Appl Phys 2017; 122 (5):055106.
[45]
Zhang B, Chen J, Yang P, Chi X, Lin W, Venkatesan T, et al. Effects of strain relaxation in Pr0.67Sr0.33MnO 3 films probed by polarization dependent X-ray absorption near edge structure. Sci Rep 2016; 6(1):19886.
AI Summary AI Mindmap
PDF(2341 KB)

Accesses

Citations

Detail

Sections
Recommended

/