A Single-Sized Metasurface for Image Steganography and Multi-Key Information Encryption

Congling Liang, Tian Huang, Qi Dai, Zile Li, Shaohua Yu

Engineering ›› 2024, Vol. 41 ›› Issue (10) : 61-70.

PDF(3659 KB)
PDF(3659 KB)
Engineering ›› 2024, Vol. 41 ›› Issue (10) : 61-70. DOI: 10.1016/j.eng.2024.04.015
Research
Article

A Single-Sized Metasurface for Image Steganography and Multi-Key Information Encryption

Author information +
History +

Abstract

With the escalating flow of information and digital communication, information security has become an increasingly important issue. Traditional cryptographic methods are being threatened by advancing progress in computing, while physical encryption methods are favored as a viable and compelling avenue. Metasurfaces, which are known for their extraordinary ability to manipulate optical parameters at the nanoscale, exhibit significant potential for the revolution of optical devices, making them a highly promising candidate for optical encryption applications. Here, a single-sized metasurface with four independent channels is proposed for conducting steganography and multi-key information encryption. More specifically, plaintext is transformed into a ciphertext image, which is encoded into a metasurface, while the decryption key is discretely integrated into another channel within the same metasurface. Two different keys for steganographic image unveiling are also encoded into the metasurface and can be retrieved with different channels and spatial positions. This distributed multi-key encryption approach can enhance security, while strategically distributing images across distinct spatial zones serves as an additional measure to reduce the risk of information leakage. This minimalist designed metasurface, with its advantages of high information density and robust security, holds promise across applications including portable encryption, high-camouflaged image display, and high-density optical storage.

Graphical abstract

Keywords

Metasurface / Multi-channel / Steganography / Encryption

Cite this article

Download citation ▾
Congling Liang, Tian Huang, Qi Dai, Zile Li, Shaohua Yu. A Single-Sized Metasurface for Image Steganography and Multi-Key Information Encryption. Engineering, 2024, 41(10): 61‒70 https://doi.org/10.1016/j.eng.2024.04.015

References

[1]
C. Gidney, M. Ekerå. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum, 5 (2021), p. 433.
[2]
G. Unnikrishnan, J. Joseph, K. Singh. Optical encryption by double-random phase encoding in the fractional Fourier domain. Opt Lett, 25 (12) (2000), pp. 887-889.
[3]
X. Peng, P. Zhang, H. Wei, B. Yu. Known-plaintext attack on optical encryption based on double random phase keys. Opt Lett, 31 (8) (2006), pp. 1044-1046.
[4]
A. Alfalou, C. Brosseau. Optical image compression and encryption methods. Adv Opt Photonics, 1 (3) (2009), pp. 589-636.
[5]
P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, J. Lancis. Optical encryption based on computational ghost imaging. Opt Lett, 35 (14) (2010), pp. 2391-2393.
[6]
R. Alaee, M. Albooyeh, C. Rockstuhl.Theory of metasurface based perfect absorbers. J Phys D, 50 (50) (2017), p. 503002.
[7]
H. Ren, X. Fang, J. Jang, J. Bürger, J. Rho, S.A. Maier. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat Nanotechnol, 15 (11) (2020), pp. 948-955.
[8]
R. Fu, L. Deng, Z. Guan, S. Chang, J. Tao, Z. Li, et al. Zero-order-free meta-holograms in a broadband visible range. Photon Res, 8 (5) (2020), pp. 723-728.
[9]
W. Yang, S. Xiao, Q. Song, Y. Liu, Y. Wu, S. Wang, et al. All-dielectric metasurface for high-performance structural color. Nat Commun, 11 (2020), p. 1864.
[10]
H. Zhou, X. Li, Z. Xu, X. Li, G. Geng, J. Li, et al. Correlated triple hybrid amplitude and phase holographic encryption based on a metasurface. Photon Res, 10 (3) (2022), pp. 678-686.
[11]
R. Fu, K. Chen, Z. Li, S. Yu, G. Zheng.Metasurface-based nanoprinting: principle, design and advances. Opto Electron Sci, 1 (10) (2022), p. 220011.
[12]
A.S. Rana, M. Zubair, Y. Chen, Z. Wang, J. Deng, M.T.S. Chani, et al. Broadband solar absorption by chromium metasurface for highly efficient solar thermophotovoltaic systems. Renew Sustain Energy Rev, 171 (2023), p. 113005.
[13]
G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol, 10 (4) (2015), pp. 308-312.
[14]
Z. Li, C. Chen, Z. Guan, J. Tao, S. Chang, Q. Dai, et al. Three-channel metasurfaces for simultaneous meta-holography and meta-nanoprinting: a single-cell design approach. Laser Photonics Rev, 14 (6) (2020), p. 2000032.
[15]
J. Li, Y. Wang, C. Chen, R. Fu, Z. Zhou, Z. Li, et al. From lingering to rift: metasurface decoupling for near- and far-field functionalization. Adv Mater, 33 (16) (2021), p. 2007507.
[16]
F. Zhang, M. Pu, X. Li, X. Ma, Y. Guo, P. Gao, et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv Mater, 33 (11) (2021), p. 2008157.
[17]
T. Dinter, C. Li, L. Kühner, T. Weber, A. Tittl, S.A. Maier, et al. Metasurface measuring twisted light in turbulence. ACS Photonics, 9 (9) (2022), pp. 3043-3051.
[18]
Y. Liu, X. Ling, X. Yi, X. Zhou, H. Luo, S. Wen.Realization of polarization evolution on higher-order Poincaré sphere with metasurface. Appl Phys Lett, 104 (19) (2014), p. 191110.
[19]
J.P.B. Mueller, N.A. Rubin, R.C. Devlin, B. Groever, F. Capasso.Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett, 118 (17) (2017), p. 113901.
[20]
N.A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W.T. Chen, F. Capasso. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science, 365 (6448) (2019), p. eaax1839.
[21]
Z. Deng, Q. Tu, Y. Wang, Z. Wang, T. Shi, Z. Feng, et al. Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography. Adv Mater, 33 (43) (2021), p. 2103472.
[22]
Y. Bao, L. Wen, Q. Chen, C.W. Qiu, B. Li. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface. Sci Adv, 7 (25) (2021), p. eabh0365.
[23]
B. Xiong, Y. Liu, Y. Xu, L. Deng, C.W. Chen, J.N. Wang, et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science, 379 (6629) (2023), pp. 294-299.
[24]
Y. Cao, L. Tang, J. Li, C. Lee, Z.G. Dong. Multiplexing optical images for steganography by single metasurfaces. Small, 19 (19) (2023), p. 2206319.
[25]
X. Li, Q. Chen, X. Zhang, R. Zhao, S. Xiao, Y. Wang, et al. Time-sequential color code division multiplexing holographic display with metasurface. Opto Electron Adv, 6 (8) (2023), p. 220060.
[26]
W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.W. Qiu, et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat Commun, 7 (2016), p. 11930.
[27]
F. Walter, G. Li, C. Meier, S. Zhang, T. Zentgraf. Ultrathin nonlinear metasurface for optical image encoding. Nano Lett, 17 (5) (2017), pp. 3171-3175.
[28]
Y. Tang, Y. Intaravanne, J. Deng, K.F. Li, X. Chen, G. Li.Nonlinear vectorial metasurface for optical encryption. Phys Rev Appl, 12 (2) (2019), p. 024028.
[29]
C. Schlickriede, S.S. Kruk, L. Wang, B. Sain, Y. Kivshar, T. Zentgraf. Nonlinear imaging with all-dielectric metasurfaces. Nano Lett, 20 (6) (2020), pp. 4370-4376.
[30]
Z. Li, M. Premaratne, W. Zhu. Advanced encryption method realized by secret shared phase encoding scheme using a multi-wavelength metasurface. Nanophotonics, 9 (11) (2020), pp. 3687-3696.
[31]
R. Ren, Z. Li, L. Deng, X. Shan, Q. Dai, Z. Guan, et al. Non-orthogonal polarization multiplexed metasurfaces for tri-channel polychromatic image displays and information encryption. Nanophotonics, 10 (11) (2021), pp. 2903-2914.
[32]
F. Zhang, Y. Guo, M. Pu, L. Chen, M. Xu, M. Liao, et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun, 14 (2023), p. 1946.
[33]
R. Zhao, B. Sain, Q. Wei, C. Tang, X. Li, T. Weiss, et al. Multichannel vectorial holographic display and encryption. Light Sci Appl, 7 (2018), p. 95.
[34]
J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, N. Liu. Addressable metasurfaces for dynamic holography and optical information encryption. Sci Adv, 4 (6) (2018), p. eaar6768.
[35]
L. Jin, Z. Dong, S. Mei, Y.F. Yu, Z. Wei, Z. Pan, et al. Noninterleaved metasurface for (26 -1) spin- and wavelength-encoded holograms. Nano Lett, 18 (12) (2018), pp. 8016-8024.
[36]
H. Zhou, B. Sain, Y. Wang, C. Schlickriede, R. Zhao, X. Zhang, et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography. ACS Nano, 14 (5) (2020), pp. 5553-5559.
[37]
G. Qu, W. Yang, Q. Song, Y. Liu, C.W. Qiu, J. Han, et al. Reprogrammable meta-hologram for optical encryption. Nat Commun, 11 (2020), p. 5484.
[38]
J. Deng, Z. Li, J. Li, Z. Zhou, F. Gao, C. Qiu, et al. Metasurface-assisted optical encryption carrying camouflaged information. Adv Opt Mater, 10 (16) (2022), p. 2200949.
[39]
J. Kim, D. Jeon, J. Seong, T. Badloe, N. Jeon, G. Kim, et al. Photonic encryption platform via dual-band vectorial metaholograms in the ultraviolet and visible. ACS Nano, 16 (3) (2022), pp. 3546-3553.
[40]
M.Q. Mehmood, J. Seong, M.A. Naveed, J. Kim, M. Zubair, K. Riaz, et al. Single-cell-driven tri-channel encryption meta-displays. Adv Sci, 9 (35) (2022), p. 2203962.
[41]
Y. Cao, L. Tang, J. Li, C. Lee, Z.G. Dong. Four-channel display and encryption by near-field reflection on nanoprinting metasurface. Nanophotonics, 11 (14) (2022), pp. 3365-3374.
[42]
H. Yuan, Z. Zhong, Y. Zhang, B. Zhang.Multi-channel image encryption based on an all-dielectric metasurface incorporating near-field nanoprinting and far-field holography. Adv Opt Mater, 11 (17) (2023), p. 2300352.
[43]
P. Zheng, Q. Dai, Z. Li, Z. Ye, J. Xiong, H.C. Liu, et al. Metasurface-based key for computational imaging encryption. Sci Adv, 7 (21) (2021), p. eabg0363.
[44]
P. Zheng, J. Li, Z. Li, M. Ge, S. Zhang, G. Zheng, et al. Compressive imaging encryption with secret sharing metasurfaces. Adv Opt Mater, 10 (15) (2022), p. 2200257.
[45]
J. Yan, Q. Wei, Y. Liu, G. Geng, J. Li, X. Li, et al. Single pixel imaging key for holographic encryption based on spatial multiplexing metasurface. Small, 18 (35) (2022), p. 2203197.
[46]
P. Georgi, Q. Wei, B. Sain, C. Schlickriede, Y. Wang, L. Huang, et al. Optical secret sharing with cascaded metasurface holography. Sci Adv, 7 (16) (2021), p. eabf9718.
[47]
Q. Wei, L. Huang, R. Zhao, G. Geng, J. Li, X. Li, et al. Rotational multiplexing method based on cascaded metasurface holography. Adv Opt Mater, 10 (8) (2022), p. 2102166.
[48]
L. Deng, J. Deng, Z. Guan, J. Tao, Y. Chen, Y. Yang, et al. Malus-metasurface-assisted polarization multiplexing. Light Sci Appl, 9 (2020), p. 101.
[49]
Q. Dai, Z. Guan, S. Chang, L. Deng, J. Tao, Z. Li, et al. A single-celled tri-functional metasurface enabled with triple manipulations of light. Adv Funct Mater, 30 (50) (2020), p. 2003990.
[50]
Q. Dai, N. Zhou, L. Deng, J. Deng, Z. Li, G. Zheng. Dual-channel binary gray-image display enabled with Malus-assisted metasurfaces. Phys Rev Appl, 14 (3) (2020), p. 034002.
[51]
Z. Zhou, Y. Wang, C. Chen, R. Fu, Z. Guan, Z. Li, et al. Multifold integration of printed and holographic meta-image displays enabled by dual-degeneracy. Small, 18 (13) (2022), p. 2106148.
[52]
X. Luo, M. Pu, Y. Guo, X. Li, F. Zhang, X. Ma.Catenary functions meet electromagnetic waves: opportunities and promises. Adv Opt Mater, 8 (23) (2020), p. 2001194.
[53]
X. Xie, M. Pu, J. Jin, M. Xu, Y. Guo, X. Li, et al. Generalized Pancharatnam-Berry phase in rotationally symmetric meta-atoms. Phys Rev Lett, 126 (18) (2021), p. 183902.
[54]
A. Suppapitnarm, K.A. Seffen, G.T. Parks, P.J. Clarkson. A simulated annealing algorithm for multiobjective optimization. Eng Optim, 33 (1) (2000), pp. 59-85.
[55]
B. Sankararao, C.K. Yoo. Development of a robust multiobjective simulated annealing algorithm for solving multiobjective optimization problems. Ind Eng Chem Res, 50 (11) (2011), pp. 6728-6742.
AI Summary AI Mindmap
PDF(3659 KB)

Accesses

Citations

Detail

Sections
Recommended

/