Large-Scale Surface Modification of Decellularized Matrix with Erythrocyte Membrane for Promoting In Situ Regeneration of Heart Valve

Yuqi Liu, Pengning Fan, Yin Xu, Junwei Zhang, Li Xu, Jinsheng Li, Shijie Wang, Fei Li, Si Chen, Jiawei Shi, Weihua Qiao, Nianguo Dong

Engineering ›› 2024, Vol. 41 ›› Issue (10) : 216-230.

PDF(8692 KB)
PDF(8692 KB)
Engineering ›› 2024, Vol. 41 ›› Issue (10) : 216-230. DOI: 10.1016/j.eng.2024.04.019
Research
Article

Large-Scale Surface Modification of Decellularized Matrix with Erythrocyte Membrane for Promoting In Situ Regeneration of Heart Valve

Author information +
History +

Abstract

In situ regeneration is a promising strategy for constructing tissue engineering heart valves (TEHVs). Currently, the decellularized heart valve (DHV) is extensively employed as a TEHV scaffold. Nevertheless, DHV exhibits limited blood compatibility and notable difficulties in endothelialization, resulting in thrombosis and graft failure. The red blood cell membrane (RBCM) exhibits excellent biocompatibility and prolonged circulation stability and is extensively applied in the camouflage of nanoparticles for drug delivery; however, there is no report on its application for large-scale modification of decellularized extracellular matrix (ECM). For the first time, we utilized a layer-by-layer assembling strategy to immobilize RBCM on the surface of DHV and construct an innovative TEHV scaffold. Our findings demonstrated that the scaffold significantly improved the hemocompatibility of DHV by effectively preventing plasma protein adsorption, activated platelet adhesion, and erythrocyte aggregation, and induced macrophage polarization toward the M2 phenotype in vitro. Moreover, RBCM modification significantly enhanced the mechanical properties and enzymatic stability of DHV. The rat models of subcutaneous embedding and abdominal aorta implantation showed that the scaffold regulated the polarization of macrophages into the anti-inflammatory and pro-modeling M2 phenotype and promoted endothelialization and ECM remodeling in the early stage without thrombosis and calcification. The novel TEHV exhibits excellent performance and can overcome the limitations of commonly used clinical prostheses.

Graphical abstract

Keywords

In situ tissue engineering heart valves / Red blood cell membrane / Endothelialization / Hemocompatibility / Immunomodulation

Cite this article

Download citation ▾
Yuqi Liu, Pengning Fan, Yin Xu, Junwei Zhang, Li Xu, Jinsheng Li, Shijie Wang, Fei Li, Si Chen, Jiawei Shi, Weihua Qiao, Nianguo Dong. Large-Scale Surface Modification of Decellularized Matrix with Erythrocyte Membrane for Promoting In Situ Regeneration of Heart Valve. Engineering, 2024, 41(10): 216‒230 https://doi.org/10.1016/j.eng.2024.04.019

References

[1]
D. Messika-Zeitoun, H. Baumgartner, I.G. Burwash, A. Vahanian, J. Bax, P. Pibarot, et al. Unmet needs in valvular heart disease. Eur Heart J, 44 (2023), pp. 1862-1873.
[2]
C.M. Otto, R.A. Nishimura, R.O. Bonow, B.A. Carabello, J.R. Erwin III, F. Gentile, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 143 (5) (2021), pp. e72-e227.
[3]
Y. Snyder, S. Jana. Strategies for development of synthetic heart valve tissue engineering scaffolds. Prog Mater Sci, 139 (2023), Article 101173.
[4]
M.A. Padalino, B. Castaldi, M. Fedrigo, M. Gallo, F. Zucchetta, V.L. Vida, et al. Porcine intestinal submucosa (CorMatrix) for semilunar valve repair in children: a word of caution after midterm results. Semin Thorac Cardiovasc Surg, 28 (2) (2016), pp. 436-445.
[5]
M. Hofmann, M.O. Schmiady, B.E. Burkhardt, H.H. Dave, M. Hubler, O. Kretschmar, et al. Congenital aortic valve repair using CorMatrix®: a histologic evaluation. Xenotransplantation, 24 (6) (2017), p. e12341.
[6]
D.C. van der Valk, A. Fomina, M. Uiterwijk, C.R. Hooijmans, A. Akiva, J. Kluin, et al. Calcification in pulmonary heart valve tissue engineering: a systematic review and meta-analysis of large-animal studies. JACC Basic Transl Sci, 8 (5) (2023), pp. 572-591.
[7]
N. Poulis, P. Breitenstein, S. Hofstede, S.P. Hoerstrup, M.Y. Emmert, E.S. Fioretta. Multiscale analysis of human tissue engineered matrices for next generation heart valve applications. Acta Biomater, 158 (2023), pp. 101-114.
[8]
A.H. Zaidi, M. Nathan, S. Emani, C. Baird, N.P. Del, K. Gauvreau, et al. Preliminary experience with porcine intestinal submucosa (CorMatrix) for valve reconstruction in congenital heart disease: histologic evaluation of explanted valves. J Thorac Cardiovasc Surg, 148 (5) (2014), pp. 2216-2225.e1.
[9]
X. Ye, X. Hu, H. Wang, J. Liu, Q. Zhao. Polyelectrolyte multilayer film on decellularized porcine aortic valve can reduce the adhesion of blood cells without affecting the growth of human circulating progenitor cells. Acta Biomater, 8 (3) (2012), pp. 1057-1067.
[10]
Y. Snyder, S. Jana. Strategies for development of decellularized heart valve scaffolds for tissue engineering. Biomaterials, 288 (2022), Article 121675.
[11]
J. Gao, X. Yu, X. Wang, Y. He, J. Ding. Biomaterial-related cell microenvironment in tissue engineering and regenerative medicine. Engineering, 13 (2022), pp. 31-45.
[12]
M. He, K. Gao, L. Zhou, Z. Jiao, M. Wu, J. Cao, et al. Zwitterionic materials for antifouling membrane surface construction. Acta Biomater, 40 (2016), pp. 142-152.
[13]
P. Nguyen, M.K. Jayasinghe, A.H. Le, B. Peng, M.T.N. Le. Advances in drug delivery systems based on red blood cells and their membrane-derived nanoparticles. ACS Nano, 17 (6) (2023), pp. 5187-5210.
[14]
M. Yin, J. Shen, G.O. Pflugfelder, K. Mullen. A fluorescent core-shell dendritic macromolecule specifically stains the extracellular matrix. J Am Chem Soc, 130 (25) (2008), pp. 7806-7807.
[15]
C. Zhao, B. Zhou. Polyethyleneimine-based drug delivery systems for cancer theranostics. J Funct Biomater, 14 (1) (2022), p. 12.
[16]
H. Lee, Y. Lee, A.R. Statz, J. Rho, T.G. Park, P.B. Messersmith. Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers. Adv Mater, 20 (9) (2008), pp. 1619-1623.
[17]
W.H. Qiao, P. Liu, D. Hu, S.M. Al, X.M. Zhou, N.G. Dong. Sequential hydrophile and lipophile solubilization as an efficient method for decellularization of porcine aortic valve leaflets: structure, mechanical property and biocompatibility study. J Tissue Eng Regen Med, 12 (2) (2018), pp. e828-e840.
[18]
C. Ma, Y. Xie, X. Huang, L. Zhang, M.D. Julian, L. Zou, et al. Encapsulation of (-)-epigallocatechin gallate (EGCG) within phospholipid-based nanovesicles using W/O emulsion-transfer methods: masking bitterness and delaying release of EGCG. Food Chem, 437 (2024), Article 137913.
[19]
A.V. Kroll, R.H. Fang, Y. Jiang, J. Zhou, X. Wei, C.L. Yu, et al. Nanoparticulate delivery of cancer cell membrane elicits multiantigenic antitumor immunity. Adv Mater, 29 (47) (2017), Article 1703969.
[20]
Y. Zhang, C. Zhang, Y. Li, L. Zhou, N. Dan, J. Min, et al. Evolution of biomimetic ECM scaffolds from decellularized tissue matrix for tissue engineering: a comprehensive review. Int J Biol Macromol, 246 (2023), Article 125672.
[21]
Z. Wang, Y. Lu, K. Qin, Y. Wu, Y. Tian, J. Wang, et al. Enzyme-functionalized vascular grafts catalyze in-situ release of nitric oxide from exogenous no prodrug. J Control Release, 210 (2015), pp. 179-188.
[22]
Z. Cui, B. Yang, R. Li. Application of biomaterials in cardiac repair and regeneration. Engineering, 2 (1) (2016), pp. 141-148.
[23]
R.D. Weisel. Tissue engineering to restore cardiac function. Engineering, 13 (2022), pp. 13-17.
[24]
C. Zhang, B. Wu, Y. Zhou, F. Zhou, W. Liu, Z. Wang. Mussel-inspired hydrogels: from design principles to promising applications. Chem Soc Rev, 49 (11) (2020), pp. 3605-3637.
[25]
A. Rising, M.J. Harrington. Biological materials processing: time-tested tricks for sustainable fiber fabrication. Chem Rev, 123 (5) (2023), pp. 2155-2199.
[26]
A. Taghizadeh, M. Taghizadeh, M.K. Yazdi, P. Zarrintaj, J.D. Ramsey, F. Seidi, et al. Mussel-inspired biomaterials: from chemistry to clinic. Bioeng Transl Med, 7 (3) (2022), p. e10385.
[27]
H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith. Mussel-inspired surface chemistry for multifunctional coatings. Science, 318 (5849) (2007), pp. 426-430.
[28]
Z. Dong, X. Ke, S. Tang, S. Wu, W. Wu, X. Chen, et al. A stable cell membrane-based coating with antibiofouling and macrophage immunoregulatory properties for implants at the macroscopic level. Chem Mater, 33 (20) (2021), pp. 7994-8006.
[29]
M.J. Lavoie, B.L. Ostaszewski, A. Weihofen, M.G. Schlossmacher, D.J. Selkoe. Dopamine covalently modifies and functionally inactivates parkin. Nat Med, 11 (11) (2005), pp. 1214-1221.
[30]
X. Zhang, Z. Li, P. Yang, G. Duan, X. Liu, Z. Gu, et al. Polyphenol scaffolds in tissue engineering. Mater Horiz, 8 (1) (2021), pp. 145-167.
[31]
J. Li, A.D. Celiz, J. Yang, Q. Yang, I. Wamala, W. Whyte, et al. Tough adhesives for diverse wet surfaces. Science, 357 (6349) (2017), pp. 378-381.
[32]
P. Podsiadlo, Z. Liu, D. Paterson, P.B. Messersmith, N.A. Kotov. Fusion of seashell nacre and marine bioadhesive analogs: high-strength nanocompoisite by layer-by-layer assembly of clay and L-3,4-dihydroxyphenylaianine polymer. Adv Mater, 19 (7) (2007), pp. 949-955.
[33]
L. Pan, H. Li, T. Hu, S. Wen, Y. Zhou, L. Jiang, et al. Design and assembly of chain-oriented-crystalline multilayered composite with largely improved mechanical strength. Compos Sci Technol, 238 (2023), Article 110031.
[34]
Y. Yang, K. Wang, X. Gu, K.W. Leong. Biophysical regulation of cell behavior-cross talk between substrate stiffness and nanotopography. Engineering, 3 (1) (2017), pp. 36-54.
[35]
Y. Zhou, G. Yan, S. Wen, W.Y. Yim, Z. Wang, X. Chen, et al. Nitric oxide generation and endothelial progenitor cells recruitment for improving hemocompatibility and accelerating endothelialization of tissue engineering heart valve. Adv Funct Mater, 33 (9) (2023), Article 2211267.
[36]
M. Hu, S. Shi, X. Peng, X. Pu, X. Yu. A synergistic strategy of dual-crosslinking and loading intelligent nanogels for enhancing anti-coagulation, pro-endothelialization and anti-calcification properties in bioprosthetic heart valves. Acta Biomater, 171 (2023), pp. 466-481.
[37]
P. Lancellotti, A. Aqil, L. Musumeci, N. Jacques, B. Ditkowski, M. Debuisson, et al. Bioactive surface coating for preventing mechanical heart valve thrombosis. J Thromb Haemost, 21 (9) (2023), pp. 2485-2498.
[38]
X. Huang, C. Zheng, K. Ding, S. Zhang, Y. Lei, Q. Wei, et al. Dual-crosslinked bioprosthetic heart valves prepared by glutaraldehyde crosslinked pericardium and poly-2-hydroxyethyl methacrylate exhibited improved antithrombogenicity and anticalcification properties. Acta Biomater, 154 (2022), pp. 244-258.
[39]
M. Hu, X. Peng, S. Shi, C. Wan, C. Cheng, X. Yu. Dialdehyde xanthan gum and curcumin synergistically crosslinked bioprosthetic valve leaflets with anti-thrombotic, anti-inflammatory and anti-calcification properties. Carbohydr Polym, 310 (2023), Article 120724.
[40]
Z. Zhou, R. Luo, L. Chen, C. Hu, C. Chen, M.F. Maitz, et al. Dressing blood-contacting devices with platelet membrane enables large-scale multifunctional biointerfacing. Matter, 5 (7) (2022), pp. 2334-2351.
[41]
S. Franz, S. Rammelt, D. Scharnweber, J.C. Simon. Immune responses to implants—a review of the implications for the design of immunomodulatory biomaterials. Biomaterials, 32 (28) (2011), pp. 6692-6709.
[42]
Y. Zhao, Y. Wang, J. Gong, L. Yang, C. Niu, X. Ni, et al. Chitosan degradation products facilitate peripheral nerve regeneration by improving macrophage-constructed microenvironments. Biomaterials, 134 (2017), pp. 64-77.
[43]
J.M. Anderson, A. Rodriguez, D.T. Chang. Foreign body reaction to biomaterials. Semin Immunol, 20 (2) (2008), pp. 86-100.
[44]
Y. Li, X. Liu, Z. Cui, Y. Zheng, H. Jiang, Y. Zhang, et al. Inflammation and microbiota regulation potentiate pneumonia therapy by biomimetic bacteria and macrophage membrane nanosystem. Research, 6 (2023), p. 0096.
[45]
T. Matozaki, Y. Murata, H. Okazawa, H. Ohnishi. Functions and molecular mechanisms of the CD47-SIRPα signalling pathway. Trends Cell Biol, 19 (2) (2009), pp. 72-80.
[46]
Y. Liu, Y. Wang, Y. Yang, L. Weng, Q. Wu, J. Zhang, et al. Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther, 8 (1) (2023), p. 104.
[47]
P.A. Oldenborg, A. Zheleznyak, Y.F. Fang, C.F. Lagenaur, H.D. Gresham, F.P. Lindberg. Role of CD47 as a marker of self on red blood cells. Science, 288 (5473) (2000), pp. 2051-2054.
[48]
L. Chen, Z. Zhou, C. Hu, M.F. Maitz, L. Yang, R. Luo, et al. Platelet membrane-coated nanocarriers targeting plaques to deliver anti-CD 47 antibody for atherosclerotic therapy. Research, 2022 (2022), Article 9845459.
[49]
B. Wang, P. Yang, Y. Ding, H. Qi, Q. Gao, C. Zhang. Improvement of the biocompatibility and potential stability of chronically implanted electrodes incorporating coating cell membranes. ACS Appl Mater Interfaces, 11 (9) (2019), pp. 8807-8817.
[50]
L. Chung, D.J. Maestas Jr, F. Housseau, J.H. Elisseeff. Key players in the immune response to biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev, 114 (2017), pp. 184-192.
[51]
E. Mariani, G. Lisignoli, R.M. Borzi, L. Pulsatelli. Biomaterials: foreign bodies or tuners for the immune response?. Int J Mol Sci, 20 (3) (2019), p. 636.
[52]
H. Chen, X. Huang, M. Zhang, F. Damanik, M.B. Baker, A. Leferink, et al. Tailoring surface nanoroughness of electrospun scaffolds for skeletal tissue engineering. Acta Biomater, 59 (2017), pp. 82-93.
AI Summary AI Mindmap
PDF(8692 KB)

Accesses

Citations

Detail

Sections
Recommended

/