Progress in Organ Bioprinting for Regenerative Medicine

Xiang Wang, Di Zhang, Yogendra Pratap Singh, Miji Yeo, Guotao Deng, Jiaqi Lai, Fei Chen, Ibrahim T. Ozbolat, Yin Yu

Engineering ›› 2024, Vol. 42 ›› Issue (11) : 121-142.

PDF(3861 KB)
PDF(3861 KB)
Engineering ›› 2024, Vol. 42 ›› Issue (11) : 121-142. DOI: 10.1016/j.eng.2024.04.023
Research

Progress in Organ Bioprinting for Regenerative Medicine

Author information +
History +

Abstract

Organ damage or failure arising from injury, disease, and aging poses challenges due to the body’s limited regenerative capabilities. Organ transplantation presents the issues of donor shortages and immune rejection risks, necessitating innovative solutions. The three-dimensional (3D) bioprinting of organs on demand offers promise in tissue engineering and regenerative medicine. In this review, we explore the state-of-the-art bioprinting technologies, with a focus on bioink and cell type selections. We follow with discussions on advances in the bioprinting of solid organs, such as the heart, liver, kidney, and pancreas, highlighting the importance of vascularization and cell integration. Finally, we provide insights into key challenges and future directions in the context of the clinical translation of bioprinted organs and their large-scale production.

Graphical abstract

Keywords

Organ printing / Three-dimensional bioprinting / Regenerative medicine / Tissue engineering

Cite this article

Download citation ▾
Xiang Wang, Di Zhang, Yogendra Pratap Singh, Miji Yeo, Guotao Deng, Jiaqi Lai, Fei Chen, Ibrahim T. Ozbolat, Yin Yu. Progress in Organ Bioprinting for Regenerative Medicine. Engineering, 2024, 42(11): 121‒142 https://doi.org/10.1016/j.eng.2024.04.023

References

[1]
S. Agarwal, S. Saha, V.K. Balla, A. Pal, A. Barui, S. Bodhak. Current developments in 3D bioprinting for tissue and organ regeneration—a review. Front Mech Eng, 6 (2020), Article 6589171
[2]
I. Matai, G. Kaur, A. Seyedsalehi, A. McClinton, C.T. Laurencin. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 226 (2020), Article 226119536
[3]
A.K. Israni, D.A. Zaun, K. Gauntt, C.R. Schaffhausen, W.T. McKinney, J.M. Miller, et al. OPTN/SRTR 2021 annual data report: deceased organ donation. Am J Transplant, 23 (2) (2023), pp. S443-74
[4]
C. Yu, J. Schimelman, P. Wang, K.L. Miller, X. Ma, S. You, et al. Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications. Chem Rev, 120 (19) (2020), pp. 10695-10743
[5]
J. Groll, T. Boland, T. Blunk, J.A. Burdick, D.W. Cho, P.D. Dalton, et al. Biofabrication: reappraising the definition of an evolving field. Biofabrication, 8 (1) (2016), Article 013001
[6]
B. Zhang, Y. Luo, L. Ma, L. Gao, Y. Li, Q. Xue, et al. 3D bioprinting: an emerging technology full of opportunities and challenges. Biodes Manuf, 1 (1) (2018), pp. 12-13
[7]
S.V. Murphy, A. Atala. Organ engineering-combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. BioEssays, 35 (3) (2013), pp. 163-172
[8]
C.E. Murry, G. Keller. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell, 132 (4) (2008), pp. 661-680
[9]
J.R. Scalea, Y.S. Lee, E. Davila, J.S. Bromberg. Myeloid-derived suppressor cells and their potential application in transplantation. Transplantation, 102 (3) (2018), pp. 359-367
[10]
H. Chandler, B. Lanske, A. Varela, M. Guillot, M. Boyer, J. Brown, et al. Abaloparatide, a novel osteoanabolic PTHRP analog, increases cortical and trabecular bone mass and architecture in orchiectomized rats by increasing bone formation without increasing bone resorption. Bone, 120 (2019), pp. 120148-120155
[11]
Y. Luo, X. Wei, P. Huang. 3D bioprinting of hydrogel-based biomimetic microenvironments. J Biomed Mater Res B Appl Biomater, 107 (5) (2019), pp. 1695-1705
[12]
S. Vijayavenkataraman, W.C. Yan, W.F. Lu, C.H. Wang, J.Y.H. Fuh. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev, 132 (2018), pp. 132296-132332
[13]
A. Arslan-Yildiz, R. El Assal, P. Chen, S. Guven, F. Inci, U. Demirci. Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication, 8 (1) (2016), Article 014103
[14]
S. Santoni, S.G. Gugliandolo, M. Sponchioni, D. Moscatelli, B.M. Colosimo. 3D bioprinting: current status and trends—a guide to the literature and industrial practice. Biodes Manuf, 5 (1) (2022), pp. 14-42
[15]
M. Dey, I. Ozbolat. 3D bioprinting of cells, tissues and organs. Sci Rep, 10 (1) (2020), p. 14023
[16]
X. Li, B. Liu, B. Pei, J. Chen, D. Zhou, J. Peng, et al. Inkjet bioprinting of biomaterials. Chem Rev, 120 (19) (2020), pp. 10793-10833
[17]
A. Schwab, R. Levato, M. D’Este, S. Piluso, D. Eglin, J. Malda. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev, 120 (19) (2020), pp. 11028-11055
[18]
C. Mota, S. Camarero-Espinosa, M.B. Baker, P. Wieringa, L. Moroni. Bioprinting: from tissue and organ development to in vitro models. Chem Rev, 120 (19) (2020), pp. 10547-10607
[19]
H. Quan, T. Zhang, H. Xu, S. Luo, J. Nie, X. Zhu. Photocuring 3D printing technique and its challenges. Bioact Mater, 5 (1) (2020), pp. 110-115
[20]
N.A. Chartrain, C.B. Williams, A.R. Whittington. A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomater, 74 (2018), pp. 7490-17111
[21]
L. Rayleigh. On the instability of jets. Proc Lond Math Soc, 1 (1) (1878), pp. 4-13
[22]
B. Derby. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res, 40 (1) (2010), pp. 40395-40414
[23]
T. Xu, J. Jin, C. Gregory, J.J. Hickman, T. Boland. Inkjet printing of viable mammalian cells. Biomaterials, 26 (1) (2005), pp. 93-99
[24]
T. Xu, W. Zhao, J.M. Zhu, M.Z. Albanna, J.J. Yoo, A. Atala. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials, 34 (1) (2013), pp. 130-139
[25]
T. Xu, C. Baicu, M. Aho, M. Zile, T. Boland. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication, 1 (3) (2009), Article 035001
[26]
H. Saijo, K. Igawa, Y. Kanno, Y. Mori, K. Kondo, K. Shimizu, et al. Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology. J Artif Organs, 12 (3) (2009), pp. 12200-12205
[27]
T. Xu, K.W. Binder, M.Z. Albanna, D. Dice, W. Zhao, J.J. Yoo, et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication, 5 (1) (2012), Article 015001
[28]
K. Arai, T. Yoshida, M. Okabe, M. Goto, T.A. Mir, C. Soko, et al. Fabrication of 3D-culture platform with sandwich architecture for preserving liver-specific functions of hepatocytes using 3D bioprinter. J Biomed Mater Res A, 105 (6) (2017), pp. 1583-1592
[29]
R.E. Saunders, B. Derby. Inkjet printing biomaterials for tissue engineering: bioprinting. Int Mater Rev, 59 (8) (2014), pp. 430-448
[30]
J. Malda, J. Visser, F.P. Melchels, T. Jüngst, W.E. Hennink, W.J. Dhert, et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater, 25 (36) (2013), pp. 5011-5028
[31]
Pereira RF, Bártolo PJ. 3D bioprinting of photocrosslinkable hydrogel constructs. J Appl Polym Sci 2015 ;132(48):42458.
[32]
J. Jang, H.J. Park, S.W. Kim, H. Kim, J.Y. Park, S.J. Na, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials, 112 (2017), pp. 112264-112274
[33]
R. Gaetani, P.A. Doevendans, C.H. Metz, J. Alblas, E. Messina, A. Giacomello, et al. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials, 33 (6) (2012), pp. 1782-1790
[34]
B. Duan, E. Kapetanovic, L.A. Hockaday, J.T. Butcher. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater, 10 (5) (2014), pp. 1836-1846
[35]
K.A. Homan, D.B. Kolesky, M.A. Skylar-Scott, J. Herrmann, H. Obuobi, A. Moisan, et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep, 6 (1) (2016), p. 34845
[36]
N.Y. Lin, K.A. Homan, S.S. Robinson, D.B. Kolesky, N. Duarte, A. Moisan, et al. Renal reabsorption in 3D vascularized proximal tubule models. Proc Natl Acad Sci, 116 (12) (2019), pp. 5399-5404
[37]
D.G. Nguyen, J. Funk, J.B. Robbins, C. Crogan-Grundy, S.C. Presnell, T. Singer, et al. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS One, 11 (7) (2016), Article e0158674
[38]
B. Duan, L.A. Hockaday, K.H. Kang, J.T. Butcher. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A, 101 (5) (2013), pp. 1255-1264
[39]
R. Chang, J. Nam, W. Sun. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng Part A, 14 (1) (2008), pp. 41-48
[40]
Q. Liang, F. Gao, Z. Zeng, J. Yang, M. Wu, C. Gao, et al. Coaxial scale-up printing of diameter-tunable biohybrid hydrogel microtubes with high strength, perfusability, and endothelialization. Adv Funct Mater, 30 (43) (2020), Article 2001485
[41]
G. Gao, H. Kim, B.S. Kim, J.S. Kong, J.Y. Lee, B.W. Park, et al. Tissue-engineering of vascular grafts containing endothelium and smooth-muscle using triple-coaxial cell printing. Appl Phys Rev, 6 (4) (2019), Article 041402
[42]
C. Mota, D. Puppi, F. Chiellini, E. Chiellini. Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med, 9 (3) (2015), pp. 174-190
[43]
X. Ma, X. Qu, W. Zhu, Y.S. Li, S. Yuan, H. Zhang, et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci, 113 (8) (2016), pp. 2206-2211
[44]
J.F. Xing, M.L. Zheng, X.M. Duan. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem Soc Rev, 44 (15) (2015), pp. 5031-5039
[45]
Y. Sriphutkiat, S. Kasetsirikul, D. Ketpun, Y. Zhou. Cell alignment and accumulation using acoustic nozzle for bioprinting. Sci Rep, 9 (1) (2019), p. 17774
[46]
V. Goranov, T. Shelyakova, R. De Santis, Y. Haranava, A. Makhaniok, A. Gloria, et al. 3D patterning of cells in magnetic scaffolds for tissue engineering. Sci Rep, 10 (1) (2020), p. 2289
[47]
H. Tseng, J.A. Gage, T. Shen, W.L. Haisler, S.K. Neeley, S. Shiao, et al. A spheroid toxicity assay using magnetic 3D bioprinting and real-time mobile device-based imaging. Sci Rep, 5 (1) (2015), p. 13987
[48]
E. Mirdamadi, J.W. Tashman, D.J. Shiwarski, R.N. Palchesko, A.W. Feinberg. Fresh 3D bioprinting a full-size model of the human heart. ACS Biomater Sci Eng, 6 (11) (2020), pp. 6453-6459
[49]
S.V. Murphy, A. Atala. 3D bioprinting of tissues and organs. Nat Biotechnol, 32 (8) (2014), pp. 773-785
[50]
D.F. Williams. On the mechanisms of biocompatibility. Biomaterials, 29 (20) (2008), pp. 2941-2953
[51]
K. Nair, M. Gandhi, S. Khalil, K.C. Yan, M. Marcolongo, K. Barbee, et al. Characterization of cell viability during bioprinting processes. Biotechnol J, 4 (8) (2009), pp. 1168-1177
[52]
S. You, Y. Xiang, H.H. Hwang, D.B. Berry, W. Kiratitanaporn, J. Guan, et al. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. Sci Adv, 9 (8) (2023), Article eade7923
[53]
M.M. Stevens, J.H. George. Exploring and engineering the cell surface interface. Science, 310 (5751) (2005), pp. 1135-1138
[54]
D.E. Discher, P. Janmey, Y. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science, 310 (5751) (2005), pp. 1139-1143
[55]
U. Hersel, C. Dahmen, H. Kessler. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, 24 (24) (2003), pp. 4385-4415
[56]
H. Lv, G. Deng, J. Lai, Y. Yu, F. Chen, J. Yao. Advances in 3D bioprinting of biomimetic and engineered meniscal grafts. Macromol Biosci, 23 (12) (2023), Article 2300199
[57]
A.C. Fonseca, F.P. Melchels, M.J. Ferreira, S.R. Moxon, G. Potjewyd, T.R. Dargaville, et al. Emulating human tissues and organs: a bioprinting perspective toward personalized medicine. Chem Rev, 120 (19) (2020), pp. 11093-11139
[58]
L.K. Narayanan, P. Huebner, M.B. Fisher, J.T. Spang, B. Starly, R.A. Shirwaiker. 3D-bioprinting of polylactic acid (PLA) nanofiber-alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomater Sci Eng, 2 (10) (2016), pp. 1732-1742
[59]
F. Xu, S. Moon, A. Emre, E. Turali, Y. Song, S. Hacking, et al. A droplet-based building block approach for bladder smooth muscle cell (SMC) proliferation. Biofabrication, 2 (1) (2010), Article 014105
[60]
R. Gaetani, D.A. Feyen, V. Verhage, R. Slaats, E. Messina, K.L. Christman, et al. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials, 61 (2015), pp. 61339-61348
[61]
Q. Mao, Y. Wang, Y. Li, S. Juengpanich, W. Li, M. Chen, et al. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Mater Sci Eng C, 109 (2020), Article 109110625
[62]
H. Lee, G.H. Yang, M. Kim, J. Lee, J. Huh, G. Kim. Fabrication of micro/nanoporous collagen/dECM/silk—fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration. Mater Sci Eng C, 84 (2018), pp. 84140-84147
[63]
Lian L, Xie M, Luo Z, Zhang Z, Maharjan S, Mu X, et al. Rapid volumetric bioprinting of decellularized extracellular matrix bioinks. Adv Mater 2024;e2304846.
[64]
S.F. Badylak. The extracellular matrix as a biologic scaffold material. Biomaterials, 28 (25) (2007), pp. 3587-3593
[65]
X. Yang, Y. Ma, X. Wang, S. Yuan, F. Huo, G. Yi, et al. A 3D-bioprinted functional module based on decellularized extracellular matrix bioink for periodontal regeneration. Adv Sci, 10 (5) (2023), Article e2205041
[66]
D.M. Faulk, S.A. Johnson, L. Zhang, S.F. Badylak. Role of the extracellular matrix in whole organ engineering. J Cell Physiol, 229 (8) (2014), pp. 984-989
[67]
J. Lou, D.J. Mooney. Chemical strategies to engineer hydrogels for cell culture. Nat Rev Chem, 6 (10) (2022), pp. 726-744
[68]
E. Mancha Sánchez, J.C. Gómez-Blanco, E. López Nieto, J.G. Casado, A. Macías-García, M.A. Díaz Díez, et al. Hydrogels for bioprinting: a systematic review of hydrogels synthesis, bioprinting parameters, and bioprinted structures behavior. Front Bioeng Biotechnol, 8 (2020), p. 8776
[69]
A.M. Jorgensen, J.J. Yoo, A. Atala. Solid organ bioprinting: strategies to achieve organ function. Chem Rev, 120 (19) (2020), pp. 11093-11127
[70]
J. Zhu. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials, 31 (17) (2010), pp. 4639-4656
[71]
I. Villanueva, C.A. Weigel, S.J. Bryant. Cell-matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels. Acta Biomater, 5 (8) (2009), pp. 2832-2846
[72]
A. Skardal, J. Zhang, G.D. Prestwich. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials, 31 (24) (2010), pp. 6173-6181
[73]
A.C. Daly, S.E. Critchley, E.M. Rencsok, D.J. Kelly. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication, 8 (4) (2016), Article 045002
[74]
G. Gao, A.F. Schilling, T. Yonezawa, J. Wang, G. Dai, X. Cui. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J, 9 (10) (2014), pp. 1304-1311
[75]
W. Xu, X. Wang, Y. Yan, R. Zhang. A polyurethane-gelatin hybrid construct for manufacturing implantable bioartificial livers. J Bioact Compat Polym, 23 (5) (2008), pp. 409-422
[76]
F.Y. Hsieh, H.H. Lin, S. Hsu. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials, 71 (2015), pp. 48-57
[77]
H. Lee, D.W. Cho. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip, 16 (14) (2016), pp. 2618-2625
[78]
H.W. Kang, S.J. Lee, I.K. Ko, C. Kengla, J.J. Yoo, A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol, 34 (3) (2016), pp. 312-319
[79]
A. Lother, P. Kohl. The heterocellular heart: identities, interactions, and implications for cardiology. Basic Res Cardiol, 118 (1) (2023), p. 30
[80]
A. Simon-Chica, E.M. Wülfers, P. Kohl. Nonmyocytes as electrophysiological contributors to cardiac excitation and conduction. Am J Physiol Heart Circ Physiol, 325 (3) (2023), pp. H475-H491
[81]
M. Alonzo, R. El Khoury, N. Nagiah, V. Thakur, M. Chattopadhyay, B. Joddar. 3D biofabrication of a cardiac tissue construct for sustained longevity and function. ACS Appl Mater Interfaces, 14 (19) (2022), pp. 21800-21813
[82]
J. Bliley, J. Tashman, M. Stang, B. Coffin, D. Shiwarski, A. Lee, et al. Fresh 3D bioprinting a contractile heart tube using human stem cell-derived cardiomyocytes. Biofabrication, 14 (2) (2022), Article 024106
[83]
A.C. Daly, M.D. Davidson, J.A. Burdick. 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat Commun, 12 (1) (2021), p. 753
[84]
C.S. Ong, P. Yesantharao, C.Y. Huang, G. Mattson, J. Boktor, T. Fukunishi, et al. 3D bioprinting using stem cells. Pediatr Res, 83 (1) (2018), pp. 223-231
[85]
A. Sharma, S. Sances, M.J. Workman, C.N. Svendsen. Multi-lineage human iPSC-derived platforms for disease modeling and drug discovery. Cell Stem Cell, 26 (3) (2020), pp. 309-329
[86]
M.W. Nicholson, C.Y. Ting, D.Z. Chan, Y.C. Cheng, Y.C. Lee, C.C. Hsu, et al. Utility of iPSC-derived cells for disease modeling, drug development, and cell therapy. Cells, 11 (11) (2022), p. 1853
[87]
J.T. Wolfe, W. He, M.S. Kim, H.L. Liang, A. Shradhanjali, H. Jurkiewicz, et al. 3D-bioprinting of patient-derived cardiac tissue models for studying congenital heart disease. Front Cardiovasc Med, 10 (2023), Article 101162731
[88]
D.G. Hwang, Y. Jo, M. Kim, U. Yong, S. Cho, Y. Choi, et al. A 3D bioprinted hybrid encapsulation system for delivery of human pluripotent stem cell-derived pancreatic islet-like aggregates. Biofabrication, 14 (1) (2021), Article 014101
[89]
S. Romanazzo, S. Nemec, I. Roohani. iPSC bioprinting: where are we at?. Materials, 12 (15) (2019), p. 2453
[90]
S. Cho, D.E. Discher, K.W. Leong, G. Vunjak-Novakovic, J.C. Wu. Challenges and opportunities for the next generation of cardiovascular tissue engineering. Nat Methods, 19 (9) (2022), pp. 1064-1071
[91]
C.J. Bashor, I.B. Hilton, H. Bandukwala, D.M. Smith, O. Veiseh. Engineering the next generation of cell-based therapeutics. Nat Rev Drug Discov, 21 (9) (2022), pp. 655-675
[92]
Y. Kagoya, T. Guo, B. Yeung, K. Saso, M. Anczurowski, C.H. Wang, et al. Genetic ablation of HLA Class I, Class II, and the T-cell receptor enables allogeneic T cells to be used for adoptive T-cell therapy. Cancer Immunol Res, 8 (7) (2020), pp. 926-936
[93]
J. Lee, J.H. Sheen, O. Lim, Y. Lee, J. Ryu, D. Shin, et al. Abrogation of HLA surface expression using CRISPR/Cas 9 genome editing: a step toward universal T cell therapy. Sci Rep, 10 (1) (2020), p. 17753
[94]
T. Deuse, X. Hu, A. Gravina, D. Wang, G. Tediashvili, C. De, et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol, 37 (3) (2019), pp. 252-258
[95]
X. Han, M. Wang, S. Duan, P.J. Franco, J.H.R. Kenty, P. Hedrick, et al. Generation of hypoimmunogenic human pluripotent stem cells. Proc Natl Acad Sci, 116 (21) (2019), pp. 10441-10446
[96]
T. Deuse, G. Tediashvili, X. Hu, A. Gravina, A. Tamenang, D. Wang, et al. Hypoimmune induced pluripotent stem cell-derived cell therapeutics treat cardiovascular and pulmonary diseases in immunocompetent allogeneic mice. Proc Natl Acad Sci, 118 (28) (2021), Article e2022091118
[97]
E. Yoshihara, C. O’Connor, E. Gasser, Z. Wei, T.G. Oh, T.W. Tseng, et al. Immune-evasive human islet-like organoids ameliorate diabetes. Nature, 586 (7830) (2020), pp. 606-611
[98]
M. Sykes, D.H. Sachs. Progress in xenotransplantation: overcoming immune barriers. Nat Rev Nephrol, 18 (12) (2022), pp. 745-761
[99]
A.M. Galow, T. Goldammer, A. Hoeflich. Xenogeneic and stem cell-based therapy for cardiovascular diseases: genetic engineering of porcine cells and their applications in heart regeneration. Int J Mol Sci, 21 (24) (2020), p. 9686
[100]
L.L. Jiang, H. Li, L. Liu. Xenogeneic stem cell transplantation: research progress and clinical prospects. World J Clin Cases, 9 (16) (2021), pp. 3826-3837
[101]
C.P. Huang, C.C. Chen, C.R. Shyr. Xenogeneic cell therapy provides a novel potential therapeutic option for cancers by restoring tissue function, repairing cancer wound and reviving antitumor immune responses. Cancer Cell Int, 18 (1) (2018), pp. 1-7
[102]
C.P. Huang, C.Y. Yang, C.R. Shyr. Utilizing xenogeneic cells as a therapeutic agent for treating diseases. Cell Transplant, 30 (2021), Article 3009636897211011995
[103]
M. Xie, M. Fussenegger. Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nat Rev Mol Cell Biol, 19 (8) (2018), pp. 507-525
[104]
P.B. Hellwarth, Y. Chang, A. Das, P.Y. Liang, X. Lian, N.A. Repina, et al. Optogenetic-mediated cardiovascular differentiation and patterning of human pluripotent stem cells. Adv Genet, 2 (3) (2021), Article e202100011
[105]
I. Legnini, L. Emmenegger, A. Zappulo, A. Rybak-Wolf, R. Wurmus, A.O. Martinez, et al. Spatiotemporal, optogenetic control of gene expression in organoids. Nat Methods, 20 (10) (2023), pp. 1544-1552
[106]
D. Kalhori, N. Zakeri, M. Zafar-Jafarzadeh, L. Moroni, M. Solati-Hashjin. Cardiovascular 3D bioprinting: a review on cardiac tissue development. Bioprinting, 28 (2022), p. e00221
[107]
M. Li, H. Wu, Y. Yuan, B. Hu, N. Gu. Recent fabrications and applications of cardiac patch in myocardial infarction treatment. View, 3 (2) (2022), Article 20200153
[108]
Y.S. Zhang, A. Arneri, S. Bersini, S.R. Shin, K. Zhu, Z. Goli-Malekabadi, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 110 (2016), pp. 11045-11059
[109]
J.H. Ahrens, S.G. Uzel, M. Skylar-Scott, M.M. Mata, A. Lu, K.T. Kroll, et al. Programming cellular alignment in engineered cardiac tissue via bioprinting anisotropic organ building blocks. Adv Mater, 34 (26) (2022), Article 2200217
[110]
T.J. Hinton, Q. Jallerat, R.N. Palchesko, J.H. Park, M.S. Grodzicki, H.J. Shue, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv, 1 (9) (2015), Article e1500758
[111]
B.P. Oropeza, J.R. Adams, M.E. Furth, J. Chessa, T. Boland. Bioprinting of decellularized porcine cardiac tissue for large-scale aortic models. Front Bioeng Biotechnol, 10 (2022), Article 10855186
[112]
M.B. Immohr, H.L. Teichert, A.F. dos Santos, V. Schmidt, Y. Sugimura, S.J. Bauer, et al. Three-dimensional bioprinting of ovine aortic valve endothelial and interstitial cells for the development of multicellular tissue engineered tissue constructs. Bioengineering, 10 (7) (2023), p. 787
[113]
J. Liu, J. He, J. Liu, X. Ma, Q. Chen, N. Lawrence, et al. Rapid 3D bioprinting of in vitro cardiac tissue models using human embryonic stem cell-derived cardiomyocytes. Bioprinting, 13 (2019), p. e00040
[114]
S. Chikae, A. Kubota, H. Nakamura, A. Oda, A. Yamanaka, T. Akagi, et al. Bioprinting 3D human cardiac tissue chips using the pin type printer ‘microscopic painting device’ and analysis for cardiotoxicity. Biomed Mater, 16 (2) (2021), Article 025017
[115]
R. Gaebel, N. Ma, J. Liu, J. Guan, L. Koch, C. Klopsch, et al. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials, 32 (35) (2011), pp. 9218-9230
[116]
N. Noor, A. Shapira, R. Edri, I. Gal, L. Wertheim, T. Dvir. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci, 6 (11) (2019), Article 1900344
[117]
D. Bejleri, M.J. Robeson, M.E. Brown, J. Hunter, J.T. Maxwell, B.W. Streeter, et al. In vivo evaluation of bioprinted cardiac patches composed of cardiac-specific extracellular matrix and progenitor cells in a model of pediatric heart failure. Biomater Sci, 10 (2) (2022), pp. 444-456
[118]
P. Zhou, W.T. Pu. Recounting cardiac cellular composition. Am Heart Assoc, 118 (3) (2016), pp. 368-370
[119]
M. Litviňuková, C. Talavera-López, H. Maatz, D. Reichart, C.L. Worth, E.L. Lindberg, et al. Cells of the adult human heart. Nature, 588 (7838) (2020), pp. 466-472
[120]
M. Yadid, H. Oved, E. Silberman, T. Dvir. Bioengineering approaches to treat the failing heart: from cell biology to 3D printing. Nat Rev Cardiol, 19 (2) (2022), pp. 83-99
[121]
F. Maiullari, M. Costantini, M. Milan, V. Pace, M. Chirivì, S. Maiullari, et al. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Sci Rep, 8 (1) (2018), p. 13532
[122]
E. Karbassi, A. Fenix, S. Marchiano, N. Muraoka, K. Nakamura, X. Yang, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol, 17 (6) (2020), pp. 341-359
[123]
P. Kerscher, J.A. Kaczmarek, S.E. Head, M.E. Ellis, W.J. Seeto, J. Kim, et al. Direct production of human cardiac tissues by pluripotent stem cell encapsulation in gelatin methacryloyl. ACS Biomater Sci Eng, 3 (8) (2017), pp. 1499-1509
[124]
A. Tijore, S.A. Irvine, U. Sarig, P. Mhaisalkar, V. Baisane, S. Venkatraman. Contact guidance for cardiac tissue engineering using 3D bioprinted gelatin patterned hydrogel. Biofabrication, 10 (2) (2018), Article 025003
[125]
Y.J. Shin, R.T. Shafranek, J.H. Tsui, J. Walcott, A. Nelson, D.H. Kim. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Acta Biomater, 119 (2021), pp. 75-88
[126]
C.S. Ong, T. Fukunishi, H. Zhang, C.Y. Huang, A. Nashed, A. Blazeski, et al. Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes. Sci Rep, 7 (1) (2017), p. 4566
[127]
E. Yeung, T. Fukunishi, Y. Bai, D. Bedja, I. Pitaktong, G. Mattson, et al. Cardiac regeneration using human-induced pluripotent stem cell-derived biomaterial-free 3D-bioprinted cardiac patch in vivo. J Tissue Eng Regen Med, 13 (11) (2019), pp. 2031-2039
[128]
L. Polonchuk, L. Surija, M.H. Lee, P. Sharma, C.L.C. Ming, F. Richter, et al. Towards engineering heart tissues from bioprinted cardiac spheroids. Biofabrication, 13 (4) (2021), Article 045009
[129]
F. Triposkiadis, G. Giamouzis, K.D. Boudoulas, G. Karagiannis, J. Skoularigis, H. Boudoulas, et al. Left ventricular geometry as a major determinant of left ventricular ejection fraction: physiological considerations and clinical implications. Eur J Heart Fail, 20 (3) (2018), pp. 436-444
[130]
J. Liu, K. Miller, X. Ma, S. Dewan, N. Lawrence, G. Whang, et al. Direct 3D bioprinting of cardiac microtissues mimicking native myocardium. Biomaterials, 256 (2020), Article 256120204
[131]
Y. Tsukamoto, T. Akagi, M. Akashi. Vascularized cardiac tissue construction with orientation by layer-by-layer method and 3D printer. Sci Rep, 10 (1) (2020), p. 5484
[132]
W. Zhu, X. Qu, J. Zhu, X. Ma, S. Patel, J. Liu, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials, 124 (2017), pp. 124106-124115
[133]
Y. Fang, W. Sun, T. Zhang, Z. Xiong. Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: a review. Biomaterials, 280 (2022), Article 280121298
[134]
X. Cui, T. Boland. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials, 30 (31) (2009), pp. 6221-6227
[135]
M.J. Ainsworth, N. Chirico, M. de Ruijter, A. Hrynevich, I. Dokter, J.P. Sluijter, et al. Convergence of melt electrowriting and extrusion-based bioprinting for vascular patterning of a myocardial construct. Biofabrication, 15 (3) (2023), Article 035025
[136]
B. Lu, M. Ye, J. Xia, Z. Zhang, Z. Xiong, T. Zhang. Electrical stimulation promotes the vascularization and functionalization of an engineered biomimetic human cardiac tissue. Adv Healthc Mater, 12 (19) (2023), Article 2300607
[137]
C.B. Pinnock, E.M. Meier, N.N. Joshi, B. Wu, M.T. Lam. Customizable engineered blood vessels using 3D printed inserts. Methods, 99 (2016), pp. 9920-9927
[138]
Y. Liu, Y. Zhang, T. Mei, H. Cao, Y. Hu, W. Jia, et al. hESCs-derived early vascular cell spheroids for cardiac tissue vascular engineering and myocardial infarction treatment. Adv Sci, 9 (9) (2022), Article 2104299
[139]
Y. Yu, Y. Zhang, J.A. Martin, I.T. Ozbolat. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J Biomech Eng, 135 (9) (2013), Article 091011
[140]
A. Elalouf. Immune response against the biomaterials used in 3D bioprinting of organs. Transpl Immunol, 69 (2021), Article 69101446
[141]
L. Hockaday, K. Kang, N. Colangelo, P. Cheung, B. Duan, E. Malone, et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication, 4 (3) (2012), Article 035005
[142]
E.L. Maxson, M.D. Young, C. Noble, J.L. Go, B. Heidari, R. Khorramirouz, et al. In vivo remodeling of a 3D-bioprinted tissue engineered heart valve scaffold. Bioprinting, 16 (2019), p. e00059
[143]
A. Lee, A. Hudson, D. Shiwarski, J. Tashman, T. Hinton, S. Yerneni, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science, 365 (6452) (2019), pp. 482-487
[144]
A.R. Crawford, X.Z. Lin, J.M. Crawford. The normal adult human liver biopsy: a quantitative reference standard. Hepatology, 28 (2) (1998), pp. 323-331
[145]
E. Trefts, M. Gannon, D.H. Wasserman. The liver. Curr Biol, 27 (21) (2017), pp. R1147-R1151
[146]
T. Ikegami, Y. Maehara. 3D printing of the liver in living donor liver transplantation. Nat Rev Gastroenterol Hepatol, 10 (12) (2013), pp. 697-698
[147]
K. Duval, H. Grover, L.H. Han, Y. Mou, A.F. Pegoraro, J. Fredberg, et al. Modeling physiological events in 2D vs 3D cell culture. Physiology, 32 (4) (2017), pp. 266-277
[148]
A. Zeigerer, A. Wuttke, G. Marsico, S. Seifert, Y. Kalaidzidis, M. Zerial. Functional properties of hepatocytes in vitro are correlated with cell polarity maintenance. Exp Cell Res, 350 (1) (2017), pp. 242-252
[149]
D. Mooney, L. Hansen, J. Vacanti, R. Langer, S. Farmer, D. Ingber. Switching from differentiation to growth in hepatocytes: control by extracellular matrix. J Cell Physiol, 151 (3) (1992), pp. 497-505
[150]
F. Berthiaume, P.V. Moghe, M. Toner, M.L. Yarmush. Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration. FASEB J, 10 (13) (1996), pp. 1471-1484
[151]
D. Kang, G. Hong, S. An, I. Jang, W.S. Yun, J.H. Shim, et al. Bioprinting of multiscaled hepatic lobules within a highly vascularized construct. Small, 16 (13) (2020), Article 1905505
[152]
X. Wang, Y. Yan, Y. Pan, Z. Xiong, H. Liu, J. Cheng, et al. Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng, 12 (1) (2006), pp. 83-90
[153]
B. Grigoryan, S. Paulsen, D. Corbett, D. Sazer, C. Fortin, A. Zaita, et al. Functional intravascular topologies and multivascular networks within biocompatible hydrogels. Science, 464 (80) (2019), pp. 458-464
[154]
D. Wang, Y. Guo, J. Zhu, F. Liu, Y. Xue, Y. Huang, et al. Hyaluronic acid methacrylate/pancreatic extracellular matrix as a potential 3D printing bioink for constructing islet organoids. Acta Biomater, 165 (2023), pp. 86-101
[155]
B.K. Cole, R.E. Feaver, B.R. Wamhoff, A. Dash. Non-alcoholic fatty liver disease (NAFLD) models in drug discovery. Expert Opin Drug Discov, 13 (2) (2018), pp. 193-205
[156]
R. Chang, K. Emami, H. Wu, W. Sun. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication, 2 (4) (2010), Article 045004
[157]
N.S. Bhise, V. Manoharan, S. Massa, A. Tamayol, M. Ghaderi, M. Miscuglio, et al. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication, 8 (1) (2016), Article 014101
[158]
L.M. Norona, D.G. Nguyen, D.A. Gerber, S.C. Presnell, M. Mosedale, P.B. Watkins. Bioprinted liver provides early insight into the role of Kupffer cells in TGF-β1 and methotrexate-induced fibrogenesis. PLoS One, 14 (1) (2019), Article e0208958
[159]
L. Sun, H. Yang, Y. Wang, X. Zhang, B. Jin, F. Xie, et al. Application of a 3D bioprinted hepatocellular carcinoma cell model in antitumor drug research. Front Oncol, 10 (2020), p. 10878
[160]
S. Hassan, E. Gomez-Reyes, E. Enciso-Martinez, K. Shi, J.G. Campos, O.Y.P. Soria, et al. Tunable and compartmentalized multimaterial bioprinting for complex living tissue constructs. ACS Appl Mater Interfaces, 14 (46) (2022), pp. 51602-51618
[161]
S. Maji, M. Lee, J. Lee, J. Lee, H. Lee. Development of lumen-based perfusable 3D liver in vitro model using single-step bioprinting with composite bioinks. Mater Today Bio, 21 (2023), Article 21100723
[162]
W. Jia, P.S. Gungor-Ozkerim, Y.S. Zhang, K. Yue, K. Zhu, W. Liu, et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials, 106 (2016), pp. 10658-10668
[163]
A. Hakim, O. Usmani. Structure of the lower respiratory tract. Reference module in biomedical sciences, Elsevier, Oxon (2014)
[164]
K. Horsfield, W. Gordon, W. Kemp, S. Phillips. Growth of the bronchial tree in man. Thorax, 42 (5) (1987), pp. 383-388
[165]
N. Berend, A. Rynell, H. Ward. Structure of a human pulmonary acinus. Thorax, 46 (2) (1991), pp. 117-121
[166]
H. Ward, T. Nicholas. Alveolar Type I and Type II cells. Aust N Z J Med, 14 (s5) (1984), pp. 731-734
[167]
Z. Galliger, C.D. Vogt, A. Panoskaltsis-Mortari. 3D bioprinting for lungs and hollow organs. Transl Res, 211 (2019), pp. 19-34
[168]
I.D. Derman, Y.P. Singh, S. Saini, M. Nagamine, D. Banerjee, I.T. Ozbolat. Bioengineering and clinical translation of human lung and its components. Adv Biol, 7 (4) (2023), Article 2200267
[169]
I.G. Kim, S.A. Park, S.H. Lee, J.S. Choi, H. Cho, S.J. Lee, et al. Transplantation of a 3D-printed tracheal graft combined with iPS cell-derived MSCs and chondrocytes. Sci Rep, 10 (1) (2020), p. 4326
[170]
D. Kang, J.A. Park, W. Kim, S. Kim, H.R. Lee, W.J. Kim, et al. All-inkjet-printed 3D alveolar barrier model with physiologically relevant microarchitecture. Adv Sci, 8 (10) (2021), Article 2004990
[171]
D. Kang, Y. Lee, W. Kim, H.R. Lee, S. Jung. 3D pulmonary fibrosis model for antifibrotic drug discovery by inkjet-bioprinting. Biomed Mater, 18 (1) (2022), Article 015024
[172]
N.N. da Rosa, J.M. Appel, A.C. Irioda, B.F. Mogharbel, N.B. de Oliveira, M.C. Perussolo, et al. Three-dimensional bioprinting of an in vitro lung model. Int J Mol Sci, 24 (6) (2023), p. 5852
[173]
W.L. Ng, T.C. Ayi, Y.C. Liu, S.L. Sing, W.Y. Yeong, B.H. Tan. Fabrication and characterization of 3D bioprinted triple-layered human alveolar lung models. Int J Bioprinting, 7 (2) (2021), p. 332
[174]
L. Horváth, Y. Umehara, C. Jud, F. Blank, A. Petri-Fink, B. Rothen-Rutishauser. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep, 5 (1) (2015), p. 7974
[175]
P.S. Leung. The renin-angiotensin system: current research progress in the pancreas. Springer, Berlin (2010)
[176]
S.J. Lee, J.B. Lee, Y.W. Park, D.Y. Lee.3D bioprinting for artificial pancreas organ. Biomimetic medical materials: from nanotechnology to 3D bioprinting, Springer, Berlin (2018), pp. 355-374
[177]
Z. Wang, Z. Jiang, R. Lu, L. Kou, Y.Z. Zhao, Q. Yao. Formulation strategies to provide oxygen-release to contrast local hypoxia for transplanted islets. Eur J Pharm Biopharm, 187 (2023), pp. 130-140
[178]
H. Komatsu, D. Kang, L. Medrano, A. Barriga, D. Mendez, J. Rawson, et al. Isolated human islets require hyperoxia to maintain islet mass, metabolism, and function. Biochem Biophys Res Commun, 470 (3) (2016), pp. 534-538
[179]
M. Farina, A. Ballerini, D.W. Fraga, E. Nicolov, M. Hogan, D. Demarchi, et al. 3D printed vascularized device for subcutaneous transplantation of human islets. Biotechnol J, 12 (9) (2017), Article 1700169
[180]
J. Song, J.R. Millman. Economic 3D-printing approach for transplantation of human stem cell-derived β-like cells. Biofabrication, 9 (1) (2016), Article 015002
[181]
J. Kim, M. Kim, D.G. Hwang, I.K. Shim, S.C. Kim, J. Jang. Pancreatic tissue-derived extracellular matrix bioink for printing 3D cell-laden pancreatic tissue constructs. J Vis Exp, 154 (2019), p. e60434
[182]
J. Kim, I.K. Shim, D.G. Hwang, Y.N. Lee, M. Kim, H. Kim, et al. 3D cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions. J Mater Chem B Mater Biol Med, 7 (10) (2019), pp. 1773-1781
[183]
M. Klak, M. Wszoła, A. Berman, A. Filip, A. Kosowska, J. Olkowska-Truchanowicz, et al. Bioprinted 3D bionic scaffolds with pancreatic islets as a new therapy for Type 1 diabetes—analysis of the results of preclinical studies on a mouse model. J Funct Biomater, 14 (7) (2023), p. 371
[184]
M. Klak, P. Kowalska, T. Dobrzański, G. Tymicki, P. Cywoniuk, M. Gomółka, et al. Bionic organs: shear forces reduce pancreatic islet and mammalian cell viability during the process of 3D bioprinting. Micromachines, 12 (3) (2021), p. 304
[185]
E. Di Piazza, E. Pandolfi, I. Cacciotti, A. Del Fattore, A.E. Tozzi, A. Secinaro, et al. Bioprinting technology in skin, heart, pancreas and cartilage tissues: progress and challenges in clinical practice. Int J Environ Res Public Health, 18 (20) (2021), p. 10806
[186]
D. Hakobyan, C. Medina, N. Dusserre, M.L. Stachowicz, C. Handschin, J.C. Fricain, et al. Laser-assisted 3D bioprinting of exocrine pancreas spheroid models for cancer initiation study. Biofabrication, 12 (3) (2020), Article 035001
[187]
B. Huang, X. Wei, K. Chen, L. Wang, M. Xu. Bioprinting of hydrogel beads to engineer pancreatic tumor-stroma microtissues for drug screening. Int J Bioprinting, 9 (3) (2023), p. 676
[188]
M. Lovett, K. Lee, A. Edwards, D.L. Kaplan. Vascularization strategies for tissue engineering. Tissue Eng Part B Rev, 15 (3) (2009), pp. 353-370
[189]
J.J. Kim, L. Hou, N.F. Huang. Vascularization of three-dimensional engineered tissues for regenerative medicine applications. Acta Biomater, 41 (2016), pp. 4117-4126
[190]
R. Pimentel, S.K. Ko, C. Caviglia, A. Wolff, J. Emnéus, S.S. Keller, et al. Three-dimensional fabrication of thick and densely populated soft constructs with complex and actively perfused channel network. Acta Biomater, 65 (2018), pp. 65174-65184
[191]
M. Sarker, S. Naghieh, N. Sharma, X. Chen. 3D biofabrication of vascular networks for tissue regeneration:a report on recent advances. J Pharm Anal, 8 (5) (2018), pp. 277-296
[192]
Y. Zhang, D. Li, Y. Liu, L. Peng, D. Lu, P. Wang, et al. 3D-bioprinted anisotropic bicellular living hydrogels boost osteochondral regeneration via reconstruction of cartilage-bone interface. Innovation, 5 (1) (2024), Article 100542
[193]
Michalopoulos G K. Liver regeneration. In: The liver:biology and pathobiology. 6th ed. Hoboken, NJ: Wiley; 2020. p. 566-84.
[194]
P.S. Gungor-Ozkerim, I. Inci, Y.S. Zhang, A. Khademhosseini, M.R. Dokmeci. Bioinks for 3D bioprinting: an overview. Biomater Sci, 6 (5) (2018), pp. 915-946
[195]
B.S. Kim, S. Das, J. Jang, D.W. Cho. Decellularized extracellular matrix-based bioinks for engineering tissue- and organ-specific microenvironments. Chem Rev, 120 (19) (2020), pp. 10608-10661
[196]
H. Jiang, X. Li, T. Chen, Y. Liu, Q. Wang, Z. Wang, et al. Bioprinted vascular tissue: assessing functions from cellular, tissue to organ levels. Mater Today Bio, 23 (2023), Article 23100846
[197]
J.M. Bliley, D.J. Shiwarski, A.W. Feinberg. 3D-bioprinted human tissue and the path toward clinical translation. Sci Transl Med, 14 (666) (2022), Article eabo7047
[198]
E.C. Novosel, C. Kleinhans, P.J. Kluger. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev, 63 (4-5) (2011), pp. 300-311
[199]
X. Zhou, M. Nowicki, H. Sun, S.Y. Hann, H. Cui, T. Esworthy, et al. 3D bioprinting-tunable small-diameter blood vessels with biomimetic biphasic cell layers. ACS Appl Mater Interfaces, 12 (41) (2020), pp. 45904-45915
[200]
A.N. Leberfinger, S. Dinda, Y. Wu, S.V. Koduru, V. Ozbolat, D.J. Ravnic, et al. Bioprinting functional tissues. Acta Biomater, 95 (2019), pp. 32-49
[201]
D.J. Ravnic, A.N. Leberfinger, S.V. Koduru, M. Hospodiuk, K.K. Moncal, P. Datta, et al. Transplantation of bioprinted tissues and organs: technical and clinical challenges and future perspectives. Ann Surg, 266 (1) (2017), pp. 48-58
[202]
W. Liu, Z. Zhong, N. Hu, Y. Zhou, L. Maggio, A.K. Miri, et al. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication, 10 (2) (2018), Article 024102
[203]
V.C.F. Li, X. Kuang, C.M. Hamel, D. Roach, Y. Deng, H. Qi. Cellulose nanocrystals support material for 3D printing complexly shaped structures via multi-materials-multi-methods printing. Addit Manuf, 28 (2019), pp. 2814-2822
[204]
S. Ji, E. Almeida, M. Guvendiren. 3D bioprinting of complex channels within cell-laden hydrogels. Acta Biomater, 95 (2019), pp. 214-224
[205]
X. Liu, S.S.D. Carter, M.J. Renes, J. Kim, D.M. Rojas-Canales, D. Penko, et al. Development of a coaxial 3D printing platform for biofabrication of implantable islet-containing constructs. Adv Healthc Mater, 8 (7) (2019), Article 1801181
[206]
J. Kim, G. Kim. Formation of various cell-aggregated structures in the core of hydrogel filament using a microfluidic device and its application as an in vitro neuromuscular junction model. Chem Eng J, 472 (2023), Article 472144979
[207]
Ebrahimi M. Standardization and regulation of biomaterials. In: Handbook of biomaterials biocompatibility. Oxon: Elsevier; 2020. p. 251-65.
[208]
M. Monzón, Z. Ortega, A. Martínez, F. Ortega. Standardization in additive manufacturing: activities carried out by international organizations and projects. Int J Adv Manuf Technol, 76 (5-8) (2015), pp. 761111-761121
[209]
Y. Yu, K.K. Moncal, J. Li, W. Peng, I. Rivero, J.A. Martin, et al. Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci Rep, 6 (1) (2016), p. 28714
[210]
A. Akkouch, Y. Yu, I.T. Ozbolat. Microfabrication of scaffold-free tissue strands for three-dimensional tissue engineering. Biofabrication, 7 (3) (2015), Article 031002
[211]
A. Sabzevari, H. Rayat Pisheh, M. Ansari, A. Salati. Progress in bioprinting technology for tissue regeneration. J Artif Organs, 26 (4) (2023), pp. 1-20
[212]
Bentley TS, Phillips SJ, Hanson SG. US organ and tissue transplant cost estimates and discussion. Washington. DC: Milliman; 2020.
[213]
M. Smith, B. Dominguez-Gil, D. Greer, A. Manara, M. Souter. Organ donation after circulatory death: current status and future potential. Intensive Care Med, 45 (3) (2019), pp. 45310-45321
[214]
J. Duisit, H. Amiel, T. Wüthrich, A. Taddeo, A. Dedriche, V. Destoop, et al. Perfusion-decellularization of human ear grafts enables ECM-based scaffolds for auricular vascularized composite tissue engineering. Acta Biomater, 73 (2018), pp. 73339-73354
[215]
P.E. Bourgine, E. Gaudiello, B. Pippenger, C. Jaquiery, T. Klein, S. Pigeot, et al. Engineered extracellular matrices as biomaterials of tunable composition and function. Adv Funct Mater, 27 (7) (2017), Article 1605486
[216]
M. Liu, X. Zeng, C. Ma, H. Yi, Z. Ali, X. Mou, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res, 5 (1) (2017), pp. 1-20
[217]
F.M. Chen, X. Liu. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci, 53 (2016), pp. 86-168
[218]
S. Hinderer, S.L. Layland, K. Schenke-Layland. ECM and ECM-like materials—biomaterials for applications in regenerative medicine and cancer therapy. Adv Drug Deliv Rev, 97 (2016), pp. 97260-97269
[219]
X. Zhang, X. Chen, H. Hong, R. Hu, J. Liu, C. Liu. Decellularized extracellular matrix scaffolds: recent trends and emerging strategies in tissue engineering. Bioact Mater, 10 (2022), pp. 1015-1031
[220]
M.S. Lee, D.H. Lee, J. Jeon, G. Tae, Y.M. Shin, H.S. Yang. Biofabrication and application of decellularized bone extracellular matrix for effective bone regeneration. J Ind Eng Chem, 83 (2020), pp. 83323-83332
[221]
X. Xie, W. Wang, J. Cheng, H. Liang, Z. Lin, T. Zhang, et al. Bilayer pifithrin-α loaded extracellular matrix/PLGA scaffolds for enhanced vascularized bone formation. Colloid Surface B, 190 (2020), Article 190110903
[222]
F. Paduano, M. Marrelli, N. Alom, M. Amer, L.J. White, K.M. Shakesheff, et al. Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration. J Biomater Sci Polym Ed, 28 (8) (2017), pp. 730-748
[223]
N.T. Huang, W. Chen, B.R. Oh, T.T. Cornell, T.P. Shanley, J. Fu, et al. An integrated microfluidic platform for in situ cellular cytokine secretion immunophenotyping. Lab Chip, 12 (20) (2012), pp. 4093-4101
[224]
P.J. Little, A. Chait, A. Bobik. Cellular and cytokine-based inflammatory processes as novel therapeutic targets for the prevention and treatment of atherosclerosis. Pharmacol Ther, 131 (3) (2011), pp. 255-268
[225]
A. Kirillova, S. Bushev, A. Abubakirov, G. Sukikh. Bioethical and legal issues in 3D bioprinting. Int J, 6 (3) (2020), p. 272
[226]
N. Vermeulen, G. Haddow, T. Seymour, A. Faulkner-Jones, W. Shu. 3D bioprint me: a socioethical view of bioprinting human organs and tissues. J Med Ethics, 43 (9) (2017), pp. 618-624
[227]
W. Liu, Y.S. Zhang, M.A. Heinrich, F. De Ferrari, H.L. Jang, S.M. Bakht, et al. Rapid continuous multimaterial extrusion bioprinting. Adv Mater, 29 (3) (2017), Article 1604630
[228]
B.S. Kim, J.S. Lee, G. Gao, D.W. Cho. Direct 3D cell-printing of human skin with functional transwell system. Biofabrication, 9 (2) (2017), Article 025034
[229]
P.N. Bernal, P. Delrot, D. Loterie, Y. Li, J. Malda, C. Moser, et al. Volumetric bioprinting of complex living-tissue constructs within seconds. Adv Mater, 31 (42) (2019), Article 1904209
[230]
G. Größbacher, M. Bartolf-Kopp, C. Gergely, P.N. Bernal, S. Florczak, M. de Ruijter, et al. Volumetric printing across melt electrowritten scaffolds fabricates multimaterial living constructs with tunable architecture and mechanics. Adv Mater, 35 (32) (2023), Article 2300756
[231]
H. Mao, L. Yang, H. Zhu, L. Wu, P. Ji, J. Yang, et al. Recent advances and challenges in materials for 3D bioprinting. Prog Nat Sci Mater, 30 (5) (2020), pp. 618-634
[232]
N.K. Katiyar, G. Goel, S. Hawi, S. Goel. Nature-inspired materials: emerging trends and prospects. NPG Asia Mater, 13 (1) (2021), p. 56
[233]
M. Yeo, A. Sarkar, Y.P. Singh, I.D. Derman, P. Datta, I.T. Ozbolat. Synergistic coupling between 3D bioprinting and vascularization strategies. Biofabrication, 16 (1) (2023), Article 012003
[234]
S.S. Soman, S. Vijayavenkataraman. Applications of 3D bioprinted-induced pluripotent stem cells in healthcare. Int J Bioprint, 6 (4) (2020), p. 280
[235]
S.R. Dabbagh, M.R. Sarabi, M.T. Birtek, N. Mustafaoglu, Y.S. Zhang, S. Tasoglu. 3D bioprinted organ-on-chips. Aggregate, 4 (1) (2023), p. e197
[236]
B. Gao, Q. Yang, X. Zhao, G. Jin, Y. Ma, F. Xu. 4D bioprinting for biomedical applications. Trends Biotechnol, 34 (9) (2016), pp. 746-756
[237]
A. Kirillova, R. Maxson, G. Stoychev, C.T. Gomillion, L. Ionov. 4D biofabrication using shape-morphing hydrogels. Adv Mater, 29 (46) (2017), Article 1703443
[238]
H. Ravanbakhsh, V. Karamzadeh, G. Bao, L. Mongeau, D. Juncker, Y.S. Zhang. Emerging technologies in multi-material bioprinting. Adv Mater, 33 (49) (2021), Article e2104730
[239]
D. Ribezzi, M. Gueye, S. Florczak, F. Dusi, D. de Vos, F. Manente, et al. Shaping synthetic multicellular and complex multimaterial tissues via embedded extrusion-volumetric printing of microgels. Adv Mater, 35 (36) (2023), Article e2301673
[240]
J.H. Kim, I. Kim, Y.J. Seol, I.K. Ko, J.J. Yoo, A. Atala, et al. Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nat Commun, 11 (1) (2020), p. 1025
[241]
D. Banerjee, Y.P. Singh, P. Datta, V. Ozbolat, A. O’Donnell, M. Yeo, et al. Strategies for 3D bioprinting of spheroids: a comprehensive review. Biomaterials, 291 (2022), Article 291121881
[242]
N. Tabatabaei Rezaei, H. Kumar, H. Liu, S.S. Lee, S.S. Park, K. Kim. Recent advances in organ-on-chips integrated with bioprinting technologies for drug screening. Adv Healthc Mater, 12 (20) (2023), Article e2203172
[243]
H. Chen, X. Ma, T. Gao, W. Zhao, T. Xu, Z. Liu. Robot-assisted in situ bioprinting of gelatin methacrylate hydrogels with stem cells induces hair follicle-inclusive skin regeneration. Biomed Pharmacother, 158 (2023), Article 158114140
[244]
K.K. Moncal, H. Gudapati, K.P. Godzik, D.N. Heo, Y. Kang, E. Rizk, et al. Intra-operative bioprinting of hard, soft, and hard/soft composite tissues for craniomaxillofacial reconstruction. Adv Funct Mater, 31 (29) (2021), Article 2010858
[245]
L. Li, J. Shi, K. Ma, J. Jin, P. Wang, H. Liang, et al. Robotic in situ 3D bioprinting technology for repairing large segmental bone defects. J Adv Res, 30 (2021), pp. 3075-3084
[246]
Y. Chen, J. Zhang, X. Liu, S. Wang, J. Tao, Y. Huang, et al. Noninvasive in vivo 3D bioprinting. Sci Adv, 6 (23) (2020), Article eaba7406
[247]
K. Ma, T. Zhao, L. Yang, P. Wang, J. Jin, H. Teng, et al. Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: an in vivo study. J Adv Res, 23 (2020), pp. 23123-23132
[248]
W. Kim, C.H. Jang, G. Kim. Bioprinted HASC-laden structures with cell-differentiation niches for muscle regeneration. Chem Eng J, 419 (2021), Article 419129570
[249]
W. Zhao, T. Xu. Preliminary engineering for in situ in vivo bioprinting: a novel micro bioprinting platform for in situ in vivo bioprinting at a gastric wound site. Biofabrication, 12 (4) (2020), Article 045020
[250]
M.T. Thai, P.T. Phan, H.A. Tran, C.C. Nguyen, T.T. Hoang, J. Davies, et al. Advanced soft robotic system for in situ 3D bioprinting and endoscopic surgery. Adv Sci, 10 (12) (2023), Article 2205656
[251]
J.M. Willey, L. Sherwood, C.J. Woolverton.Prescott’s microbiology. ( 7th ed.), McGraw-Hill, New York City (2011)
[252]
P.J. Goodhew, J. Humphreys.Electron microscopy and analysis. ( 3rd ed.), CRC Press, London (2000)
[253]
C.J. Dawes.Biological techniques for transmission and scanning electron microscopy. (2nd ed.), Ladd Research Industries, Burlington (1980)
[254]
T.A. Caswell, P. Ercius, M.W. Tate, A. Ercan, S.M. Gruner, D.A. Muller. A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope. Ultramicroscopy, 109 (4) (2009), pp. 304-311
[255]
H. Yang, L. Wei, C. Liu, W. Zhong, B. Li, Y. Chen, et al. Engineering human ventricular heart tissue based on macroporous iron oxide scaffolds. Acta Biomater, 88 (2019), pp. 88540-88553
[256]
R. Sobreiro-Almeida, M. Gómez-Florit, R. Quinteira, R.L. Reis, M.E. Gomes, N.M. Neves. Decellularized kidney extracellular matrix bioinks recapitulate renal 3D microenvironment in vitro. Biofabrication, 13 (4) (2021), Article 045006
[257]
B. Falcones, H. Sanz-Fraile, E. Marhuenda, I. Mendizábal, I. Cabrera-Aguilera, N. Malandain, et al. Bioprintable lung extracellular matrix hydrogel scaffolds for 3D culture of mesenchymal stromal cells. Polymers, 13 (14) (2021), p. 2350
[258]
G.A. Salg, E. Poisel, M. Neulinger-Munoz, J. Gerhardus, D. Cebulla, C. Bludszuweit-Philipp, et al. Toward 3D-bioprinting of an endocrine pancreas: a building-block concept for bioartificial insulin-secreting tissue. J Tissue Eng, 13 (2022) 20417314221091033
[259]
D. Gusnard, R.H. Kirschner. Cell and organelle shrinkage during preparation for scanning electron microscopy: effects of fixation, dehydration and critical point drying. J Microsc, 110 (1) (1977), pp. 51-57
[260]
D. Xiang, F. Fu, J. Zhang, X. Huang, L. Wang, X. Wang, et al. Accelerator-based single-shot ultrafast transmission electron microscope with picosecond temporal resolution and nanometer spatial resolution. Nucl Instrum Methods Phys Res A, 759 (2014), pp. 75974-75982
[261]
D.J. Smith. Characterization of nanomaterials using transmission electron microscopy. Nanocharacterisation, Royal Society of Chemistry (RSC), London (2015)
[262]
K. Im, S. Mareninov, M.F.P. Diaz, W.H. Yong. An introduction to performing immunofluorescence staining. Biobanking, Humana Press, New York City (2019), pp. 299-311
[263]
J.K. Kular, S. Basu, R.I. Sharma. The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng, 5 (2014), Article 2041731414557112
[264]
N.J. Mankovich, D. Samson, W. Pratt, D. Lew, J. Beumer. Surgical planning using three-dimensional imaging and computer modeling. Otolaryngol Clin North Am, 27 (5) (1994), pp. 875-889
[265]
N.J. Mankovich, D.R. Robertson, A.M. Cheeseman. Three-dimensional image display in medicine. J Digit Imaging, 3 (2) (1990), pp. 69-80
[266]
W. Sun, P. Lal. Recent development on computer aided tissue engineering—a review. Comput Methods Programs Biomed, 67 (2) (2002), pp. 85-103
[267]
S. Mastrogiacomo, W. Dou, J.A. Jansen, X.F. Walboomers. Magnetic resonance imaging of hard tissues and hard tissue engineered biosubstitutes. Mol Imaging Biol, 21 (6) (2019), pp. 211003-211019
[268]
G. Meiry, Y. Reisner, Y. Feld, S. Goldberg, M. Rosen, N. Ziv, et al. Evolution of action potential propagation and repolarization in cultured neonatal rat ventricular myocytes. J Cardiovasc Electrophysiol, 12 (11) (2001), pp. 1269-1277
[269]
I. Mannhardt, K. Breckwoldt, D. Letuffe-Brenière, S. Schaaf, H. Schulz, C. Neuber, et al. Human engineered heart tissue: analysis of contractile force. Stem Cell Reports, 7 (1) (2016), pp. 29-42
[270]
C.D. Roche, R.J. Brereton, A.W. Ashton, C. Jackson, C. Gentile. Current challenges in three-dimensional bioprinting heart tissues for cardiac surgery. Eur J Cardiothorac Surg, 58 (3) (2020), pp. 500-510
[271]
T. Hiller, J. Berg, L. Elomaa, V. Röhrs, I. Ullah, K. Schaar, et al. Generation of a 3D liver model comprising human extracellular matrix in an alginate/gelatin-based bioink by extrusion bioprinting for infection and transduction studies. Int J Mol Sci, 19 (10) (2018), p. 3129
[272]
K.T. Lawlor, J.M. Vanslambrouck, J.W. Higgins, A. Chambon, K. Bishard, D. Arndt, et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat Mater, 20 (2) (2021), pp. 260-271
[273]
B. Grigoryan, S.J. Paulsen, D.C. Corbett, D.W. Sazer, C.L. Fortin, A.J. Zaita, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science, 364 (6439) (2019), pp. 458-464
[274]
C. Ionescu-Tirgoviste, P.A. Gagniuc, E. Gubceac, L. Mardare, I. Popescu, S. Dima, et al. A 3D map of the islet routes throughout the healthy human pancreas. Sci Rep, 5 (1) (2015), p. 14634
[275]
J.D. Weaver, D.M. Headen, M.M. Coronel, M.D. Hunckler, H. Shirwan, A. García. Synthetic poly(ethylene glycol)-based microfluidic islet encapsulation reduces graft volume for delivery to highly vascularized and retrievable transplant site. Am J Transplant, 19 (5) (2019), pp. 1315-1327
[276]
L.A. MacQueen, S.P. Sheehy, C.O. Chantre, J.F. Zimmerman, F.S. Pasqualini, X. Liu, et al. A tissue-engineered scale model of the heart ventricle. Nat Biomed Eng, 2 (12) (2018), pp. 930-941
[277]
C. Tu, B.S. Chao, J.C. Wu. Strategies for improving the maturity of human induced pluripotent stem cell-derived cardiomyocytes. Am Heart Assoc, 123 (5) (2018), pp. 512-514
[278]
M. Valls-Margarit, O. Iglesias-García, C. Di Guglielmo, L. Sarlabous, K. Tadevosyan, R. Paoli, et al. Engineered macroscale cardiac constructs elicit human myocardial tissue-like functionality. Stem Cell Reports, 13 (1) (2019), pp. 207-220
[279]
W.J. McCarty, O.B. Usta, M.L. Yarmush. A microfabricated platform for generating physiologically-relevant hepatocyte zonation. Sci Rep, 6 (1) (2016), p. 26868
[280]
J.W. Allen, S.N. Bhatia. Formation of steady-state oxygen gradients in vitro: application to liver zonation. Biotechnol Bioeng, 82 (3) (2003), pp. 253-262
[281]
Y.B. Kang, T.R. Sodunke, J. Lamontagne, J. Cirillo, C. Rajiv, M.J. Bouchard, et al. Liver sinusoid on a chip: long-term layered co-culture of primary rat hepatocytes and endothelial cells in microfluidic platforms. Biotechnol Bioeng, 112 (12) (2015), pp. 2571-2582
[282]
C. Kryou, V. Leva, M. Chatzipetrou, I. Zergioti. Bioprinting for liver transplantation. Bioengineering, 6 (4) (2019), p. 95
[283]
Y. Yang, Z. Yu, X. Lu, J. Dai, C. Zhou, J. Yan, et al. Minimally invasive bioprinting for in situ liver regeneration. Bioact Mater, 26 (2023), pp. 26465-26477
[284]
C. Li, Z. Jiang, H. Yang. Advances in 3D bioprinting technology for liver regeneration. Hepatobiliary Surg Nutr, 11 (6) (2022), pp. 917-919
[285]
K.A. Homan, N. Gupta, K.T. Kroll, D.B. Kolesky, M. Skylar-Scott, T. Miyoshi, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods, 16 (3) (2019), pp. 255-262
[286]
S. Musah, A. Mammoto, T.C. Ferrante, S.S. Jeanty, M. Hirano-Kobayashi, T. Mammoto, et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng, 1 (2017), p. 0069
[287]
A. Petrosyan, P. Cravedi, V. Villani, A. Angeletti, J. Manrique, A. Renieri, et al. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat Commun, 10 (1) (2019), p. 3656
[288]
M.F. Fransen, G. Addario, C.V. Bouten, F. Halary, L. Moroni, C. Mota. Bioprinting of kidney in vitro models: cells, biomaterials, and manufacturing techniques. Essays Biochem, 65 (3) (2021), pp. 587-602
[289]
F. Akter, Y. Araf, S.K. Promon, J. Zhai, C. Zheng. 3D bioprinting for regenerating COVID-19-mediated irreversibly damaged lung tissue. Int J Bioprinting, 8 (4) (2022), p. 616
[290]
M. Barreiro Carpio, M. Dabaghi, J. Ungureanu, M.R. Kolb, J.A. Hirota, J.M. Moran-Mirabal. 3D bioprinting strategies, challenges, and opportunities to model the lung tissue microenvironment and its function. Front Bioeng Biotechnol, 9 (2021), Article 9773511
[291]
M. Wszoła, D. Nitarska, P. Cywoniuk, M. Gomółka, M. Klak.Stem cells as a source of pancreatic cells for production of 3D bioprinted bionic pancreas in the treatment of type 1 diabetes. Cells, 10 (6) (2021), p. 1544
[292]
D. Ribeiro, A.J. Kvist, P. Wittung-Stafshede, R. Hicks, A. Forslöw. 3D-models of insulin-producing β-cells: from primary islet cells to stem cell-derived islets. Stem Cell Rev Rep, 14 (2) (2018), pp. 177-188
[293]
L. Lu, H.M. Arbit, J.L. Herrick, S.G. Segovis, A. Maran, M.J. Yaszemski. Tissue engineered constructs: perspectives on clinical translation. Ann Biomed Eng, 43 (3) (2015), pp. 43796-43804
[294]
S.V. Murphy, P. De Coppi, A. Atala. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng, 4 (4) (2020), pp. 370-380
[295]
K. Belsky, J. Smiell. Navigating the regulatory pathways and requirements for tissue-engineered products in the treatment of burns in the United States. J Burn Care Res, 42 (4) (2021), pp. 774-784
[296]
B.P. Dodson, A.D. Levine. Challenges in the translation and commercialization of cell therapies. BMC Biotechnol, 15 (1) (2015), pp. 1-15
[297]
M.P. Sekar, H. Budharaju, A. Zennifer, S. Sethuraman, N. Vermeulen, D. Sundaramurthi, et al. Current standards and ethical landscape of engineered tissues—3D bioprinting perspective. J Tissue Eng, 12 (2021), Article 1220417314211027677
[298]
L.M. Ricles, J.C. Coburn, M. Di Prima, S.S. Oh. Regulating 3D-printed medical products. Sci Transl Med, 10 (461) (2018), Article eaan6521
[299]
J.M. Bliley, M.C. Vermeer, R.M. Duffy, I. Batalov, D. Kramer, J.W. Tashman, et al. Dynamic loading of human engineered heart tissue enhances contractile function and drives a desmosome-linked disease phenotype. Sci Transl Med, 13 (603) (2021), Article eabd1817
[300]
M. Vaidya. Startups tout commercially 3D-printed tissue for drug screening. Nat Med, 21 (1) (2015), p. 2
[301]
D. Choudhury, S. Anand, M.W. Naing. The arrival of commercial bioprinters-towards 3D bioprinting revolution!. Int J Bioprinting, 4 (2) (2018), p. 139
[302]
T.H. Jovic, E.J. Combellack, Z.M. Jessop, I.S. Whitaker. 3D bioprinting and the future of surgery. Front Surg, 7 (2020), Article 7609836
[303]
3D bioprinted models for predicting chemotherapy response in colorectal cancer with/without liver metastases [Internet]. Maryland, MD: National Institutes of Health (NIH); 2021 Feb 16 [cited 2024 Apr 28]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04755907.
[304]
Rabin RC. Doctors transplant ear of human cells, made by 3-D printer. New York City: The New York Times; 2022 Jun 02 [cited 2024 Apr 28]. Available from: https://www.nytimes.com/2022/06/02/health/ear-transplant-3d-printer.html.
[305]
Everett H. United therapeutics and 3D systems shoot for 3D printed lung scaffold trials within five years [Internet]. New York City: 3D Printing Industry; 2022 Jun 7 [cited 2024 Apr 28]. Available from: https://3dprintingindustry.com/news/united-therapeutics-and-3d-systems-shoot-for-3d-printed-lung-scaffold-trials-within-five-years-210303/.
[306]
G.G. Wallace, R. Cornock, C.D. O’Connell, S. Bernie, S. Dodds, F. Gilbert. 3D bioprinting: printing parts for bodies. University of Tasmania, Hobart (2014)
[307]
E.H.Y. Lam, F. Yu, S. Zhu, Z. Wang. 3D bioprinting for next-generation personalized medicine. Int J Mol Sci, 24 (7) (2023), p. 6357
AI Summary AI Mindmap
PDF(3861 KB)

Accesses

Citations

Detail

Sections
Recommended

/