Controllable Histotomy Based on Hierarchical Magnetic Microneedle Array Robots

Xiaoxuan Zhang, Hanxu Chen, Taiyu Song, Jinglin Wang, Yuanjin Zhao

Engineering ›› 2024, Vol. 42 ›› Issue (11) : 166-174.

PDF(2572 KB)
PDF(2572 KB)
Engineering ›› 2024, Vol. 42 ›› Issue (11) : 166-174. DOI: 10.1016/j.eng.2024.05.004
Research
Article

Controllable Histotomy Based on Hierarchical Magnetic Microneedle Array Robots

Author information +
History +

Abstract

Investigation of patient-derived primary tissues is of great importance in the biomedical field, but recent tissue slicing and cultivation techniques still have difficulties in satisfying clinical requirements. Here, we propose a controllable histotomy strategy that utilizes hierarchical magnetic microneedle array robots to tailor primary tissues and establish the desired high-throughput tissue-on-a-chip. This histotomy is performed using a three-dimensional printed, mortise-tenon-structured slicing device coupled with a magnetic-particle-loaded and pagoda-shaped microneedle array scaffold. Due to the multilayered structure of these microneedles, tissue specimens can be fixed onto the microneedle scaffold via mechanical interlocking, thereby effectively avoiding tissue slipping during the slicing process. Owing to the encapsulation of magnetic microneedle fragments, these tissue pieces can act as magnetically responsive biohybrid microrobots and can be easily manipulated by magnetic fields, facilitating their separation, transportation, and dynamic culture. Using this strategy, we demonstrate that primary pancreatic cancer tissues can be tailored into tiny pieces and cultured in multilayered microfluidic chips for efficient high-throughput drug screening, indicating the promising future of this technique’s application in clinical settings.

Graphical abstract

Keywords

Histotomy / Drug screening / Microneedle / Microrobot / Tumor-on-a-chip / High throughput

Cite this article

Download citation ▾
Xiaoxuan Zhang, Hanxu Chen, Taiyu Song, Jinglin Wang, Yuanjin Zhao. Controllable Histotomy Based on Hierarchical Magnetic Microneedle Array Robots. Engineering, 2024, 42(11): 166‒174 https://doi.org/10.1016/j.eng.2024.05.004

References

[1]
G. Vunjak-Novakovic, K. Ronaldson-Bouchard, M. Radisic. Organs-on-a-chip models for biological research. Cell, 184 (18) (2021), pp. 4597-4611
[2]
S.L. Ding, X.Y. Zhao, W. Xiong, L.F. Ji, M.X. Jia, Y.Y. Liu, et al. Cartilage lacuna-inspired microcarriers drive hyaline neocartilage regeneration. Adv Mater, 35 (30) (2023), Article 2212114
[3]
Z. Wang, Y.C. Wang, J.Q. Yan, K.S. Zhang, F. Lin, L. Xiang, et al. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev, 174 (2021), pp. 504-534
[4]
M. Dong, K. Bopple, J. Thiel, B. Winkler, C.G. Liang, J. Schueler, et al. Perfusion air culture of precision-cut tumor slices: an ex vivo system to evaluate individual drug response under controlled culture conditions. Cells, 12 (5) (2023), p. 807
[5]
Y. Liu, J.Q. Wang, Q.Q. Xiong, D. Hornburg, W. Tao, O.C. Farokhzad. Nano-bio interactions in cancer: from therapeutics delivery to early detection. Acc Chem Res, 54 (2) (2021), pp. 291-301
[6]
A.S. Nagaraj, J. Bao, A. Hemmes, M. Machado, K. Närhi, E.W. Verschuren. Establishment and analysis of tumor slice explants as a prerequisite for diagnostic testing. J Vis Exp, 141 (2018), Article e58569
[7]
S.E. Park, A. Georgescu, D. Huh. Organoids-on-a-chip. Science, 364 (6444) (2019), pp. 960-965
[8]
S.M. Lu, F. Cuzzucoli, J. Jiang, L.G. Liang, Y.M. Wang, M.Q. Kong, et al. Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing. Lab Chip, 18 (22) (2018), pp. 3379-3392
[9]
Z. Yang, Z. Zhou, T. Si, Z. Zhou, L. Zhou, Y.R. Chin, et al. High throughput confined migration microfluidic device for drug screening. Small, 19 (16) (2023), Article 2207194
[10]
Y.M. Wang, D. Wu, G.H. Wu, J.G. Wu, S.M. Lu, J. Lo, et al. Metastasis-on-a-chip mimicking the progression of kidney cancer in the liver for predicting treatment efficacy. Theranostics, 10 (1) (2020), pp. 300-311
[11]
R. Braun, O. Lapshyna, S. Eckelmann, K. Honselmann, L. Bolm, M. ten Winkel, et al. Organotypic slice cultures as preclinical models of tumor microenvironment in primary pancreatic cancer and metastasis. J Vis Exp, 172 (172) (2021), Article e62541
[12]
Y.R. Yu, J.H. Guo, L.Y. Sun, X.X. Zhang, Y.J. Zhao. Microfluidic generation of microsprings with ionic liquid encapsulation for flexible electronics. Research, 2019 ( 2019), Article 6906275
[13]
H. Yuk, T. Zhang, G.A. Parada, X.Y. Liu, X.H. Zhao. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat Commun, 7 (1) (2016), p. 12028
[14]
J.F. Yuan, Y.Z. Zhang, G.Z. Li, S.Q. Liu, R. Zhu. Printable and stretchable conductive elastomers for monitoring dynamic strain with high fidelity. Adv Funct Mater, 32 (34) (2022), Article 2204878
[15]
Y. Kim, E. Genevriere, P. Harker, J. Choe, M. Balicki, R.W. Regenhardt, et al. Telerobotic neurovascular interventions with magnetic manipulation. Sci Robot, 7 (65) (2022), Article eabg9907
[16]
X.X. Zhang, G.P. Chen, X. Fu, Y.T. Wang, Y.J. Zhao. Magneto-responsive microneedle robots for intestinal macromolecule delivery. Adv Mater, 33 (44) (2021), Article 2104932
[17]
Y.Y. Zhang, Z.D. Huang, Z.R. Cai, Y.Q. Ye, Z. Li, F.F. Qin, et al. Magnetic-actuated “capillary container” for versatile three-dimensional fluid interface manipulation. Sci Adv, 7 (34) (2021), Article eabi7498
[18]
Y. Kim, G.A. Parada, S.D. Liu, X.H. Zhao. Ferromagnetic soft continuum robots. Sci Robot, 4 (33) (2019), Article eaax7329
[19]
X.X. Zhang, G.P. Chen, L.J. Cai, L. Fan, Y.J. Zhao. Dip-printed microneedle motors for oral macromolecule delivery. Research, 2022 ( 2022), Article 9797482
[20]
X.X. Zhang, G.P. Chen, Y.T. Wang, L. Fan, Y.J. Zhao. Arrowhead composite microneedle patches with anisotropic surface adhesion for preventing intrauterine adhesions. Adv Sci, 9 (12) (2022), p. 2104883
[21]
J.X. Wang, Z.Y. Lu, R.S. Cai, H.Q. Zheng, J.C. Yu, Y.Q. Zhang, et al. Microneedle-based transdermal detection and sensing devices. Lab Chip, 23 (5) (2023), pp. 869-887
[22]
X.X. Zhang, G.P. Chen, L.J. Cai, Y.T. Wang, L.Y. Sun, Y.J. Zhao. Bioinspired pagoda-like microneedle patches with strong fixation and hemostasis capabilities. Chem Eng J, 414 (2021), Article 128905
[23]
M.G. Valverde, L.S. Mille, K.P. Figler, E. Cervantes, V.Y. Li, J.V. Bonventre, et al. Biomimetic models of the glomerulus. Nat Rev Nephrol, 18 (4) (2022), pp. 241-257
[24]
A. Shastri, L.M. McGregor, Y. Liu, V. Harris, H.Q. Nan, M. Mujica, et al. An aptamer-functionalized chemomechanically modulated biomolecule catch-and-release system. Nat Chem, 7 (5) (2015), pp. 447-454
[25]
T. Thorsen, S.J. Maerkl, S.R. Quake. Microfluidic large-scale integration. Science, 298 (5593) (2002), pp. 580-584
[26]
J. Aleman, T. Kilic, L.S. Mille, S.R. Shin, Y.S. Zhang. Microfluidic integration of regeneratable electrochemical affinity-based biosensors for continual monitoring of organ-on-a-chip devices. Nat Protoc, 16 (5) (2021), pp. 2564-2593
[27]
F. Wu, Y. Huang, X. Yang, J.J. Hu, X.D. Lou, F. Xia, et al. Tunning intermolecular interaction of peptide-conjugated AlEgen in nano-confined space for quantitative detection of tumor marker secreted from cells. Anal Chem, 93 (48) (2021), pp. 16257-16263
[28]
J.J. Kim, J.Y. Park, V.V.T. Nguyen, M. Bae, M. Kim, J. Jang, et al. Pathophysiological reconstruction of a tissue-specific multiple-organ on-a-chip for type 2 diabetes emulation using 3D cell printing. Adv Funct Mater, 33 (22) (2023), Article 2213649
[29]
L.X. Zhang, R. Parvin, M.S. Chen, D.M. Hu, Q.H. Fan, F.F. Ye. High-throughput microfluidic droplets in biomolecular analytical system: a review. Biosens Bioelectron, 228 (2023), Article 115213
[30]
C. Spatola Rossi, F. Coulon, S. Ma, Y.S. Zhang, Z. Yang. Microfluidics for rapid detection of live pathogens. Adv Funct Mater, 33 (21) (2023), Article 2212081
[31]
S. Ma, J.H. Kim, W. Chen, L. Li, J. Lee, J. Xue, et al.. Cancer cell-specific fluorescent prodrug delivery platforms. Adv Sci, 10 (16) (2023), Article 2207768
[32]
J.D. Mizrahi, R. Surana, J.W. Valle, R.T. Shroff. Pancreatic cancer. Lancet, 395 (10242) (2020), pp. 2008-2020
[33]
I. Garrido-Laguna, M. Hidalgo. Pancreatic cancer: from state-of-the-art treatments to promising novel therapies. Nat Rev Clin Oncol, 12 (6) (2015), pp. 319-334
[34]
D.D. Von Hoff, T. Ervin, F.P. Arena, E.G. Chiorean, J. Infante, M. Moore, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med, 369 (18) (2013), pp. 1691-1703
[35]
M.A. Morgan, A. Meirovitz, M.A. Davis, L.E. Kollar, M.C. Hassan, T.S. Lawrence. Radiotherapy combined with gemcitabine and oxaliplatin in pancreatic cancer cells. Transl Oncol, 1 (1) (2008), pp. 36-43
[36]
N. Tsavaris, C. Kosmas, H. Skopelitis, P. Gouveris, P. Kopteridis, D. Loukeris, et al. Second-line treatment with oxaliplatin, leucovorin and 5-fluorouracil in gemcitabine-pretreated advanced pancreatic cancer: a phase II study. Invest New Drugs, 23 (4) (2005), pp. 369-375
[37]
B.A. Schroeder, M.T. Mandelson, V.J. Picozzi. Alternating gemcitabine/nab-paclitaxel (GA) and 5-FU/leucovorin/irinotecan (FOLFIRI) as first-line treatment for de novo metastatic pancreatic cancer (MPC): safety and effect. Cancers, 15 (23) (2023), p. 5588
AI Summary AI Mindmap
PDF(2572 KB)

Accesses

Citations

Detail

Sections
Recommended

/