Therapeutic Targeting of PKM2 Ameliorates NASH Fibrosis Progression in a Macrophage-Specific and Liver-Specific Manner

Hengdong Qu, Di Zhang, Junli Liu, Jieping Deng, Ruoyan Xie, Keke Zhang, Hongmei Li, Ping Tao, Genshu Wang, Jian Sun, Oscar Junhong Luo, Chen Qu, Wencai Ye, Jian Hong

Engineering ›› 2024, Vol. 41 ›› Issue (10) : 189-203.

PDF(8485 KB)
PDF(8485 KB)
Engineering ›› 2024, Vol. 41 ›› Issue (10) : 189-203. DOI: 10.1016/j.eng.2024.05.005
Research
Article

Therapeutic Targeting of PKM2 Ameliorates NASH Fibrosis Progression in a Macrophage-Specific and Liver-Specific Manner

Author information +
History +

Abstract

Nonalcoholic steatohepatitis (NASH) may soon become the leading cause of end-stage liver disease worldwide with limited treatment options. Liver fibrosis, which is driven by chronic inflammation and hepatic stellate cell (HSC) activation, critically determines morbidity and mortality in patients with NASH. Pyruvate kinase M2 (PKM2) is involved in immune activation and inflammatory liver diseases; however, its role and therapeutic potential in NASH-related fibrosis remain largely unexplored. Bioinformatics screening and analysis of human and murine NASH livers indicated that PKM2 was upregulated in nonparenchymal cells (NPCs), especially macrophages, in the livers of patients with fibrotic NASH. Macrophage-specific PKM2 knockout (PKM2FL/FLLysM-Cre) significantly ameliorated hepatic inflammation and fibrosis severity in three distinct NASH models induced by a methionine- and choline-deficient (MCD) diet, a high-fat high-cholesterol (HFHC) diet, and a western diet plus weekly carbon tetrachloride injection (WD/CCl4). Single-cell transcriptomic analysis indicated that deletion of PKM2 in macrophages reduced profibrotic Ly6Chigh macrophage infiltration. Mechanistically, PKM2-dependent glycolysis promoted NLR family pyrin domain containing 3 (NLRP3) activation in proinflammatory macrophages, which induced HSC activation and fibrogenesis. A pharmacological PKM2 agonist efficiently attenuated the profibrotic crosstalk between macrophages and HSCs in vitro and in vivo. Translationally, ablation of PKM2 in NPCs by cholesterol-conjugated heteroduplex oligonucleotides, a novel oligonucleotide drug that preferentially accumulates in the liver, dose-dependently reversed NASH-related fibrosis without causing observable hepatotoxicity. The present study highlights the pivotal role of macrophage PKM2 in advancing NASH fibrogenesis. Thus, therapeutic modulation of PKM2 in a macrophage-specific or liver-specific manner may serve as a novel strategy to combat NASH-related fibrosis.

Graphical abstract

Keywords

Pyruvate kinase M2 / Macrophages / Nonparenchymal cells / Heteroduplex oligonucleotide / Nonalcoholic steatohepatitis / Liver fibrosis

Cite this article

Download citation ▾
Hengdong Qu, Di Zhang, Junli Liu, Jieping Deng, Ruoyan Xie, Keke Zhang, Hongmei Li, Ping Tao, Genshu Wang, Jian Sun, Oscar Junhong Luo, Chen Qu, Wencai Ye, Jian Hong. Therapeutic Targeting of PKM2 Ameliorates NASH Fibrosis Progression in a Macrophage-Specific and Liver-Specific Manner. Engineering, 2024, 41(10): 189‒203 https://doi.org/10.1016/j.eng.2024.05.005

References

[1]
E.E. Powell, V.W. Wong, M. Rinella. Non-alcoholic fatty liver disease. Lancet, 397 (10290) (2021), pp. 2212-2224.
[2]
J.V. Lazarus, P.N. Newsome, S.M. Francque, F. Kanwal, N.A. Terrault, M.E. Rinella. Reply: a multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology, 79 (3) (2024), pp. E93-E94.
[3]
M. Yao, L. Qv, Y. Lu, B. Wang, B. Berglund, L. Li. An update on the efficacy and functionality of probiotics for the treatment of non-alcoholic fatty liver disease. Engineering, 7 (5) (2021), pp. 679-686.
[4]
R.S. Taylor, R.J. Taylor, S. Bayliss, H. Hagström, P. Nasr, J.M. Schattenberg, et al. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis. Gastroenterology, 158 (6) (2020), pp. 1611-1625.e12.
[5]
H. Hagström, P. Nasr, M. Ekstedt, U. Hammar, P. Stål, R. Hultcrantz, et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J Hepatol, 67 (6) (2017), pp. 1265-1273.
[6]
S. Li, B. Zhou, M. Xue, J. Zhu, G. Tong, J. Fan, et al. Macrophage-specific FGF 12 promotes liver fibrosis progression in mice. Hepatology, 77 (3) (2023), pp. 816-833.
[7]
X. Wu, L. Shu, Z. Zhang, J. Li, J. Zong, L.Y. Cheong, et al. Adipocyte fatty acid binding protein promotes the onset and progression of liver fibrosis via mediating the crosstalk between liver sinusoidal endothelial cells and hepatic stellate cells. Adv Sci, 8 (11) (2021), p. e2003721.
[8]
X. Liu, S. Tan, H. Liu, J. Jiang, X. Wang, L. Li, et al. Hepatocyte-derived MASP1-enriched small extracellular vesicles activate HSCs to promote liver fibrosis. Hepatology, 77 (4) (2023), pp. 1181-1197.
[9]
T.A. Wynn, K.M. Vannella. Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 44 (3) (2016), pp. 450-462.
[10]
M. Alquraishi, D.L. Puckett, D.S. Alani, A.S. Humidat, V.D. Frankel, D.R. Donohoe, et al. Pyruvate kinase M2: a simple molecule with complex functions. Free Radic Biol Med, 143 (2019), pp. 176-192.
[11]
W. Yang, Y. Xia, H. Ji, Y. Zheng, J. Liang, W. Huang, et al. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature, 480 (7375) (2011), pp. 118-122.
[12]
Z. Zhang, X. Deng, Y. Liu, Y. Liu, L. Sun, F. Chen. PKM2, function and expression and regulation. Cell Biosci, 9 (1) (2019), p. 52.
[13]
P. Doddapattar, R. Dev, M. Ghatge, R.B. Patel, M. Jain, N. Dhanesha, et al. Myeloid cell PKM2 deletion enhances efferocytosis and reduces atherosclerosis. Circ Res, 130 (9) (2022), pp. 1289-1305.
[14]
M. Xie, Y. Yu, R. Kang, S. Zhu, L. Yang, L. Zeng, et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat Commun, 7 (2016), p. 13280.
[15]
H. Qu, J. Liu, D. Zhang, R. Xie, L. Wang, J. Hong. Glycolysis in chronic liver diseases: mechanistic insights and therapeutic opportunities. Cells, 12 (15) (2023), p. 1930.
[16]
P.P. Hou, L. Luo, H. Chen, Q. Chen, X. Bian, S. Wu, et al. Ectosomal PKM2 promotes HCC by inducing macrophage differentiation and remodeling the tumor microenvironment. Mol Cell, 78 (6) (2020), pp. 1192-1206.e10.
[17]
J. Rao, H. Wang, M. Ni, Z. Wang, Z. Wang, S. Wei, et al. FSTL 1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2. Gut, 71 (12) (2022), pp. 2539-2550.
[18]
M.E. Moreno-Fernandez, D.A. Giles, J.R. Oates, C.C. Chan, M.S.M.A. Damen, J.R. Doll, et al. PKM2-dependent metabolic skewing of hepatic Th 17 cells regulates pathogenesis of non-alcoholic fatty liver disease. Cell Metab, 33 (6) (2021), pp. 1187-1204.e9.
[19]
X. Ouyang, S.N. Han, J.Y. Zhang, E. Dioletis, B.T. Nemeth, P. Pacher, et al. Digoxin suppresses pyruvate kinase M2-promoted HIF-1α transactivation in steatohepatitis. Cell Metab, 27 (2) (2018), pp. 339-350.e3.
[20]
F. Xu, M. Guo, W. Huang, L. Feng, J. Zhu, K. Luo, et al. Annexin A 5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH. Redox Biol, 36 (2020), Article 101634.
[21]
Y. Yang, J. Sheng, Y. Sheng, J. Wang, X. Zhou, W. Li, et al. Lapachol treats non-alcoholic fatty liver disease by modulating the M1 polarization of Kupffer cells via PKM2. Int Immunopharmacol, 120 (2023), Article 110380.
[22]
Q. Kong, N. Li, H. Cheng, X. Zhang, X. Cao, T. Qi, et al. HSPA12A is a novel player in nonalcoholic steatohepatitis via promoting nuclear PKM2-mediated M1 macrophage polarization. Diabetes, 68 (2) (2019), pp. 361-376.
[23]
D. Zheng, Y. Jiang, C. Qu, H. Yuan, K. Hu, L. He, et al. Pyruvate kinase M2 tetramerization protects against hepatic stellate cell activation and liver fibrosis. Am J Pathol, 190 (11) (2020), pp. 2267-2281.
[24]
K. Nishina, W. Piao, K. Yoshida-Tanaka, Y. Sujino, T. Nishina, T. Yamamoto, et al. DNA/RNA heteroduplex oligonucleotide for highly efficient gene silencing. Nat Commun, 6 (2015), p. 7969.
[25]
R.I. Hara, K. Yoshioka, T. Yokota. DNA-RNA heteroduplex oligonucleotide for highly efficient gene silencing. Methods Mol Biol, 2176 (2020), pp. 113-119.
[26]
D. Zhong, J. Cai, C. Hu, J. Chen, R. Zhang, C. Fan, et al. Inhibition of mPGES-2 ameliorates NASH by activating NR1D 1 via heme. Hepatology, 78 (2) (2023), pp. 547-561.
[27]
Zeng X, Zhang X, Su H, Gou H, Lau HCH, Hu X, et al. Pien Tze Huang protects against non-alcoholic steatohepatitis by modulating the gut microbiota and metabolites in mice. Engineering 2024;35:257-69.
[28]
X.J. Zhang, Y.X. Ji, X. Cheng, Y. Cheng, H. Yang, J. Wang, et al. A small molecule targeting ALOX12-ACC 1 ameliorates nonalcoholic steatohepatitis in mice and macaques. Sci Transl Med, 13 (624) (2021), Article eabg8116.
[29]
T. Tsuchida, Y.A. Lee, N. Fujiwara, M. Ybanez, B. Allen, S. Martins, et al. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J Hepatol, 69 (2) (2018), pp. 385-395.
[30]
S. Lee, T.O. Usman, J. Yamauchi, G. Chhetri, X. Wang, G.M. Coudriet, et al. Myeloid FoxO 1 depletion attenuates hepatic inflammation and prevents nonalcoholic steatohepatitis. J Clin Invest, 132 (14) (2022), Article e154333.
[31]
C. Qu, L. He, N. Yao, J. Li, Y. Jiang, B. Li, et al. Myofibroblast-specific Msi2 knockout inhibits HCC progression in a mouse model. Hepatology, 74 (1) (2021), pp. 458-473.
[32]
C.Q. Gao, Z.Z. Chu, D. Zhang, Y. Xiao, X.Y. Zhou, J.R. Wu, et al. Serine/threonine kinase TBK 1 promotes cholangiocarcinoma progression via direct regulation of β-catenin. Oncogene, 42 (18) (2023), pp. 1492-1507.
[33]
Q. Wang, H. Zhou, Q. Bu, S. Wei, L. Li, J. Zhou, et al. Role of XBP 1 in regulating the progression of non-alcoholic steatohepatitis. J Hepatol, 77 (2) (2022), pp. 312-325.
[34]
L.N. da Silva, M.F. Fondevila, E. Nóvoa, X. Buqué, M. Mercado-Gómez, S. Gallet, et al. Inhibition of ATG 3 ameliorates liver steatosis by increasing mitochondrial function. J Hepatol, 76 (1) (2022), pp. 11-24.
[35]
E. Anderson-Baucum, A.R. Piñeros, A. Kulkarni, B.J. Webb-Robertson, B. Maier, R.M. Anderson, et al. Deoxyhypusine synthase promotes a pro-inflammatory macrophage phenotype. Cell Metab, 33 (9) (2021), pp. 1883-1893.e7.
[36]
E.M. Palsson-McDermott, A.M. Curtis, G. Goel, M.A.R. Lauterbach, F.J. Sheedy, L.E. Gleeson, et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab, 21 (1) (2015), pp. 65-80.
[37]
X. Xiong, H. Kuang, S. Ansari, T. Liu, J. Gong, S. Wang, et al. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol Cell, 75 (3) (2019), pp. 644-660.e5.
[38]
A. Deczkowska, E. David, P. Ramadori, D. Pfister, M. Safran, B. Li, et al. XCR1+ type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis. Nat Med, 27 (6) (2021), pp. 1043-1054.
[39]
P. Zhang, Z. Chen, H. Kuang, T. Liu, J. Zhu, L. Zhou, et al. Neuregulin 4 suppresses NASH-HCC development by restraining tumor-prone liver microenvironment. Cell Metab, 34 (9) (2022), pp. 1359-1376.e7.
[40]
J.S. Seidman, T.D. Troutman, M. Sakai, A. Gola, N.J. Spann, H. Bennett, et al. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity, 52 (6) (2020), pp. 1057-1074.e7.
[41]
K. Kitamori, H. Naito, H. Tamada, M. Kobayashi, D. Miyazawa, Y. Yasui, et al. Development of novel rat model for high-fat and high-cholesterol diet-induced steatohepatitis and severe fibrosis progression in SHRSP5/Dmcr. Environ Health Prev Med, 17 (3) (2012), pp. 173-182.
[42]
Q.M. Anstee, H.L. Reeves, E. Kotsiliti, O. Govaere, M. Heikenwalder. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol, 16 (7) (2019), pp. 411-428.
[43]
Y. Liu, R. Xu, H. Gu, E. Zhang, J. Qu, W. Cao, et al. Metabolic reprogramming in macrophage responses. Biomark Res, 9 (1) (2021), p. 1.
[44]
H.C. Lin, Y.J. Chen, Y.H. Wei, H.A. Lin, C.C. Chen, T.F. Liu, et al. Lactic acid fermentation is required for NLRP 3 inflammasome activation. Front Immunol, 12 (2021), Article 630380.
[45]
J.L. Calleja, J. Rivera-Esteban, R. Aller, M. Hernández-Conde, J. Abad, J.M. Pericàs, et al. Prevalence estimation of significant fibrosis because of NASH in Spain combining transient elastography and histology. Liver Int, 42 (8) (2022), pp. 1783-1792.
[46]
F. Tacke, H.W. Zimmermann. Macrophage heterogeneity in liver injury and fibrosis. J Hepatol, 60 (5) (2014), pp. 1090-1096.
[47]
S.E. Corcoran, L.A. O’Neill. HIF1α and metabolic reprogramming in inflammation. J Clin Invest, 126 (10) (2016), pp. 3699-3707.
[48]
A.R. Mridha, A. Wree, A.A.B. Robertson, M.M. Yeh, C.D. Johnson, D.M. Van Rooyen, et al. NLRP 3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol, 66 (5) (2017), pp. 1037-1046.
[49]
B. Kaufmann, L. Kui, A. Reca, A. Leszczynska, A.D. Kim, L.M. Booshehri, et al. Cell-specific deletion of NLRP 3 inflammasome identifies myeloid cells as key drivers of liver inflammation and fibrosis in murine steatohepatitis. Cell Mol Gastroenterol Hepatol, 14 (4) (2022), pp. 751-767.
[50]
D.M. Calcagno, A. Chu, S. Gaul, N. Taghdiri, A. Toomu, A. Leszczynska, et al. NOD-like receptor protein 3 activation causes spontaneous inflammation and fibrosis that mimics human NASH. Hepatology, 76 (3) (2022), pp. 727-741.
[51]
J. Knorr, B. Kaufmann, M.E. Inzaugarat, T.M. Holtmann, G. Lukas, J. Hundertmark, et al. Interleukin-18 signaling promotes activation of hepatic stellate cells in mouse liver fibrosis. Hepatology, 77 (6) (2023), pp. 1768-1782.
[52]
S.H. Yang, H. Wu, Z.J. Yi, X. Lai. The PKM2 activator TEPP-46 attenuates MCD feeding-induced nonalcoholic steatohepatitis by inhibiting the activation of Kupffer cells. Eur Rev Med Pharmacol Sci, 25 (11) (2021), pp. 4017-4026.
[53]
S. Huang, W. Zhu, F. Zhang, G. Chen, X. Kou, X. Yang, et al. Silencing of pyruvate kinase M2 via a metal-organic framework based theranostic gene nanomedicine for triple-negative breast cancer therapy. ACS Appl Mater Interfaces, 13 (48) (2021), pp. 56972-56987.
[54]
X. Li, R. Zhou, H. Peng, J. Peng, Q. Li, M. Mei. Microglia PKM2 mediates neuroinflammation and neuron loss in mice epilepsy through the astrocyte C3-neuron C3R signaling pathway. Brain Sci, 13 (2) (2023), p. 262.
[55]
W.K. Ma, D.M. Voss, J. Scharner, A.S.H. Costa, K.T. Lin, H.Y. Jeon, et al. ASO-based PKM splice-switching therapy inhibits hepatocellular carcinoma growth. Cancer Res, 82 (5) (2022), pp. 900-915.
[56]
Z. Chu, B. Zhang, X. Zhou, H. Yuan, C. Gao, L. Liu, et al. A DNA/RNA heteroduplex oligonucleotide coupling asparagine depletion restricts FGFR2 fusion-driven intrahepatic cholangiocarcinoma. Mol Ther Nucleic Acids, 34 (2023), Article 102047.
[57]
R. Nishi, M. Ohyagi, T. Nagata, Y. Mabuchi, T. Yokota. Regulation of activated microglia and macrophages by systemically administered DNA/RNA heteroduplex oligonucleotides. Mol Ther, 30 (6) (2022), pp. 2210-2223.
[58]
M. Ohyagi, T. Nagata, K. Ihara, K. Yoshida-Tanaka, R. Nishi, H. Miyata, et al. DNA/RNA heteroduplex oligonucleotide technology for regulating lymphocytes in vivo. Nat Commun, 12 (2021), p. 7344.
AI Summary AI Mindmap
PDF(8485 KB)

Accesses

Citations

Detail

Sections
Recommended

/