Current Status, Challenges, and Prospects for New Types of Aerial Robots

Xidong Zhou, Hang Zhong, Hui Zhang, Wei He, Hean Hua, Yaonan Wang

Engineering ›› 2024, Vol. 41 ›› Issue (10) : 19-34.

PDF(3807 KB)
PDF(3807 KB)
Engineering ›› 2024, Vol. 41 ›› Issue (10) : 19-34. DOI: 10.1016/j.eng.2024.05.008
Research
Review

Current Status, Challenges, and Prospects for New Types of Aerial Robots

Author information +
History +

Abstract

New types of aerial robots (NTARs) have found extensive applications in the military, civilian contexts, scientific research, disaster management, and various other domains. Compared with traditional aerial robots, NTARs exhibit a broader range of morphological diversity, locomotion capabilities, and enhanced operational capacities. Therefore, this study defines aerial robots with the four characteristics of morphability, biomimicry, multi-modal locomotion, and manipulator attachment as NTARs. Subsequently, this paper discusses the latest research progress in the materials and manufacturing technology, actuation technology, and perception and control technology of NTARs. Thereafter, the research status of NTAR systems is summarized, focusing on the frontier development and application cases of flapping-wing micro-air vehicles, perching aerial robots, amphibious robots, and operational aerial robots. Finally, the main challenges presented by NTARs in terms of energy, materials, and perception are analyzed, and the future development trends of NTARs are summarized in terms of size and endurance, mechatronics, and complex scenarios, providing a reference direction for the follow-up exploration of NTARs.

Graphical abstract

Keywords

Aerial robot / Morphability / Biomimicry / Perch / Amphibious

Cite this article

Download citation ▾
Xidong Zhou, Hang Zhong, Hui Zhang, Wei He, Hean Hua, Yaonan Wang. Current Status, Challenges, and Prospects for New Types of Aerial Robots. Engineering, 2024, 41(10): 19‒34 https://doi.org/10.1016/j.eng.2024.05.008

References

[1]
M.A. Khan, H. Menouar, A. Eldeeb, A. Abu-Dayya, F.D. Salim. On the detection of unauthorized drones—techniques and future perspectives: a review. IEEE Sens J, 22 (12) (2022), pp. 11439-11455.
[2]
Micro.seas.harvard.edu [Internet]. Boston: Harvard Microrobotics Laboratory; [cited 2023 Aug 4]. Available from:
[3]
Aerial robotics lab research groups imperial college London [Internet]. London: Imperial College London; [cited 2023 Aug 4]. Available from:
[4]
HKUST aerial robotics group [Internet]. Hong Kong: HKUST Aerial Robotics Group; [cited 2023 Aug 4]. Available from:
[5]
Fast lab field autonomous system and computing laboratory [Internet]. Hangzhou: FAST Lab; [cited 2023 Aug 4]. Available from:
[6]
D. Li, S. Zhao, A. Da Ronch, J. Xiang, J. Drofelnik, Y. Li, et al. A review of modelling and analysis of morphing wings. Prog Aerosp Sci, 100 (2018), pp. 46-62.
[7]
A. Ramezani, S.J. Chung, S. Hutchinson. A biomimetic robotic platform to study flight specializations of bats. Sci Robot, 2 (3) (2017), Article eaal2505.
[8]
M. Di Luca, S. Mintchev, G. Heitz, F. Noca, D. Floreano. Bioinspired morphing wings for extended flight envelope and roll control of small drones. Interface Focus, 7 (1) (2017), Article 20160092.
[9]
E. Ajanic, M. Feroskhan, S. Mintchev, F. Noca, D. Floreano. Bioinspired wing and tail morphing extends drone flight capabilities. Sci Robot, 5 (47) (2020), Article eabc2897.
[10]
E. Chang, L.Y. Matloff, A.K. Stowers, D. Lentink. Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion. Sci Robot, 5 (38) (2020), Article eaay1246.
[11]
H. Huang, W. He, J. Wang, L. Zhang, Q. Fu. An all servo-driven bird-like flapping-wing aerial robot capable of autonomous flight. IEEE/ASME Trans Mechatron, 27 (6) (2022), pp. 5484-5494.
[12]
X. Wu, W. He, Q. Wang, T. Meng, X. He, Q. Fu. A long-endurance flapping-wing robot based on mass distribution and energy consumption method. IEEE Trans Ind Electron, 70 (8) (2022), pp. 8215-8224.
[13]
H.V. Phan, H.C. Park. Insect-inspired, tailless, hover-capable flapping-wing robots: recent progress, challenges, and future directions. Prog Aerosp Sci, 111 (2019), Article 100573.
[14]
K. Kim, P. Spieler, E.S. Lupu, A. Ramezani, S.J. Chung. A bipedal walking robot that can fly, slackline, and skateboard. Sci Robot, 6 (59) (2021), Article eabf8136.
[15]
A. Ollero, M. Tognon, A. Suarez, D. Lee, A. Franchi. Past, present, and future of aerial robotic manipulators. IEEE Trans Robot, 38 (1) (2021), pp. 626-645.
[16]
D. Floreano, R.J. Wood. Science, technology and the future of small autonomous drones. Nature, 521 (7553) (2015), pp. 460-466.
[17]
S. Mintchev, D. Floreano. Adaptive morphology: a design principle for multimodal and multifunctional robots. IEEE Robot Autom Mag, 23 (3) (2016), pp. 42-54.
[18]
W.R.T. Roderick, M.R. Cutkosky, D. Lentink. Touchdown to take-off: at the interface of flight and surface locomotion. Interface Focus, 7 (1) (2017), Article 20160094.
[19]
M. Kovac. Learning from nature how to land aerial robots. Science, 352 (6288) (2016), pp. 895-896.
[20]
F. Ruggiero, V. Lippiello, A. Ollero. Aerial manipulation: a literature review. IEEE Robot Autom Lett, 3 (3) (2018), pp. 1957-1964.
[21]
S.J. Kim, D.Y. Lee, G.P. Jung, K.J. Cho. An origami-inspired, self-locking robotic arm that can be folded flat. Sci Robot, 3 (16) (2018), Article eaar2915.
[22]
D. Hwang, E.J. Barron III, A.B.M.T. Haque, M.D. Bartlett. Shape morphing mechanical metamaterials through reversible plasticity. Sci Robot, 7 (63) (2022), Article eabg2171.
[23]
N.G. Kim, M.W. Han, A. Iakovleva, H.B. Park, W.S. Chu, S.H. Ahn. Hybrid composite actuator with shape retention capability for morphing flap of unmanned aerial vehicle (UAV). Compos Struct, 243 (2020), Article 112227.
[24]
T. Ozaki, N. Ohta, T. Jimbo, K. Hamaguchi. Takeoff of a 2.1 g fully untethered tailless flapping-wing micro aerial vehicle with integrated battery. IEEE Robot Autom Lett, 8 (6) (2023), pp. 3574-3580.
[25]
Y. Zou, W. Zhang, Z. Zhang. Liftoff of an electromagnetically driven insect-inspired flapping-wing robot. IEEE Trans Robot, 32 (5) (2016), pp. 1285-1289.
[26]
Y. Chen, H. Zhao, J. Mao, P. Chirarattananon, E.F. Helbling, N.P. Hyun, et al. Controlled flight of a microrobot powered by soft artificial muscles. Nature, 575 (7782) (2019), pp. 324-329.
[27]
Miiller MG, Steidle F, Schuster MJ, Lutz P, Maier M, Stoneman S, et al. Robust visual-inertial state estimation with multiple iodometries and efficient mapping on an MAV with ultra-wide FOV stereo vision. In: Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018 Oct 1-5; Madrid, Spain. New York City: IEEE; 2018. p. 3701-8.
[28]
N. Chen, F. Kong, W. Xu, Y. Cai, H. Li, D. He, et al. A self-rotating, single-actuated UAV with extended sensor field of view for autonomous navigation. Sci Robot, 8 (76) (2023), Article eade4538.
[29]
P. Foehn, E. Kaufmann, A. Romero, R. Penicka, S. Sun, L. Bauersfeld, et al. Agilicious: open-source and open-hardware agile quadrotor for vision-based flight. Sci Robot, 7 (67) (2022), Article eabl6259.
[30]
R.J. Wood. The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans Robot, 24 (2) (2008), pp. 341-347.
[31]
K.Y. Ma, P. Chirarattananon, S.B. Fuller, R.J. Wood. Controlled flight of a biologically inspired, insect-scale robot. Science, 340 (6132) (2013), pp. 603-607.
[32]
M.A. Graule, P. Chirarattananon, S.B. Fuller, N.T. Jafferis, K.Y. Ma, M. Spenko, et al. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion. Science, 352 (6288) (2016), pp. 978-982.
[33]
Y. Chen, H. Wang, E.F. Helbling, N.T. Jafferis, R. Zufferey, A. Ong, et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Sci Robot, 2 (11) (2017), Article eaao5619.
[34]
N.T. Jafferis, E.F. Helbling, M. Karpelson, R.J. Wood. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature, 570 (7762) (2019), pp. 491-495.
[35]
Dufour L, Owen K, Mintchev S, Floreano D. A drone with insect-inspired folding wings. In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2016 Oct 9-14; Daejeon, Republic of Korea. New York City: IEEE; 2016. p. 1576-81.
[36]
Mintchev S, Daler L, L’Eplattenier G, Saint-Raymond L, Floreano D. Foldable and self-deployable pocket sized quadrotor. In:Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA); 2015 May 26-30; Washington, DC, USA. New York City: IEEE; 2015. p. 2190-5.
[37]
S. Mintchev, J. Shintake, D. Floreano. Bioinspired dual-stiffness origami. Sci Robot, 3 (20) (2018), Article eaau0275.
[38]
P. Zheng, F. Xiao, P.H. Nguyen, A. Farinha, M. Kovac.Metamorphic aerial robot capable of mid-air shape morphing for rapid perching. Sci Rep, 13 (1) (2023), p. 1297.
[39]
K. Johnson, V. Arroyos, A. Ferran, R. Villanueva, D. Yin, T. Elberier, et al. Solar-powered shape-changing origami microfliers. Sci Robot, 8 (82) (2023), Article eadg4276.
[40]
H. Rodrigue, S. Cho, M.W. Han, B. Bhandari, J.E. Shim, S.H. Ahn. Effect of twist morphing wing segment on aerodynamic performance of UAV. J Mech Sci Technol, 30 (1) (2016), pp. 229-236.
[41]
M.W. Han, H. Rodrigue, H.I. Kim, S.H. Song, S.H. Ahn. Shape memory alloy/glass fiber woven composite for soft morphing winglets of unmanned aerial vehicles. Compos Struct, 140 (2016), pp. 202-212.
[42]
Gomez-Tamm AE, Perez-Sanchez V, Arrue BC, Ollero A. SMA actuated low-weight bio-inspired claws for grasping and perching using flapping wing aerial systems. In:Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2020 Oct 25-29; Las Vegas, NA, USA. New York City: IEEE; 2020. p. 8807-14.
[43]
V. Perez-Sanchez, F.J. Garcia-Rubiales, S.R. Nekoo, B. Arrue, A. Ollero. Modeling and application of an SMA-actuated lightweight human-inspired gripper for aerial manipulation. Machines, 11 (9) (2023), p. 859.
[44]
Chukewad YM, Singh AT, James JM, Fuller SB. A new robot fly design that is easier to fabricate and capable of flight and ground locomotion. In: Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018 Oct 1-5; Madrid, Spain. New York City: IEEE; 2018. p. 4875-82.
[45]
James J, Iyer V, Chukewad Y, Gollakota S, Fuller SB. Liftoff of a 190 mg laser-powered aerial vehicle:the lightest wireless robot to fly. In: Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA); 2018 May 21-25; Brisbane, QLD, Australia. New York City: IEEE; 2018. p. 3587-94.
[46]
S.B. Fuller. Four wings: an insect-sized aerial robot with steering ability and payload capacity for autonomy. IEEE Robot Autom Lett, 4 (2) (2019), pp. 570-577.
[47]
Y.M. Chukewad, S. Fuller. Yaw control of a hovering flapping-wing aerial vehicle with a passive wing hinge. IEEE Robot Autom Lett, 6 (2) (2021), pp. 1864-1871.
[48]
Y.M. Chukewad, J. James, A. Singh, S. Fuller. RoboFly: an insect-sized robot with simplified fabrication that is capable of flight, ground, and water surface locomotion. IEEE Trans Robot, 37 (6) (2021), pp. 2025-2040.
[49]
T. Ozaki, K. Hamaguchi. Bioinspired flapping-wing robot with direct-driven piezoelectric actuation and its takeoff demonstration. IEEE Robot Autom Lett, 3 (4) (2018), pp. 4217-4224.
[50]
T. Ozaki, N. Ohta, T. Jimbo, K. Hamaguchi. A wireless radiofrequency-powered insect-scale flapping-wing aerial vehicle. Nat Electron, 4 (11) (2021), pp. 845-852.
[51]
Bhushan P, Tomlin CJ. Milligram-scale micro aerial vehicle design for low-voltage operation. In: Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018 Oct 1-5; Madrid, Spain. New York City: IEEE; 2018. p. 1-9.
[52]
Bhushan P, Tomlin CJ. Design of the first sub-milligram flapping wing aerial vehicle. In: Proceedings of the 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS); 2019 Jan 27-31; Seoul, Republic of Korea. New York City: IEEE; 2019. p. 2-5.
[53]
P. Bhushan, C. Tomlin. Design of an electromagnetic actuator for an insect-scale spinning-wing robot. IEEE Robot Autom Lett, 5 (3) (2020), pp. 4188-4193.
[54]
Y. Chen, H. Wang, E.F. Helbling, N.T. Jafferis, R. Zufferey, A. Ong, et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Sci Robot, 2 (11) (2017), Article eaao5619.
[55]
Chen Y, Ma K, Wood RJ. Influence of wing morphological and inertial parameters on flapping flight performance. In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2016 Oct 9-14; Daejeon, Republic of Korea. New York City: IEEE; 2016. p. 2329-36.
[56]
Y. Chen, S. Xu, Z. Ren, P. Chirarattananon. Collision resilient insect-scale soft-actuated aerial robots with high agility. IEEE Trans Robot, 37 (5) (2021), pp. 1752-1764.
[57]
Z. Ren, S. Kim, X. Ji, W. Zhu, F. Niroui, J. Kong, et al. A high-lift micro-aerial-robot powered by low-voltage and long-endurance dielectric elastomer actuators. Adv Mater, 34 (7) (2022), p. 34.
[58]
Hsiao YH, Kim S, Ren Z, Chen YF. Heading control of a long-endurance insect-scale aerial robot powered by soft artificial muscles. In: Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA); 2023 May 29-Jun 2; London, UK. New York City: IEEE; 2023. p. 3376-82.
[59]
S. Kim, Y.H. Hsiao, Y. Lee, W. Zhu, Z. Ren, F. Niroui, et al. Laser-assisted failure recovery for dielectric elastomer actuators in aerial robots. Sci Robot, 8 (76) (2023), Article eadf4278.
[60]
A. Gurtner, D.G. Greer, R. Glassock, L. Mejias, R.A. Walker, W.W. Boles. Investigation of fish-eye lenses for small-UAV aerial photography. IEEE Trans Geosci Remote Sens, 47 (3) (2009), pp. 709-721.
[61]
M. Tarhan, E. Altuğ. EKF based attitude estimation and stabilization of a quadrotor UAV using vanishing points in catadioptric images. J Intell Robot Syst, 62 (3-4) (2011), pp. 587-607.
[62]
W. Gao, K. Wang, W. Ding, F. Gao, T. Qin, S. Shen. Autonomous aerial robot using dual-fisheye cameras. J Field Robot, 37 (4) (2020), pp. 497-514.
[63]
A. Harmat, M. Trentini, I. Sharf. Multi-camera tracking and mapping for unmanned aerial vehicles in unstructured environments. J Intell Robot Syst, 78 (2) (2015), pp. 291-317.
[64]
Gohl P, Honegger D, Omari S, Achtelik M, Pollefeys M, Siegwart R. Omnidirectional visual obstacle detection using embedded FPGA. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2015 Sep 28-Oct 3; Hamburg, Germany. New York City: IEEE; 2015. p. 3938-43.
[65]
D. Wierzbicki. Multi-camera imaging system for UAV photogrammetry. Sensors, 18 (8) (2018), p. 2433.
[66]
Kulathunga G, Fedorenko R, Klimchik A. Regions of interest segmentation from lidar point cloud for multirotor aerial vehicles. In:Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS); 2020 Sep 1-4; Athens, Greece. New York City: IEEE; 2020. p. 1213-20.
[67]
L. Diels, M. Vlaminck, B. De Wit, W. Philips, H. Luong.On the optimal mounting angle for a spinning lidar on a UAV. IEEE Sens J, 22 (21) (2022), pp. 21240-21247.
[68]
Zhao S, Zhang H, Wang P, Nogueira L, Scherer S. Super odometry:IMU-centric lidar-visual-inertial estimator for challenging environments. In:Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2021 Sep 27-Oct 1; Prague, Czech Republic. New York City: IEEE; 2021. p. 8729-36.
[69]
K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni, et al. Fast, autonomous flight in GPS-denied and cluttered environments. J Field Robot, 35 (1) (2018), pp. 101-120.
[70]
T. Baca, M. Petrlik, M. Vrba, V. Spurny, R. Penicka, D. Hert, et al. The MRS UAV system: pushing the frontiers of reproducible research, real-world deployment, and education with autonomous unmanned aerial vehicles. J Intell Robot Syst, 102 (1) (2021), p. 26.
[71]
I. Sa, M. Kamel, M. Burri, M. Bloesch, R. Khanna, M. Popovic, et al. Build your own visual-inertial drone: a cost-effective and open-source autonomous drone. IEEE Robot Autom Mag, 25 (1) (2017), pp. 89-103.
[72]
E. Tal, S. Karaman. Accurate tracking of aggressive quadrotor trajectories using incremental nonlinear dynamic inversion and differential flatness. IEEE Trans Control Syst Technol, 29 (3) (2020), pp. 1203-1218.
[73]
G. Loianno, C. Brunner, G. McGrath, V. Kumar.Estimation, control, and planning for aggressive flight with a small quadrotor with a single camera and imu. IEEE Robot Autom Lett, 2 (2) (2016), pp. 404-411.
[74]
G. De Croon, K. de Clercq, R. Ruijsink, B. Remes, C. de Wagter. Design, aerodynamics, and vision-based control of the delfly. Int J Micro Air Veh, 1 (2) (2009), pp. 71-97.
[75]
De Wagter C, Tijmons S, Remes BD, de Croon GCHE.Autonomous flight of a 20-gram Flapping Wing MAV with a 4-gram on-board stereo vision system. In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA); 2014 May 31- Jun 7; Hong Kong, China. New York City: IEEE; 2014. p. 4982-7.
[76]
M. Kar’asek, F.T. Muijres, C. De Wagter, B.D.W. Remes, G.C.H.E.de Croon. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science, 361 (6407) (2018), pp. 1089-1094.
[77]
M. Kovač, J. Germann, C. Hürzeler, R.Y. Siegwart, D. Floreano. A perching mechanism for micro aerial vehicles. J Micro-Nano Mechatron, 5 (3-4) (2009), pp. 77-91.
[78]
Desbiens AL, Asbeck A, Cutkosky M. Hybrid aerial and scansorial robotics. In:Proceedings of the 2010 IEEE International Conference on Robotics and Automation; 2010 May 3-8; Anchorage, AK, USA. New York City: IEEE; 2010. p. 72-7.
[79]
Daler L, Klaptocz A, Briod A, Sitti M, Floreano D. A perching mechanism for flying robots using a fibre-based adhesive. In: Proceedings of the 2013 IEEE International Conference on Robotics and Automation; 2013 May 6-10, Karlsruhe, Germany. New York City: IEEE; 2013. p. 4433-8.
[80]
Tsukagoshi H, Watanabe M, Hamada T, Ashlih D, Lizuka R. Aerial manipulator with perching and door-opening capability. In:Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA); 2015 May 26-30; Washington, DC, USA. New York City: IEEE; 2015. p. 4663-8.
[81]
L. Li, S. Wang, Y. Zhang, S. Song, C. Wang, S. Tan, et al. Aerial-aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces. Sci Robot, 7 (66) (2022), Article eabm6695.
[82]
Q. Li, H. Li, H. Shen, Y. Yu, H. He, X. Feng, et al. An aerial-wall robotic insect that can land, climb, and take off from vertical surfaces. Research, 6 (2023), p. 0144.
[83]
W.R. Roderick, M.R. Cutkosky, D. Lentink. Bird-inspired dynamic grasping and perching in arboreal environments. Sci Robot, 6 (61) (2021), Article eabj7562.
[84]
Nguyen HN, Siddall R, Stephens B, Navarro-Rubio A, Kovač M. A passively adaptive microspine grapple for robust, controllable perching. In: Proceedings of the 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft); 2019 Apr 14-18; Seoul, Republic of Korea. New York City: IEEE; 2019. p. 80-7.
[85]
Mellinger D, Shomin M, Kumar V. Control of quadrotors for robust perching and landing. In:Proceedings of the International Powered Lift Conference; 2010 Oct 5-10; Philadelphia, PA, USA. Fairfax: The Vertical Flight Society; 2010. p. 205-25.
[86]
A.L. Desbiens, M.R. Cutkosky. Landing and perching on vertical surfaces with microspines for small unmanned air vehicles. J Intell Robot Syst, 57 (1-4) (2010), pp. 313-327.
[87]
A.L. Desbiens, A.T. Asbeck, M.R. Cutkosky. Landing, perching and taking off from vertical surfaces. Int J Robot Res, 30 (3) (2011), pp. 355-370.
[88]
Mehanovic D, Bass J, Courteau T, Rancourt D, Desbiens AL. Autonomous thrust-assisted perching of a fixed-wing UAV on vertical surfaces. In:Proceedings of the Biomimetic and Biohybrid Systems: 6th International Conference, Living Machines 2017; 2017 Jul 26-28; Stanford, CA, USA. Berlin: Springer; 2017. p. 302-14.
[89]
M.T. Pope, C.W. Kimes, H. Jiang, E.W. Hawkes, M.A. Estrada, C.F. Kerst, et al. A multimodal robot for perching and climbing on vertical outdoor surfaces. IEEE Trans Robot, 33 (1) (2016), pp. 38-48.
[90]
Anderson M. The sticky-pad plane and other innovative concepts for perching UAVs. Proceedings of the 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition; 2009 Jan 5-8; Orlando FL, USA. Reston: American Institute for Aeronautics and Astronautics (AIAA); 2009. p. 40.
[91]
Hawkes EW, Christensen DL, Eason EV, Estrada MA, Heverly M, Hilgemann E. Dynamic surface grasping with directional adhesion. In: Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2013 Nov 3-7; Tokyo, Japan. New York City: IEEE; 2013. p. 5487-93.
[92]
Jiang H, Pope MT, Hawkes EW, Christensen DL, Estrada MA, Parlier A. Modeling the dynamics of perching with opposed-grip mechanisms. In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA); 2014 May 31-Jun 7; Hong Kong, China. New York City: IEEE; 2014. p. 3102-8.
[93]
Kalantari A, Mahajan K, Ruffatto D, Spenko M. Autonomous perching and take-off on vertical walls for a quadrotor micro air vehicle. In:Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA); 2015 May 26-30; Washington, DC, USA. New York City: IEEE; 2015. p. 4669-74.
[94]
M.A. Estrada, S. Mintchev, D.L. Christensen, M.R. Cutkosky, D. Floreano. Forceful manipulation with micro air vehicles. Sci Robot, 3 (23) (2018), Article eaau6903.
[95]
Doyle CE, Bird JJ, Isom TA, Johnson CJ, Kallman JC, Simpson JA. Avian-inspired passive perching mechanism for robotic rotorcraft. In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2011 Sep 25-30; San Francisco, CA, USA. New York City: IEEE; 2011. p. 4975-80.
[96]
C.E. Doyle, J.J. Bird, T.A. Isom, J.C. Kallman, D.F. Bareiss, D.J. Dunlop, et al. An avian-inspired passive mechanism for quadrotor perching. IEEE/ASME Trans Mechatron, 18 (2) (2012), pp. 506-517.
[97]
W. Stewart, L. Guarino, Y. Piskarev, D. Floreano. Passive perching with energy storage for winged aerial robots. Adv Intell Syst, 5 (4) (2023), Article 2100150.
[98]
K.C. Broers, S.F. Armanini. Design and testing of a bioinspired lightweight perching mechanism for flapping-wing MAVs using soft grippers. IEEE Robot Autom Lett, 7 (3) (2022), pp. 7526-7533.
[99]
R. Zufferey, J. Tormo-Barbero, D. Feliu-Taleg’on, S.R. Nekoo, J.Á. Acosta, A. Ollero. How ornithopters can perch autonomously on a branch. Nat Commun, 13 (1) (2022), p. 7713.
[100]
K. Hang, X. Lyu, H. Song, J.A. Stork, A.M. Dollar, D. Kragic, et al. Perching and resting—a paradigm for UAV maneuvering with modularized landing gears. Sci Robot, 4 (28) (2019), Article eaau6637.
[101]
F. Ruiz, B.C. Arrue, A. Ollero. SOPHIE: soft and flexible aerial vehicle for physical interaction with the environment. IEEE Robot Autom Lett, 7 (4) (2022), pp. 11086-11093.
[102]
H. Alzu’bi, I. Mansour, O. Rawashdeh. Loon copter: implementation of a hybrid unmanned aquatic-aerial quadcopter with active buoyancy control. J Field Robot, 35 (5) (2018), pp. 764-778.
[103]
Lu D, Xiong C, Zeng Z, Liang L. A multimodal aerial under-water vehicle with extended endurance and capabilities. In: Proceedings of the 2019 International Conference on Robotics and Automation (ICRA); 2019 May 20-24; Montreal, QC, Canada. New York City: IEEE; 2019. p. 4674-80.
[104]
R. Zufferey, A.O. Ancel, A. Farinha, R. Siddall, S.F. Armanini, M. Nasr, et al. Consecutive aquatic jump-gliding with water-reactive fuel. Sci Robot, 4 (34) (2019), Article eaax7330.
[105]
Daler L, Lecoeur J, Hählen PB, Hählen PB, Floreano D. A flying robot with adaptive morphology for multi-modal locomotion. In: Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2013 Nov 3-7; Tokyo, Japan. New York City: IEEE; 2013. p. 1361-6.
[106]
Kalantari A, Spenko M. Design and experimental validation of hyTAQ, a hybrid terrestrial and aerial quadrotor. In: Proceedings of the 2013 IEEE International Conference on Robotics and Automation; 2013 May 6-10; Karlsruhe, Germany. New York City: IEEE; 2013. p. 4445-50.
[107]
Maia MM, Mercado DA, Diez FJ. Design and implementation of multirotor aerial-underwater vehicles with experimental results. In:Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2017 Sep 24-28; Vancouver, BC, Canada. New York City: IEEE; 2017. p. 961-6.
[108]
D.A.M. Ravell, M.M. Maia, F.J. Diez. Modeling and control of unmanned aerial/underwater vehicles using hybrid control. Control Eng Pract, 76 (2018), pp. 112-122.
[109]
Zha J, Thacher E, Kroeger J, Mäkiharju SA, Mueller MW. Towards breaching a still water surface with a miniature unmanned aerial underwater vehicle. In:Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS); 2019 Jun 11-14; Atlanta, GA, USA. New York City: IEEE; 2019. p. 1178-85.
[110]
Caruccio D, Rush M, Smith P, Carroll J, Warwick P, Smith E, et al. Design, fabrication, and testing of the fixed-wing air and underwater drone. In:Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations Conference; 2019 Jun 5-9; Denver, CO, USA. Reston: American Institute for Aeronautics and Astronautics (AIAA); 2017. p. 4447.
[111]
W. Weisler, W. Stewart, M.B. Anderson, K.J. Peters, A. Gopalarathnam, M. Bryant. Testing and characterization of a fixed wing cross-domain unmanned vehicle operating in aerial and underwater environments. IEEE J Oceanic Eng, 43 (4) (2017), pp. 969-982.
[112]
R.A. Peloquin, D. Thibault, A.L. Desbiens. Design of a passive vertical takeoff and landing aquatic UAV. IEEE Robot Autom Lett, 2 (2) (2016), pp. 381-388.
[113]
Moore J, Fein A, Setzler W. Design and analysis of a fixed-wing unmanned aerial-aquatic vehicle. In: Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA); 2018 May 21-25; Brisbane, QLD, Australia. New York City: IEEE; 2018. p. 1236-43.
[114]
Siddall R, Kovač M. A water jet thruster for an aquatic micro air vehicle. In:Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA); 2015 May 26-30; Seattle, WA, USA. New York City: IEEE; 2015. p. 3979-85.
[115]
R. Siddall, M. Kovac. Fast aquatic escape with a jet thruster. IEEE/ASME Trans Mechatron, 22 (1) (2016), pp. 217-226.
[116]
R. Siddall, A. Ortega Ancel, M. Kovač. Wind and water tunnel testing of a morphing aquatic micro air vehicle. Interface Focus, 7 (1) (2017), Article 20160085.
[117]
R.J. Bachmann, F.J. Boria, R. Vaidyanathan, P.G. Ifju, R.D. Quinn. A biologically inspired micro-vehicle capable of aerial and terrestrial locomotion. Mech Mach Theory, 44 (3) (2009), pp. 513-526.
[118]
Bachmann RJ, Vaidyanathan R, Quinn RD. Drive train design enabling locomotion transition of a small hybrid air-land vehicle. In:Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2009 Oct 11-15; Saint Louis, MO, USA. New York City: IEEE; 2009. p. 5647-52.
[119]
Boria FJ, Bachmann RJ, Ifju PG, Quinn RD, Vaidyanathan R, Perry C, et al. A sensor platform capable of aerial and terrestrial locomotion. In:Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2005 Aug 2-6; Edmonton, AB, Canada. New York City: IEEE; 2005. p. 3959-64.
[120]
L. Daler, S. Mintchev, C. Stefanini, D. Floreano. A bioinspired multi-modal flying and walking robot. Bioinspir Biomim, 10 (1) (2015), Article 016005.
[121]
A. Briod, P. Kornatowski, J.C. Zufferey, D. Floreano. A collision-resilient flying robot. J Field Robot, 31 (4) (2014), pp. 496-509.
[122]
Kossett A, Purvey J, Papanikolopoulos N. More than meets the eye:a hybrid-locomotion robot with rotary flight and wheel modes. In:Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2009 Oct 10-15; Saint Louis, MO, USA. New York City: IEEE; 2009. p. 5653-8.
[123]
Kossett A, D’Sa R, Purvey J, Papanikolopoulos N. Design of an improved land/air miniature robot. In:Proceedings of the 2010 IEEE International Conference on Robotics and Automation; 2010 May 3-8; Anchorage, AK, USA. New York City: IEEE; 2010. p. 632-7.
[124]
Kossett A, Papanikolopoulos N. A robust miniature robot design for land/air hybrid locomotion. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation; 2011 May 9-13; Shanghai, China. New York City: IEEE; 2011. p. 4595-600.
[125]
Morton S, Papanikolopoulos N. A small hybrid ground-air vehicle concept. In:Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2017 Sep 24-28; Vancouver, BC, Canada. New York City: IEEE; 2017. p. 5149-54.
[126]
H. Wang, J. Shi, J. Wang, H. Wang, Y. Feng, Y. Yu. Design and modeling of a novel transformable land/air robot. Int J Aerosp Eng, 2019 (2019), p. 2064131.
[127]
Pratt CJ, Leang KK. Dynamic underactuated flying-walking (duck) robot. In: Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA); 2016 May 16-21; Stockholm, Sweden. New York City: IEEE; 2016. p. 3267-4.
[128]
Peterson K, Fearing RS. Experimental dynamics of wing assisted running for a bipedal ornithopter. In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2011 Sep 25-30; San Francisco, CA, USA. New York City: IEEE; 2011. p. 5080-6.
[129]
Z. Tu, C. Hui, L. Liu, Y. Zhou, D.R. Romano, X. Deng. Crawl and fly: a bio-inspired robot utilizing unified actuation for hybrid aerial-terrestrial locomotion. IEEE Robot Autom Lett, 6 (4) (2021), pp. 7549-7556.
[130]
K. Peterson, P. Birkmeyer, R. Dudley, R.S. Fearing. A wing-assisted running robot and implications for avian flight evolution. Bioinspir Biomim, 6 (4) (2011), Article 046008.
[131]
Shin WD, Park J, Park HW. Bio-inspired design of a gliding-walking multi-modal robot. In: Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018 Oct 1-5 Madrid, Spain. New York City: IEEE; 2018. p. 8158-64.
[132]
W.D. Shin, J. Park, H.W. Park. Development and experiments of a bio-inspired robot with multi-mode in aerial and terrestrial locomotion. Bioinspir Biomim, 14 (5) (2019), Article 056009.
[133]
K. Bodie, M. Brunner, M. Pantic, S. Walser, P. Pfandler, U. Angst, et al. Active interaction force control for contact-based inspection with a fully actuated aerial vehicle. IEEE Trans Robot, 37 (3) (2020), pp. 709-722.
[134]
A.E. Jimenez-Cano, P.J. Sanchez-Cuevas, P. Grau, A. Ollero, G. Heredia. Contact-based bridge inspection multirotors: design, modeling, and control considering the ceiling effect. IEEE Robot Autom Lett, 4 (4) (2019), pp. 3561-3568.
[135]
E. Aucone, S. Kirchgeorg, A. Valentini, L. Pellissier, K. Deiner, S. Mintchev. Drone-assisted collection of environmental dna from tree branches for biodiversity monitoring. Sci Robot, 8 (74) (2023), Article eadd5762.
[136]
Hunt G, Mitzalis F, Alhinai T, Hopper PA, Kovac M. 3D printing with flying robots. In: Proceedings of the 2014 IEEE international conference on robotics and automation (ICRA); 2014 May 31-Jun 7; Hong Kong, China. New York City: IEEE; 2014. p. 4493-9.
[137]
K. Zhang, P. Chermprayong, F. Xiao, D. Tzoumanikas, B. Dams, S. Kay, et al. Aerial additive manufacturing with multiple autonomous robots. Nature, 609 (7928) (2022), pp. 709-717.
[138]
N. Bucki, J. Tang, M.W. Mueller. Design and control of a midair-reconfigurable quadcopter using unactuated hinges. IEEE Trans Robot, 39 (1) (2022), pp. 539-557.
[139]
K. Alexis, G. Darivianakis, M. Burri, R. Siegwart. Aerial robotic contact-based inspection: planning and control. Auton Robots, 40 (4) (2016), pp. 631-655.
[140]
Zhan DQ.[Meal delivery drones officially put into operation] [Internet]. Beijing: People’s Daily; 2018 May 30 [cited 2023 Aug 4]. Available from: Chinese.
[141]
Low altitude economy is poised to soar] [Internet]. Beijing: China News Service; 2023 May 4 [2023 Aug 4] . Available from: Chinese.
[142]
P. Ramon-Soria, B.C. Arrue, A. Ollero. Grasp planning and visual servoing for an outdoors aerial dual manipulator. Engineering, 6 (1) (2020), pp. 77-88.
[143]
W. Stewart, E. Ajanic, M. Müller, D. Floreano. How to swoop and grasp like a bird with a passive claw for a high-speed grasping. IEEE/ASME Trans Mechatron, 27 (5) (2022), pp. 3527-3535.
[144]
L. Xie, X. Cao, J. Xu, R. Zhang. UAV-enabled wireless power transfer: a tutorial overview. IEEE Trans Green Commun Netw, 5 (4) (2021), pp. 2042-2064.
[145]
M.R. Ibrahim, M.F. Azman, A.H. Ariffin, M.N. Mansur, M.S. Mustapa, A.R. Irfan. Overview of unmanned aerial vehicle (UAV) parts material in recent application. A.H. Ariffin, N.A. Latif, M.F.B. Mahmod, Z.B. Mohamad (Eds.), Structural integrity and monitoring for composite materials, Springer, Singapore (2023), pp. 179-189.
[146]
X. Ye, F. Song, Z. Zhang, Q. Zeng. A review of small UAV navigation system based on multi-source sensor fusion. IEEE Sens J, 23 (17) (2023), pp. 18926-18948.
[147]
Fumagalli M, Stramigioli S, Carloni R. Mechatronic design of a robotic manipulator for unmanned aerial vehicles. In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2016 Oct 9-14; Daejeon, Republic of Korea. New York City: IEEE; 2016. p. 4843-8.
AI Summary AI Mindmap
PDF(3807 KB)

Accesses

Citations

Detail

Sections
Recommended

/