In Situ Coupling of Reduction and Oxidation Processes with Alternating Current-Driven Bioelectrodes for Efficient Mineralization of Refractory Pollutants

Ye Yuan, Junjie Zhang, Wanxin Yin, Lulu Zhang, Lin Li, Tianming Chen, Cheng Ding, Wenzong Liu, Aijie Wang, Fan Chen

Engineering ›› 2024, Vol. 43 ›› Issue (12) : 125-138.

PDF(3954 KB)
PDF(3954 KB)
Engineering ›› 2024, Vol. 43 ›› Issue (12) : 125-138. DOI: 10.1016/j.eng.2024.05.009
Research
Article

In Situ Coupling of Reduction and Oxidation Processes with Alternating Current-Driven Bioelectrodes for Efficient Mineralization of Refractory Pollutants

Author information +
History +

Highlights

• A single bioelectrode achieved in-situ coupling of reduction and oxidation processes.

• Alternating current boosted azo dye initial reduction and subsequent mineralization.

• Bidirectional EET in electro-biofilms through cytochromes, pili, and redox mediators.

• A collaborative microbiome facilitated efficient bioelectro-metabolism of azo dyes.

• Multiple mechanisms of alternating current-driven bioelectrode were deciphered.

Abstract

The effective elimination of aromatic compounds from wastewater is imperative for safeguarding the ecological environment. Bioelectrochemical processes that combine cathodic reduction and anodic oxidation represent a promising approach for the biomineralization of aromatic compounds. However, conventional direct current bioelectrochemical methods have intrinsic limitations. In this study, a low-frequency and low-voltage alternating current (LFV-AC)-driven bioelectrode offering periodic in situ coupling of reduction and oxidation processes was developed for the biomineralization of aromatic compounds, as exemplified by the degradation of alizarin yellow R (AYR). LFV-AC stimulated biofilm demonstrated efficient bidirectional electron transfer and oxidation-reduction bifunctionality, considerably boosting AYR reduction (63.07% ± 1.91%) and subsequent mineralization of intermediate products (98.63% ± 0.37%). LFV-AC stimulation facilitated the assembly of a collaborative microbiome dedicated to AYR metabolism, characterized by an increased abundance of functional consortia proficient in azo dye reduction (Stenotrophomonas and Bradyrhizobium), aromatic intermediate oxidation (Sphingopyxis and Sphingomonas), and electron transfer (Geobacter and Pseudomonas). The collaborative microbiome demonstrated a notable enrichment of functional genes encoding azo- and nitro-reductases, catechol oxygenases, and redox mediator proteins. These findings highlight the effectiveness of LFV-AC stimulation in boosting azo dye biomineralization, offering a novel and sustainable approach for the efficient removal of refractory organic pollutants from wastewater.

Graphical abstract

Keywords

Alternating current / Bioelectrode / Redox process / Bio-mineralization / Electrode microbiome / Refractory organic pollutants

Cite this article

Download citation ▾
Ye Yuan, Junjie Zhang, Wanxin Yin, Lulu Zhang, Lin Li, Tianming Chen, Cheng Ding, Wenzong Liu, Aijie Wang, Fan Chen. In Situ Coupling of Reduction and Oxidation Processes with Alternating Current-Driven Bioelectrodes for Efficient Mineralization of Refractory Pollutants. Engineering, 2024, 43(12): 125‒138 https://doi.org/10.1016/j.eng.2024.05.009

References

[1]
K. Kuroda, T. Narihiro, F. Shinshima, M. Yoshida, H. Yamaguchi, H. Kurashita, et al. High-rate cotreatment of purified terephthalate and dimethyl terephthalate manufacturing wastewater by a mesophilic up-flow anaerobic sludge blanket reactor and the microbial ecology relevant to aromatic compound degradation. Water Res, 219 (2022), Article 118581.
[2]
J. Luo, S.Y. Miao, R. Koju, T.P. Joshi, R.P. Liu, H.J. Liu, et al. Simultaneous removal of aromatic pollutants and nitrate at high concentrations by hypersaline denitrification: long-term continuous experiments investigation. Water Res, 216 (2022), Article 118292.
[3]
J.X. Lu, J. Zhang, H.J. Xie, H.M. Wu, Y.M. Jing, M.D. Ji, et al. Transformation and toxicity dynamics of polycyclic aromatic hydrocarbons in a novel biological-constructed wetland-microalgal wastewater treatment process. Water Res, 223 (2022), Article 119023.
[4]
L. Yang, Y.J. Liu, C. Li, Z. Liu, X.S. Liu, C.X. Wei, et al. Biodegradation time series characteristics and metabolic fate of different aromatic compounds in the biochemical treatment process of coal chemical wastewater. Bioresour Technol, 361 (2022), Article 127688.
[5]
S.Z. Pei, Y. Wang, S.J. You, Z.G. Li, N.Q. Ren. Electrochemical removal of chlorophenol pollutants by reactive electrode membranes: scale-up strategy for engineered applications. Engineering, 9 (2022), pp. 77-84.
[6]
A. Jain, Z. He. Cathode-enhanced wastewater treatment in bioelectrochemical systems. NPJ Clean Water, 1 (2018), p. 23.
[7]
K.C. Yang, Y.X. Zhao, X. Zhou, Q. Wang, T.H. Pedersen, Z.C. Jia, et al. “Self-degradation” of 2-chlorophenol in a sequential cathode-anode cascade mode bioelectrochemical system. Water Res, 206 (2021), Article 117740.
[8]
A.J. Wang, D. Cui, H.Y. Cheng, Y.Q. Guo, F.Y. Kong, N.Q. Ren, et al. A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction. J Hazard Mater, 199-200 (2012), pp. 401-409.
[9]
M.H. Cui, T. Sangeetha, L. Gao, A.J. Wang. Hydrodynamics of up-flow hybrid anaerobic digestion reactors with built-in bioelectrochemical system. J Hazard Mater, 382 (2020), Article 121046.
[10]
Y. Yuan, W.X. Yin, Y.T. Huang, A.Q. Feng, T.M. Chen, L. Qiao, et al. Intermittent electric field stimulated reduction-oxidation coupled process for enhanced azo dye biodegradation. Chem Eng J, 451 (2023), Article 138732.
[11]
H. Yun, B. Liang, D.Y. Kong, H.Y. Cheng, Z.L. Li, Y.B. Gu, et al. Polarity inversion of bioanode for biocathodic reduction of aromatic pollutants. J Hazard Mater, 331 (2017), pp. 280-288.
[12]
S. Qian, Y.F. Cheng. Accelerated corrosion of pipeline steel and reduced cathodic protection effectiveness under direct current interference. Constr Build Mater, 148 (2017), pp. 675-685.
[13]
E. Hoseinzadeh, A. Rezaee, M. Farzadkia. Nitrate removal from pharmaceutical wastewater using microbial electrochemical system supplied through low frequency-low voltage alternating electric current. Bioelectrochemistry, 120 (2018), pp. 49-56.
[14]
W.T. Zheng, S.J. You, Y. Yao, N.Q. Ren, B. Ding, F. Li, et al. Sustainable generation of sulfate radicals and decontamination of micropollutants via sequential electrochemistry. Engineering, 30 (2023), pp. 144-152.
[15]
L.L. Tian, C.M. Liao, X.J. Yan, Q. Zhao, Z.Y. Wang, T. Li, et al. Endogenous electric field accelerates phenol degradation in bioelectrochemical systems with reduced electrode spacing. J Hazard Mater, 442 (2023), Article 130043.
[16]
L. Lu, Y.H. Xie, Z. Yang, B.L. Chen. Sustainable decontamination of heavy metal in wastewater and soil with novel rectangular wave asymmetrical alternative current electrochemistry. J Hazard Mater, 442 (2023), Article 130021.
[17]
D.D. Liang, Z. Li, G.H. Liu, C. Li, W.H. He, J.N. Li, et al. Construction of bidirectional electron transfer biofilms via periodic polarity reversal. Chem Eng J, 452 (2023), Article 139145.
[18]
S. Dehghani, A. Rezaee, S. Hosseinkhani. Biostimulation of heterotrophic-autotrophic denitrification in a microbial electrochemical system using alternating electrical current. J Clean Prod, 200 (2018), pp. 1100-1110.
[19]
Z. Moghiseh, A. Rezaee. Removal of aspirin from aqueous solution using electroactive bacteria induced by alternating current. Environ Sci Pollut Res Int, 28 (20) (2021), pp. 25327-25338.
[20]
X. Wang, L. Zhou, L. Lu, F.L. Lobo, N. Li, H.M. Wang, et al. Alternating current influences anaerobic electroactive biofilm activity. Environ Sci Technol, 50 (17) (2016), pp. 9169-9176.
[21]
Z. Moghiseh, A. Rezaee, S. Dehghani. Minimization of hazardous sludge production using a bioelectrochemical system supplied by an alternating current electric field. Bioelectrochemistry, 132 (2020), Article 107446.
[22]
Q. Sun, Z.L. Li, Y.Z. Wang, C.X. Yang, J.S. Chung, A.J. Wang. Cathodic bacterial community structure applying the different co-substrates for reductive decolorization of alizarin yellow R. Bioresour Technol, 208 (2016), pp. 64-72.
[23]
J. Gilmore, M. Islam, J. Duncan, R. Natu, R. Martinez-Duarte. Assessing the importance of the root mean square (RMS) value of different waveforms to determine the strength of a dielectrophoresis trapping force. Electrophoresis, 38 (20) (2017), pp. 2561-3254.
[24]
D. Cui, Y.Q. Guo, H.S. Lee, H.Y. Cheng, B. Liang, F.Y. Kong, et al. Efficient azo dye removal in bioelectrochemical system and post-aerobic bioreactor: optimization and characterization. Chem Eng J, 243 (2014), pp. 355-363.
[25]
J.W. Wang, S. Rathi, B. Singh, I. Lee, H.I. Joh, G.H. Kim. Alternating current dielectrophoresis optimization of Pt-decorated graphene oxide nanostructures for proficient hydrogen gas sensor. ACS Appl Mater Interfaces, 7 (25) (2015), pp. 13768-13775.
[26]
J. He, Q. Zhang, M. Li, T.Z. Ming, J.P. Feng, H.J. Peng, et al. Evaluating the influence of gradient applied voltages on electro-enhanced sequence batch reactor treating aniline wastewater: system performance, microbial community and functional genes. J Clean Prod, 389 (2023), Article 136077.
[27]
W.T. Huang, J.F. Chen, Y.Y. Hu, L.H. Zhang. Enhancement of Congo red decolorization by membrane-free structure and bio-cathode in a microbial electrolysis cell. Electrochim Acta, 260 (2018), pp. 196-203.
[28]
P. Mani, V.T. Fidal, K. Bowman, M. Breheny, T.S. Chandra, T. Keshavarz, et al. Degradation of azo dye (acid orange 7) in a microbial fuel cell: comparison between anodic microbial-mediated reduction and cathodic laccase-mediated oxidation. Front Energy Res, 7 (2019), p. 101.
[29]
F.Y. Kong, H.Y. Ren, D. Liu, Z.L. Wang, J. Nan, N.Q. Ren, et al. Improved decolorization and mineralization of azo dye in an integrated system of anaerobic bioelectrochemical modules and aerobic moving bed biofilm reactor. Bioresour Technol, 353 (2022), Article 127147.
[30]
C. Li, S.G. Hu, C.C. Ji, K.X. Yi, W.L. Yang. Insight into the pseudocapacitive behavior of electroactive biofilms in response to dynamic-controlled electron transfer and metabolism kinetics for current generation in water treatment. Environ Sci Technol, 57 (48) (2023), pp. 19891-19901.
[31]
D. Cui, M.H. Cui, B. Liang, W.Z. Liu, Z.E. Tang, A.J. Wang. Mutual effect between electrochemically active bacteria (EAB) and azo dye in bio-electrochemical system (BES). Chemosphere, 239 (2020), Article 124787.
[32]
C. Sánchez, P. Dessi, M. Duffy, P.N.L. Lens. Microbial electrochemical technologies: electronic circuitry and characterization tools. Biosens Bioelectron, 150 (2020), Article 111884.
[33]
S. Ishii, S. Suzuki, Y. Yamanaka, A. Wu, K.H. Nealson, O. Bretschger. Population dynamics of electrogenic microbial communities in microbial fuel cells started with three different inoculum sources. Bioelectrochemistry, 117 (2017), pp. 74-82.
[34]
X. Zhang, A. Prevoteau, R.O. Louro, C.M. Paquete, K. Rabaey. Periodic polarization of electroactive biofilms increases current density and charge carriers concentration while modifying biofilm structure. Biosens Bioelectron, 121 (2018), pp. 183-191.
[35]
W.W. Cai, Z.J. Zhang, G. Ren, Q.X. Shen, Y.A. Hou, A.Z. Ma, et al. Quorum sensing alters the microbial community of electrode-respiring bacteria and hydrogen scavengers toward improving hydrogen yield in microbial electrolysis cells. Appl Energy, 183 (2016), pp. 1133-1141.
[36]
F. Chen, B.L. Fan, C.L. Wang, J. Qian, B. Wang, X. Tang, et al. Weak electro-stimulation promotes microbial uranium removal: efficacy and mechanisms. J Hazard Mater, 439 (2022), Article 129622.
[37]
Y. Yin, G.T. Huang, Y.R. Tong, Y.D. Liu, L.H. Zhang. Electricity production and electrochemical impedance modeling of microbial fuel cells under static magnetic field. J Power Sources, 237 (2013), pp. 58-63.
[38]
S.S. Lim, J.M. Fontmorin, P. Izadi, W.R. Wan Daud, K. Scott, E.H. Yu. Impact of applied cell voltage on the performance of a microbial electrolysis cell fully catalysed by microorganisms. Int J Hydrogen Energy, 45 (4) (2020), pp. 2557-2568.
[39]
I. Hayashi, H. Fujita, H. Toju. Deterministic and stochastic processes generating alternative states of microbiomes. ISME Communications, 4 (1) (2024), Article ycae007.
[40]
Y. Mittal, S. Dash, P. Srivastava, P.M. Mishra, T.M. Aminabhavi, A.K. Yadav. Azo dye containing wastewater treatment in earthen membrane based unplanted two chambered constructed wetlands-microbial fuel cells: a new design for enhanced performance. Chem Eng J, 427 (2022), Article 131856.
[41]
C.J. Zhang, Q. Peng, R.H. Xuan, Y.M. Zhang, G. Xue, W.H. Sun. Accelerating biodegradation of an azo dye by using its inorganic intermediates. J Chem Technol Biotechnol, 96 (8) (2021), pp. 2336-2342.
[42]
D. de los Cobos-Vasconcelos, N. Ruiz-Ordaz, J. Galindez-Mayer, H. Poggi-Varaldo, C. Juarez-Ramirez, L.M. Aaron. Aerobic biodegradation of a mixture of sulfonated azo dyes by a bacterial consortium immobilized in a two-stage sparged packed-bed biofilm reactor. Eng Life Sci, 12 (1) (2012), pp. 39-48.
[43]
H. Verma, G.G. Dhingra, M. Sharma, V. Gupta, R.K. Negi, Y. Singh, et al. Comparative genomics of Sphingopyxis spp. unravelled functional attributes. Genomics, 112 (2) (2020), pp. 1956-1969.
[44]
Q. Dai, S. Zhang, H. Liu, J. Huang, L. Li. Sulfide-mediated azo dye degradation and microbial community analysis in a single-chamber air cathode microbial fuel cell. Bioelectrochemistry, 131 (2020), Article 107349.
[45]
V. Tarbajova, M. Kolackova, P. Chaloupsky, M. Dobesova, P. Capal, Z. Pilat, et al. Physiological and transcriptome profiling of Chlorella sorokiniana: a study on azo dye wastewater decolorization. J Hazard Mater, 460 (2023), Article 132450.
[46]
Y. Miao, N.W. Johnson, P.B. Gedalanga, D. Adamson, C. Newell, S. Mahendra. Response and recovery of microbial communities subjected to oxidative and biological treatments of 1,4-dioxane and co-contaminants. Water Res, 149 (2019), pp. 74-85.
[47]
J.Y. Zhang, K.Y. Zhou, F.L. Guo, H.X. Lei, R.X. Zhao, L. Lin, et al. The successional pattern of microbial communities and critical genes of consortia subsisting on chloramphenicol and its metabolites through long-term domestication. Engineering, 31 (2023), pp. 59-69.
[48]
Y.M. Fei, B.G. Zhang, D.D. Chen, T.X. Liu, H.L. Dong. The overlooked role of denitrifying bacteria in mediating vanadate reduction. Geochim Cosmochim Acta, 361 (2023), pp. 67-81.
[49]
S.X. Wang, B.G. Zhang, Y.M. Fei, H. Liu, Y. Zhao, H.M. Guo. Elucidating multiple electron-transfer pathways for metavanadate bioreduction by actinomycetic streptomyces microflavus. Environ Sci Technol, 57 (48) (2023), pp. 19921-19931.
[50]
M. Imran, M. Arshad, F. Negm, A. Khalid, B. Shaharoona, S. Hussain, et al. Yeast extract promotes decolorization of azo dyes by stimulating azoreductase activity in Shewanella sp. strain IFN4. Ecotoxicol Environ Saf, 124 (2016), pp. 42-49.
[51]
B. Liang, H.Y. Cheng, J.D. Van Nostrand, J.C. Ma, H. Yu, D.Y. Kong, et al. Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover. Water Res, 54 (2014), pp. 137-148.
[52]
P. Semana, J. Powlowski. Four aromatic intradiol ring cleavage dioxygenases from Aspergillus niger. Appl Environ Microbiol, 85 (23) (2019), pp. e01786-e01819.
[53]
Y.J. Zhang, Q. Zhang, H.J. Peng, W.L. Zhang, M. Li, J.P. Feng, et al. The changing C/N of aggressive aniline: metagenomic analysis of pollutant removal, metabolic pathways and functional genes. Chemosphere, 309 (2022), Article 136598.
[54]
J.A. Vilchis-Carmona, I.C. Rodriguez-Luna, T.O. Elufisan, A. Sanchez-Varela, M. Bibbins-Martinez, G. Rivera, et al. The decolorization and degradation of azo dyes by two Stenotrophomonas strains isolated from textile effluent (Tepetitla, Mexico). Braz J Microbiol, 52 (4) (2021), pp. 1755-1767.
[55]
J. Hritz, G. Zoldák, E. Sedlák. Cofactor assisted gating mechanism in the active site of NADH oxidase from Thermus thermophilus. Proteins, 64 (2) (2006), pp. 465-476.
[56]
M.G. Waigi, F.X. Kang, C. Goikavi, W.T. Ling, Y.Z. Gao. Phenanthrene biodegradation by Sphingomonads and its application in the contaminated soils and sediments: a review. Int Biodeterior Biodegradation, 104 (2015), pp. 333-349.
[57]
R. Ilamathi, A. Merline Sheela, N.N. Gandhi. Comparative evaluation of Pseudomonas species in single chamber microbial fuel cell with manganese coated cathode for reactive azo dye removal. Int Biodeterior Biodegradation, 144 (2019), Article 104744.
[58]
K. Shi, H.Y. Cheng, C.R. Cornell, H.W. Wu, S.H. Gao, J.D. Jiang, et al. Micro-aeration assisted with electrogenic respiration enhanced the microbial catabolism and ammonification of aromatic amines in industrial wastewater. J Hazard Mater, 448 (2023), Article 130943.
[59]
R. Wang, H.N. Li, Y.F. Liu, J.H. Chen, F. Peng, Z.B. Jiang, et al. Efficient removal of azo dyes by Enterococcus faecalis R1107 and its application in simulated textile effluent treatment. Ecotoxicol Environ Saf, 238 (2022), Article 113577.
[60]
G.T. Chen, X.J. An, L.L. Feng, X. Xia, Q.H. Zhang. Genome and transcriptome analysis of a newly isolated azo dye degrading thermophilic strain Anoxybacillus sp. Ecotoxicol Environ Saf, 203 (2020), Article 111047.
[61]
Y.N. Wang, F. Ma, J.X. Yang, H.J. Guo, D.L. Su, L. Yu. Adaption and degradation strategies of methylotrophic 1,4-dioxane degrading strain Xanthobacter sp. YN2 revealed by transcriptome-scale analysis. Int J Mol Sci, 22 (19) (2021), p. 10435.
[62]
W.Z. Gao, Y.Q. Guan, Y.M. Li, X.W. Zhang, Z.X. Fu, Z. Zhang. Treatment of nitrogen and phosphorus in wastewater by heterotrophic N- and P-starved microalgal cell. Appl Microbiol Biotechnol, 107 (4) (2023), pp. 1477-1490.
[63]
H.Y. Cheng, B. Liang, Y. Mu, M.H. Cui, K. Li, W.M. Wu, et al. Stimulation of oxygen to bioanode for energy recovery from recalcitrant organic matter aniline in microbial fuel cells (MFCs). Water Res, 81 (2015), pp. 72-83.
AI Summary AI Mindmap
PDF(3954 KB)

Accesses

Citations

Detail

Sections
Recommended

/