Activation of the Macrophage-Associated Inflammasome Exacerbates Myocardial Fibrosis Through the 15-HETE-Mediated Pathway in Acute Myocardial Infarction

Xu Chen, Zhiyong Du, Dongqing Guo, Jincheng Guo, Qianbin Sun, Tiantian Liu, Kun Hua, Chun Li, Yong Wang, Wei Wang

Engineering ›› 2024, Vol. 42 ›› Issue (11) : 143-156.

PDF(7326 KB)
PDF(7326 KB)
Engineering ›› 2024, Vol. 42 ›› Issue (11) : 143-156. DOI: 10.1016/j.eng.2024.05.015
Research

Activation of the Macrophage-Associated Inflammasome Exacerbates Myocardial Fibrosis Through the 15-HETE-Mediated Pathway in Acute Myocardial Infarction

Author information +
History +

Abstract

This investigation elucidates the spatiotemporal dynamics of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation following myocardial infarction (MI), a process that has not been fully characterized. We revealed early activation of the NLRP3 inflammasome in mice with MI and characterized its dynamic temporal expression. Notably, the knockout and inhibition of Nlrp3 expression were found to significantly mitigate infarct size and enhance cardiac function. Furthermore, our analysis of the spatial characteristics of inflammasome activation revealed predominant activation in macrophages and subsequent activation in fibroblasts on the third day post-MI. To elucidate the nexus between macrophage-associated NLRP3 inflammasome activation and myocardial fibrosis, we employed targeted metabolomics analyses of inflammatory oxylipins, small interfering RNA (siRNA) interference experiments, and various molecular assays. These findings revealed that macrophage-associated inflammasome activation facilitates the conversion of fibroblasts into myofibroblasts via the 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE)-mediated small mother against decapentaplegic (Smad) pathway. Additionally, both mass spectrometry imaging (MSI) and targeted metabolomics analyses confirmed the significant increase in 15-HETE levels in mice with MI and in patients with MI and acute coronary syndrome (ACS). Our comprehensive dataset suggests that NLRP3 inflammasome activation in MI is characterized by distinct temporal and spatial patterns. These insights mark a significant advancement toward precise MI prevention and treatment strategies, particularly early myocardial fibrosis intervention.

Graphical abstract

Keywords

Myocardial infarction / Macrophage inflammasome / NOD-like receptor family pyrin domain containing 3 / Myocardial fibrosis

Cite this article

Download citation ▾
Xu Chen, Zhiyong Du, Dongqing Guo, Jincheng Guo, Qianbin Sun, Tiantian Liu, Kun Hua, Chun Li, Yong Wang, Wei Wang. Activation of the Macrophage-Associated Inflammasome Exacerbates Myocardial Fibrosis Through the 15-HETE-Mediated Pathway in Acute Myocardial Infarction. Engineering, 2024, 42(11): 143‒156 https://doi.org/10.1016/j.eng.2024.05.015

References

[1]
C. Kuppe, R.O. Ramirez Flores, Z. Li, S. Hayat, R.T. Levinson, X. Liao, et al. Spatial multi-omic map of human myocardial infarction. Nature, 608 (7924) (2022), pp. 766-777
[2]
G. Heusch. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol, 17 (12) (2020), pp. 773-789
[3]
S.D. Prabhu, N.G. Frangogiannis. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res, 119 (1) (2016), pp. 91-112
[4]
M.M. Mia, D.M. Cibi, S.A.B. Abdul Ghani, W. Song, N. Tee, S. Ghosh, et al. YAP/TAZ deficiency reprograms macrophage phenotype and improves infarct healing and cardiac function after myocardial infarction. PLoS Biol, 18 (12) (2020), Article e3000941
[5]
P. Paolisso, L. Bergamaschi, G. Santulli, E. Gallinoro, A. Cesaro, F. Gragnano, et al. Infarct size, inflammatory burden, and admission hyperglycemia in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: a multicenter international registry. Cardiovasc Diabetol, 21 (1) (2022), p. 77
[6]
Q. Zhang, L. Wang, S. Wang, H. Cheng, L. Xu, G. Pei, et al. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther, 7 (1) (2022), p. 78
[7]
W.J. Paulus, M.R. Zile. From systemic inflammation to myocardial fibrosis: the heart failure with preserved ejection fraction paradigm revisited. Circ Res, 128 (10) (2021), pp. 1451-1467
[8]
F. Peisker, M. Halder, J. Nagai, S. Ziegler, N. Kaesler, K. Hoeft, et al. Mapping the cardiac vascular niche in heart failure. Nat Commun, 13 (1) (2022), p. 3027
[9]
Q.J. Zhang, Y. He, Y. Li, H. Shen, L. Lin, M. Zhu, et al. Matricellular protein CILP 1 promotes myocardial fibrosis in response to myocardial infarction. Circ Res, 129 (11) (2021), pp. 1021-1035
[10]
E. Mezzaroma, S. Toldo, D. Farkas, I.M. Seropian, B.W. Van Tassell, F.N. Salloum, et al. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci USA, 108 (49) (2011), pp. 19725-19730
[11]
N.G. Frangogiannis. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol, 11 (5) (2014), pp. 255-265
[12]
Y. Wang, X. Liu, H. Shi, Y. Yu, Y. Yu, M. Li, et al. NLRP 3 inflammasome, an immune-inflammatory target in pathogenesis and treatment of cardiovascular diseases. Clin Transl Med, 10 (1) (2020), pp. 91-106
[13]
S. Nattel, J. Heijman, L. Zhou, D. Dobrev. Molecular basis of atrial fibrillation pathophysiology and therapy: a translational perspective. Circ Res, 127 (1) (2020), pp. 51-72
[14]
P. Hong, R.N. Gu, F.X. Li, X.X. Xiong, W.B. Liang, Z.J. You, et al. NLRP 3 inflammasome as a potential treatment in ischemic stroke concomitant with diabetes. J Neuroinflammation, 16 (1) (2019), p. 121
[15]
P.M. Ridker, M. Rane. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease. Circ Res, 128 (11) (2021), pp. 1728-1746
[16]
P.M. Ridker, B.M. Everett, T. Thuren, J.G. MacFadyen, W.H. Chang, C. Ballantyne, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med, 377 (12) (2017), pp. 1119-1131
[17]
S. Paik, J.K. Kim, P. Silwal, C. Sasakawa, E.K. Jo. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol, 18 (5) (2021), pp. 1141-1160
[18]
M.B. Olsen, I. Gregersen, Ø. Sandanger, K. Yang, M. Sokolova, B.E. Halvorsen, et al. Targeting the inflammasome in cardiovascular disease. JACC Basic Transl Sci, 7 (1) (2022), pp. 84-98
[19]
K. Jiang, Z. Tu, K. Chen, Y. Xu, F. Chen, S. Xu, et al. Gasdermin D inhibition confers antineutrophil-mediated cardioprotection in acute myocardial infarction. J Clin Invest, 132 (1) (2022), Article e151268
[20]
S. Dai, B. Ye, L. Zhong, Y. Chen, G. Hong, G. Zhao, et al. GSDMD mediates LPS-induced septic myocardial dysfunction by regulating ROS-dependent NLRP 3 inflammasome activation. Front Cell Dev Biol, 9 (2021), Article 779432
[21]
S. Toldo, A. Abbate. The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol, 15 (4) (2018), pp. 203-214
[22]
Abbate S. Toldo C. Marchetti J. Kron B.W. Van Tassell C.A. Dinarello. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ Res, 126 (9) (2020), pp. 1260-1280
[23]
G. Sreejit, S.K. Nooti, R.M. Jaggers, B. Athmanathan, K. Ho Park, A. Al-Sharea, et al. Retention of the NLRP 3 inflammasome-primed neutrophils in the bone marrow is essential for myocardial infarction-induced granulopoiesis. Circulation, 145 (1) (2022), pp. 31-44
[24]
W. Cai, L. Liu, X. Shi, Y. Liu, J. Wang, X. Fang, et al. Alox15/15-HpETE aggravates myocardial ischemia-reperfusion injury by promoting cardiomyocyte ferroptosis. Circulation, 147 (19) (2023), pp. 1444-1460
[25]
Y. Higashikuni, W. Liu, G. Numata, K. Tanaka, D. Fukuda, Y. Tanaka, et al. NLRP 3 inflammasome activation through heart-brain interaction initiates cardiac inflammation and hypertrophy during pressure overload. Circulation, 147 (4) (2023), pp. 338-355
[26]
T. Zhuang, J. Liu, X. Chen, L. Zhang, J. Pi, H. Sun, et al. Endothelial FOXP 1 suppresses atherosclerosis via modulation of NLRP3 inflammasome activation. Circ Res, 125 (6) (2019), pp. 590-605
[27]
R. Zuo, L.F. Ye, Y. Huang, Z.Q. Song, L. Wang, H. Zhi, et al. Hepatic small extracellular vesicles promote microvascular endothelial hyperpermeability during NAFLD via novel-miRNA-7. J Nanobiotechnology, 19 (1) (2021), p. 396
[28]
M. Zhang, Z. Shi, X. Peng, D. Cai, R. Peng, Y. Lin, et al. NLRP 3 inflammasome-mediated Pyroptosis induce Notch signal activation in endometriosis angiogenesis. Mol Cell Endocrinol, 574 (2023), Article 111952
[29]
X. Chen, Y. Li, J. Li, T. Liu, Q. Jiang, Y. Hong, et al. Qishen granule (QSG) exerts cardioprotective effects by inhibiting NLRP 3 inflammasome and Pyroptosis in myocardial infarction rats. J Ethnopharmacol, 285 (2022), Article 114841
[30]
X. Chen, Q. Wang, M. Shao, L. Ma, D. Guo, Y. Wu, et al. Ginsenoside Rb 3 regulates energy metabolism and apoptosis in cardiomyocytes via activating PPARα pathway. Biomed Pharmacother, 120 (2019), Article 109487
[31]
X. Chen, L. Ma, M. Shao, Q. Wang, Q. Jiang, D. Guo, et al.. Exploring the protective effects of PNS on acute myocardial ischaemia-induced heart failure by transcriptome analysis. J Ethnopharmacol, 271 (2021), Article 113823
[32]
X. Chen, T. Liu, Q. Wang, H. Wang, S. Xue, Q. Jiang, et al. Synergistic effects of ginsenoside Rb3 and ferruginol in ischemia-induced myocardial infarction. Int J Mol Sci, 23 (24) (2022), p. 15935
[33]
N. Farbehi, R. Patrick, A. Dorison, M. Xaymardan, V. Janbandhu, K. Wystub-Lis, et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. eLife, 8 (2019), Article e43882
[34]
J. Li, F. Ge, S. Wuken, S. Jiao, P. Chen, M. Huang, et al. Zerumbone, a humulane sesquiterpene from Syringa pinnatifolia, attenuates cardiac fibrosis by inhibiting of the TGF-β1/Smad signaling pathway after myocardial infarction in mice. Phytomedicine, 100 (2022), Article 154078
[35]
J. Hoffmann, G. Luxán, W.T. Abplanalp, S.F. Glaser, T. Rasper, A. Fischer, et al. Post-myocardial infarction heart failure dysregulates the bone vascular niche. Nat Commun, 12 (1) (2021), p. 3964
[36]
F.S. Zhang, Q.Z. He, C.H. Qin, P.J. Little, J.P. Weng, S.W. Xu. Therapeutic potential of colchicine in cardiovascular medicine: a pharmacological review. Acta Pharmacol Sin, 43 (9) (2022), pp. 2173-2190
[37]
J. Fan, M. Ren, W. Chen, H. Wang, Y. He. Celastrol relieves myocardial infarction-induced cardiac fibrosis by inhibiting NLRP3 inflammasomes in rats. Int Immunopharmacol, 121 (2023), Article 110511
[38]
W. Nian, Z. Huang, C. Fu. Immune cells drive new immunomodulatory therapies for myocardial infarction: from basic to clinical translation. Front Immunol, 14 (2023), Article 1097295
[39]
D. Jia, S. Chen, P. Bai, C. Luo, J. Liu, A. Sun, et al. Cardiac resident macrophage-derived legumain improves cardiac repair by promoting clearance and degradation of apoptotic cardiomyocytes after myocardial infarction. Circulation, 145 (20) (2022), pp. 1542-1556
[40]
V. Biemmi, G. Milano, A. Ciullo, E. Cervio, J. Burrello, M. Dei Cas, et al. Inflammatory extracellular vesicles prompt heart dysfunction via TRL4-dependent NF-κB activation. Theranostics, 10 (6) (2020), pp. 2773-2790
[41]
A.A. Damluji, S. van Diepen, J.N. Katz, V. Menon, J.E. Tamis-Holland, M. Bakitas, et al. Mechanical complications of acute myocardial infarction: a scientific statement from the American heart association. Circulation, 144 (2) (2021), pp. e16-e35
[42]
X. Wu, M.R. Reboll, M. Korf-Klingebiel, K.C. Wollert. Angiogenesis after acute myocardial infarction. Cardiovasc Res, 117 (5) (2021), pp. 1257-1273
[43]
M.P. Czubryt, T.M. Hale. Cardiac fibrosis: pathobiology and therapeutic targets. Cell Signal, 85 (2021), Article 110066
[44]
Y. Zaidi, E.G. Aguilar, M. Troncoso, D.V. Ilatovskaya, K.Y. DeLeon-Pennell. Immune regulation of cardiac fibrosis post myocardial infarction. Cell Signal, 77 (2021), Article 109837
[45]
L. Zhang, Y. Li, M. Chen, X. Su, D. Yi, P. Lu, et al. 15-LO/15-HETE mediated vascular adventitia fibrosis via p 38 MAPK-dependent TGF-β. J Cell Physiol, 229 (2) (2014), pp. 245-257
[46]
H. Yu, C. Ma, D.L. Zhu. Role of 15-lipoxygenase/15-hydroxyeicosatetraenoic acid in hypoxic pulmonary arterial hypertension. Acta Physiologica Sinica, 73 (4) (2021), pp. 646-656Chinese
[47]
E. Teopompi, P. Risé, R. Pisi, C. Buccellati, M. Aiello, G. Pisi, et al. Arachidonic acid and docosahexaenoic acid metabolites in the airways of adults with cystic fibrosis: effect of docosahexaenoic acid supplementation. Front Pharmacol, 10 (2019), p. 938
[48]
J. Yang, J.P. Eiserich, C.E. Cross, B.M. Morrissey, B.D. Hammock. Metabolomic profiling of regulatory lipid mediators in sputum from adult cystic fibrosis patients. Free Radic Biol Med, 53 (1) (2012), pp. 160-171
[49]
J. Li, J. Rao, Y. Liu, Y. Cao, Y. Zhang, Q. Zhang, et al. 15-Lipoxygenase promotes chronic hypoxia-induced pulmonary artery inflammation via positive interaction with nuclear factor-κB. Arterioscler Thromb Vasc Biol, 33 (5) (2013), pp. 971-979
[50]
H. Xiao, H. Li, J.J. Wang, J.S. Zhang, J. Shen, X.B. An, et al. IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult. Eur Heart J, 39 (1) (2018), pp. 60-69
[51]
S. Liang, C. Bao, Z. Yang, S. Liu, Y. Sun, W. Cao, et al. SARS-CoV-2 spike protein induces IL-18-mediated cardiopulmonary inflammation via reduced mitophagy. Signal Transduct Target Ther, 8 (1) (2023), p. 108
[52]
Z. Lian, J.X. Song, S.R. Yu, L.N. Su, Y.X. Cui, S.F. Li, et al. Therapeutic targets of rosuvastatin on heart failure and associated biological mechanisms: a study of network pharmacology and experimental validation. Eur J Pharmacol, 895 (2021), Article 173888
[53]
R.G. Iannitti, V. Napolioni, V. Oikonomou, A. De Luca, C. Galosi, M. Pariano, et al. IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis. Nat Commun, 7 (1) (2016), p. 10791
[54]
M. Westerterp, P. Fotakis, M. Ouimet, A.E. Bochem, H. Zhang, M.M. Molusky, et al. Cholesterol efflux pathways suppress inflammasome activation, netosis, and atherogenesis. Circulation, 138 (9) (2018), pp. 898-912
[55]
L.C. O’Brien, E. Mezzaroma, B.W. Van Tassell, C. Marchetti, S. Carbone, A. Abbate, et al. Interleukin-18 as a therapeutic target in acute myocardial infarction and heart failure. Mol Med, 20 (1) (2014), pp. 221-229
AI Summary AI Mindmap
PDF(7326 KB)

Accesses

Citations

Detail

Sections
Recommended

/