High-Performance Flexible Magnetic Textile Fabricated Using Porous Juncus effusus Fiber for Biomechanical Energy Harvesting

Junyao Gong, Chunhua Zhang, Liangjun Xia, Zhaozixuan Zhou, Weihao Long, Zhuan Fu, Sijie Zhou, Hua Ji, Lixin Du, Weilin Xu

Engineering ›› 2025, Vol. 46 ›› Issue (3) : 267-277.

PDF(3063 KB)
PDF(3063 KB)
Engineering ›› 2025, Vol. 46 ›› Issue (3) : 267-277. DOI: 10.1016/j.eng.2024.06.002
Research
Article

High-Performance Flexible Magnetic Textile Fabricated Using Porous Juncus effusus Fiber for Biomechanical Energy Harvesting

Author information +
History +

Abstract

Mechanical energy produced by human motion is ubiquitous, continuous, and usually not utilized, making it an attractive target for sustainable electricity-harvesting applications. In this study, flexible magnetic-Juncus effusus (M-JE) fibers were prepared from plant-extracted three-dimensional porous Juncus effusus (JE) fibers decorated with polyurethane and magnetic particles. The M-JE fibers were woven into fabrics and used for mechanical energy harvesting through electromagnetic induction. The M-JE fabric and induction coil, attached to the human wrist and waist, yielded continuous and stable voltage (2 V) and current (3 mA) during swinging. The proposed M-JE fabric energy harvester exhibited good energy harvesting potential and was capable of quickly charging commercial capacitors to power small electronic devices. The proposed M-JE fabric exhibited good mechanical energy harvesting performance, paving the way for the use of natural plant fibers in energy-harvesting fabrics.

Graphical abstract

Keywords

Juncus effusus / Magnetic fabrics / Electromagnetic induction / Energy harvest / Mechanical–electrical energy conversion

Cite this article

Download citation ▾
Junyao Gong, Chunhua Zhang, Liangjun Xia, Zhaozixuan Zhou, Weihao Long, Zhuan Fu, Sijie Zhou, Hua Ji, Lixin Du, Weilin Xu. High-Performance Flexible Magnetic Textile Fabricated Using Porous Juncus effusus Fiber for Biomechanical Energy Harvesting. Engineering, 2025, 46(3): 267‒277 https://doi.org/10.1016/j.eng.2024.06.002

References

[1]
Liu L, Guo X, Lee C.Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters.Nano Energy 2021; 88:106304.
[2]
Divya S, Panda S, Hajra S, Jeyaraj R, Paul A, Park SH, et al.Smart data processing for energy harvesting systems using artificial intelligence.Nano Energy 2023; 106:108084.
[3]
Zeng K, Shi X, Tang C, Liu T, Peng H.Design, fabrication and assembly considerations for electronic systems made of fibre devices.Nat Rev Mater 2023; 8(8):552-561.
[4]
Chen W, Fan W, Wang Q, Yu X, Luo Y, Wang W, et al.A nano–micro structure engendered abrasion resistant, superhydrophobic, wearable triboelectric yarn for self-powered sensing.Nano Energy 2022; 103:107769.
[5]
Zhu C, Wu J, Yan J, Liu X.Advanced fiber materials for wearable electronics.Adv Fiber Mater 2023; 5(1):12-35.
[6]
Liu X, Miao J, Fan Q, Zhang W, Zuo X, Tian M, et al.Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications.Adv Fiber Mater 2022; 4(3):361-389.
[7]
Gao Y, Xu B, Tan D, Li M, Wang Y, Yang Y.Asymmetric-elastic-structure fabric-based triboelectric nanogenerators for wearable energy harvesting and human motion sensing.Chem Eng J 2023; 466:143079.
[8]
Gao M, Wang P, Jiang L, Wang B, Yao Y, Liu S, et al.Power generation for wearable systems.Energy Environ Sci 2021; 14(4):2114-2157.
[9]
Du X, Zhang K.Recent progress in fibrous high-entropy energy harvesting devices for wearable applications.Nano Energy 2022; 101:107600.
[10]
Sahu M, Hajra S, Panda S, Rajaitha M, Panigrahi BK, Rubahn HG, et al.Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics.Nano Energy 2022; 97:107208.
[11]
Jiang C, Li X, Lian SWM, Ying Y, Ho JS, Ping J.Wireless technologies for energy harvesting and transmission for ambient self-powered systems.ACS Nano 2021; 15(6):9328-9354.
[12]
Gao Y, Li Z, Xu B, Li M, Jiang C, Guan X, et al.Scalable core–spun coating yarn-based triboelectric nanogenerators with hierarchical structure for wearable energy harvesting and sensing via continuous manufacturing.Nano Energy 2022; 91:106672.
[13]
So MY, Xu B, Li Z, Lai CL, Jiang C.Flexible corrugated triboelectric nanogenerators for efficient biomechanical energy harvesting and human motion monitoring.Nano Energy 2023; 106:108033.
[14]
Jing Y, Luo J, Han X, Yang J, Liu Q, Zheng Y, et al.Scalable manufacturing of a durable, tailorable, and recyclable multifunctional woven thermoelectric textile system.Energy Environ Sci 2023; 16(10):4334-4344.
[15]
Xiang S, Zhang N, Fan X.From fiber to fabric: progress towards photovoltaic energy textile.Adv Fiber Mater 2021; 3(2):76-106.
[16]
Zhou P, Zheng Z, Wang B, Guo Y.Self-powered flexible piezoelectric sensors based on self-assembled 10 nm BaTiO3 nanocubes on glass fiber fabric.Nano Energy 2022; 99:107400.
[17]
Kim H, Jeong CK.All-inorganic-state fabric lead-free piezoelectric nanogenerators.Phys Status Solidi 2022; 219(20):2100787.
[18]
Kim WG, Kim DW, Tcho IW, Kim JK, Kim MS, Choi YK.Triboelectric nanogenerator: structure, mechanism, and applications.ACS Nano 2021; 15(1):258-287.
[19]
Gong J, Xu B, Guan X, Chen Y, Li S, Feng J.Towards truly wearable energy harvesters with full structural integrity of fiber materials.Nano Energy 2019; 58:365-374.
[20]
Ma Z, Ai J, Shi Y, Wang K, Su B.A superhydrophobic droplet-based magnetoelectric hybrid system to generate electricity and collect water simultaneously.Adv Mater 2020; 32(50):2006839.
[21]
Zhou Y, Zhao X, Xu J, Fang Y, Chen G, Song Y, et al.Giant magnetoelastic effect in soft systems for bioelectronics.Nat Mater 2021; 20(12):1670-1676.
[22]
Du Z, Ai J, Zhang X, Ma Z, Wu Z, Chen D, et al.Stretchable electromagnetic fibers for self-powered mechanical sensing.Appl Mater Today 2020; 20:100623.
[23]
Zhang C, Tang W, Han C, Fan F, Wang ZL.Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy.Adv Mater 2014; 26(22):3580-3591.
[24]
Wang R, Du Z, Xia Z, Liu J, Li P, Wu Z, et al.Magnetoelectrical clothing generator for high-performance transduction from biomechanical energy to electricity.Adv Funct Mater 2022; 32(6):2107682.
[25]
Patil DR, Lee S, Thakre A, Kumar A, Song H, Jeong DY, et al.Boosting the energy harvesting performance of cantilever structured magneto-mechano-electric generator by controlling magnetic flux intensity on magnet proof mass.J Materiomics 2023; 9(4):735-744.
[26]
Gholikhani M, Beheshti Shirazi SY, Mabrouk GM, Dessouky S.Dual electromagnetic energy harvesting technology for sustainable transportation systems.Energy Convers Manage 2021; 230:113804.
[27]
Panda S, Hajra S, Oh Y, Oh W, Lee J, Shin H, et al.Hybrid nanogenerators for ocean energy harvesting: mechanisms, designs, and applications.Small 2023; 19(25):2300847.
[28]
Li M, Xu B, Li Z, Gao Y, Yang Y, Huang X.Toward 3D double-electrode textile triboelectric nanogenerators for wearable biomechanical energy harvesting and sensing.Chem Eng J 2022; 450:137491.
[29]
Shi Q, Sun J, Hou C, Li Y, Zhang Q, Wang H.Advanced functional fiber and smart textile.Adv Fiber Mater 2019; 1(1):3-31.
[30]
Jiang C, Lai CL, Xu B, So MY, Li Z.Fabric-rebound triboelectric nanogenerators with loops and layered structures for energy harvesting and intelligent wireless monitoring of human motions.Nano Energy 2022; 93:106807.
[31]
Ma L, Wu R, Liu S, Patil A, Gong H, Yi J, et al.A machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue.Adv Mater 2020; 32(38):2003897.
[32]
Lan L, Jiang C, Yao Y, Ping J, Ying Y.A stretchable and conductive fiber for multifunctional sensing and energy harvesting.Nano Energy 2021; 84:105954.
[33]
Yan W, Dong C, Xiang Y, Jiang S, Leber A, Loke G, et al.Thermally drawn advanced functional fibers: new frontier of flexible electronics.Mater Today 2020; 35:168-194.
[34]
Liu X, Jin X, Li L, Wang J, Yang Y, Cao Y, et al.Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance.J Mater Chem A 2020; 8(25):12526-12537.
[35]
Cui Y, He X, Liu W, Zhu S, Zhou M, Wang Q.Highly stretchable, sensitive, and multifunctional thermoelectric fabric for synergistic-sensing systems of human signal monitoring.Adv Fiber Mater 2023; 6:170-180.
[36]
Dong L, Wang M, Wu J, Zhu C, Shi J, Morikawa H.Deformable textile-structured triboelectric nanogenerator knitted with multifunctional sensing fibers for biomechanical energy harvesting.Adv Fiber Mater 2022; 4(6):1486-1499.
[37]
Guo H, Zhao H, Niu H, Ren Y, Fang H, Fang X, et al.Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications.ACS Nano 2021; 15(4):6917-6928.
[38]
Li Q, He H, Ye X, Guan F, Ai Y, Shen Y, et al.NIR light-induced functionalized MXene as a dynamic-crosslinker for reinforced polyurethane composites with shape memory and self-healing.Chem Eng J 2023; 475:146500.
[39]
Liu Y, Cao X, Shi J, Shen B, Huang J, Hu J, et al.A superhydrophobic TPU/CNTs@SiO2 coating with excellent mechanical durability and chemical stability for sustainable anti-fouling and anti-corrosion.Chem Eng J 2022; 434:134605.
[40]
Wang X, Liu X, Schubert DW.Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks.Nano-Micro Lett 2021; 13(1):64.
[41]
Xu Y, Yang Y, Yan DX, Duan H, Zhao G, Liu Y.Flexible and conductive polyurethane composites for electromagnetic shielding and printable circuit.Chem Eng J 2019; 360:1427-1436.
[42]
Engels HW, Pirkl HG, Albers R, Albach RW, Krause J, Hoffmann A, et al.Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges.Angew Chem Int Ed 2013; 52(36):9422-9441.
[43]
Fu Z, Zhou S, Xia L, Mao Y, Zhu L, Cheng Y, et al.Juncus effusus fiber-based cellulose cigarette filter with 3D hierarchically porous structure for removal of PAHs from mainstream smoke.Carbohydr Polym 2020; 241:116308.
[44]
Fu Z, Zhou S, Xia L, Zhang C, Zhu N, Gong J, et al.A highly efficient and stable solar energy-driven device using lignocellulosic biomass Juncus effusus for the recovery of ethanol–water mixture.Green Chem 2022; 24(12):4812-4823.
[45]
Zhou Z, Guo J, Zhang C, Zhou S, Gong J, Fu Z, et al.Natural Juncus effusus fiber-based separator with 3D porous structure for oil/water emulsion separation.Ind Crops Prod 2023; 205:117572.
[46]
Chen G, Zhou Y, Fang Y, Zhao X, Shen S, Tat T, et al.Wearable ultrahigh current power source based on giant magnetoelastic effect in soft elastomer system.ACS Nano 2021; 15(12):20582-20589.
[47]
Gong J, Tang W, Xia L, Fu Z, Zhou S, Zhang J, et al.Flexible and weavable 3D porous graphene/PPy/lignocellulose-based versatile fibrous wearables for thermal management and strain sensing.Chem Eng J 2023; 452:139338.
[48]
Dagdeviren C, Li Z, Wang ZL.Energy harvesting from the animal/human body for self-powered electronics.Annu Rev Biomed Eng 2017; 19(1):85-108.
[49]
Zhou S, Fu Z, Xia L, Mao Y, Zhao W, Wang A, et al.In situ synthesis of ternary hybrid nanocomposites on natural Juncus effusus fiber for adsorption and photodegradation of organic dyes.Separ Purif Tech 2021; 255:117671.
[50]
Maxwell JC.The scientific papers of James Clerk Maxwell. Cambridge University Press, Cambridge (1890)
[51]
Zi Y, Wang J, Wang S, Li S, Wen Z, Guo H, et al.Effective energy storage from a triboelectric nanogenerator.Nat Commun 2016; 7(1):10987.
AI Summary AI Mindmap
PDF(3063 KB)

Accesses

Citations

Detail

Sections
Recommended

/