Controversy Clouds Real Progress in Superconductor Research

Mark Peplow

Engineering ›› 2024, Vol. 38 ›› Issue (7) : 8-10.

PDF(1324 KB)
PDF(1324 KB)
Engineering ›› 2024, Vol. 38 ›› Issue (7) : 8-10. DOI: 10.1016/j.eng.2024.06.005
News & Highlights

Controversy Clouds Real Progress in Superconductor Research

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Mark Peplow. Controversy Clouds Real Progress in Superconductor Research. Engineering, 2024, 38(7): 8‒10 https://doi.org/10.1016/j.eng.2024.06.005

References

[1]
Chang K. New room-temperature superconductor offers tantalizing possibilities [Internet]. New York City: The New York Times; 2023 Mar 8 [cited 2024 Apr 11]. Available from: https://www.nytimes.com/2023/03/08/science/room-temperature-superconductor-ranga-dias.html.
[2]
R.F. Service. Superconducting crystal may be ‘revolutionary’. Science, 379 (6636) (2023), pp. 966-967
[3]
N. Dasenbrock-Gammon, E. Snider, R. McBride, H. Pasan, D. Durkee, N. Khalvashi-Sutter, et al. Retracted article: Evidence of near-ambient superconductivity in a N-doped lutetium hydride. Nature, 615 (2023), pp. 244-250
[4]
E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, et al. Retracted article: Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 586 (2020), pp. 373-377
[5]
E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, et al. Retraction note: Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 610 (2022), p. 804
[6]
C.Q. Jin, D. Ceperley. Hopes raised for room-temperature superconductivity, but doubts remain. Nature, 615 (2023), pp. 221-222
[7]
N. Dasenbrock-Gammon, E. Snider, R. McBride, H. Pasan, D. Durkee, N. Khalvashi-Sutter, et al. Retraction note: Evidence of near-ambient superconductivity in a N-doped lutetium hydride. Nature, 624 (2023), p. 460
[8]
Heike Kamerlingh Onnes facts [Internet]. Stockholm: Nobel Prize Outreach AB; c2024 [cited 2024 Apr 11]. Available from: https://www.nobelprize.org/prizes/physics/1913/onnes/facts/.
[9]
A. Schilling, M. Cantoni, J.D. Guo, H.R. Ott. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system. Nature, 363 (1993), pp. 56-58
[10]
A. Rahman, Z. Rahaman, N. Samsuddoha. A review on cuprate based superconducting materials including characteristics and applications. Amer J Phys Appl, 3 (2) (2015), pp. 39-56
[11]
D. Li, K. Lee, B.Y. Wang, M. Osada, S. Crossley, H.R. Lee, et al. Superconductivity in an infinite-layer nickelate. Nature, 572 (2019), pp. 624-627
[12]
A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525 (2015), pp. 73-76
[13]
A.P. Drozdov, P.P. Kong, V.S. Minkov, S.P. Besedin, M.A. Kuzovnikow, S. Mozaffari, et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569 (2019), pp. 528-531
[14]
P.P. Ferreira, L.J. Conway, A. Cucciari, S. Di Cataldo, F. Giannessi, E. Kogler, et al. Search for ambient superconductivity in the Lu-N-H system. Nat Commun, 14 (2023), p. 5367
[15]
Garisto D. Superconductivity scandal: the inside story of deception in a rising star’s physics lab. Nature. In press.
[16]
D. Garisto. Exclusive: official investigation reveals how superconductivity physicist faked blockbuster results. Nature, 628 (2024), pp. 481-483
[17]
Lee S, Kim J, Kim HT, Im S, An S, Auh KH. Superconductor Pb10-xCux(PO4)6O showing levitation at room temperature and atmospheric pressure and mechanism. 2023. arXiv:2307.12037.
[18]
K. Guo, Y. Li, S. Jia. Ferromagnetic half levitation of LK-99-like synthetic samples. Sci China Phys Mech Astron, 66 (2023), Article 107411
[19]
Zhu S, Wu W, Li Z, Luo J. First order transition in Pb10-xCux(PO4)6O (0.9 < x < 1.1) containing Cu2S. 2023. arXiv:2308.04353.
[20]
Puphal P, Akbar MYP, Hepting M, Goering E, Isobe M, Nugroho AA, et al. Single crystal synthesis, structure, and magnetism of Pb10-xCux(PO4)6O. 2023. arXiv:2308.06256.
[21]
Wang H, Yao Y, Shi K, Zhao Y, Wu H, Wu Z, et al. Possible Meissner effect near room temperature in copper-substituted lead apatite. 2024. arXiv:2401.00999.
[22]
C.J. Pickard, I. Errea, M.I. Eremets. Superconducting hydrides under pressure. Annu Rev Condens Matter Phys, 11 (2020), pp. 57-76
[23]
Dolui K, Conway LJ, Heil C, Strobel TA, Prasankumar RP, Pickard CJ. Feasible route to high-temperature ambient-pressure hydride superconductivity. 2023. arXiv:2310.07562.
[24]
Sanna A, Cerqueira TFT, Fang YW, Errea I, Ludwig A, Marques MAL. Prediction of ambient pressure conventional superconductivity above 80 K in hydride compounds. 2023. arXiv:2310.06804.
[25]
A.M. Shipley, M.J. Hutcheon, R.J. Needs, C.J. Pickard. High-throughput discovery of high-temperature conventional superconductors. Phys Rev B, 104 (5) (2021), Article 054501
PDF(1324 KB)

Accesses

Citations

Detail

Sections
Recommended

/