Extracellular Vesicles in Pathogenic Infection, Transmission, and Immunity

Junyao Xiong, Usama Ashraf, Jing Ye, Shengbo Cao

Engineering ›› 2024, Vol. 43 ›› Issue (12) : 228-240.

PDF(2536 KB)
PDF(2536 KB)
Engineering ›› 2024, Vol. 43 ›› Issue (12) : 228-240. DOI: 10.1016/j.eng.2024.06.011
Research
Review

Extracellular Vesicles in Pathogenic Infection, Transmission, and Immunity

Author information +
History +

Abstract

Extracellular vesicles (EVs) are secreted by cells and widely exist in body fluids, serving as an essential vehicle of intercellular communication. In recent years, EVs have gained significant attention owing to their ability to carry nucleic acids, lipids, and proteins of host and pathogen origins. A distinct composition of EVs during pathogenic infection contributes to mediating pathogenic infection, transmission, and immunity to target cells. Therefore, studying the role of EVs in pathogenic infection is crucial for understanding pathogen-host interactions and developing new anti-pathogenic therapies. This review offers an overview of current knowledge of EVs in the context of infection, transmission, and immunity to pathogens. Harnessing EVs’ biology during pathogenic infection may lay a foundation for the mitigation of pathogenic infection and associated disease outcomes.

Graphical abstract

Keywords

Extracellular vesicles / Pathogen / Infection / Transmission / Immunity

Cite this article

Download citation ▾
Junyao Xiong, Usama Ashraf, Jing Ye, Shengbo Cao. Extracellular Vesicles in Pathogenic Infection, Transmission, and Immunity. Engineering, 2024, 43(12): 228‒240 https://doi.org/10.1016/j.eng.2024.06.011

References

[1]
M. Colombo, G. Raposo, C. Théry. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol, 30 (2014), pp. 255-289.
[2]
L. Zhang, Y. Ju, S. Chen, L. Ren. Recent progress on exosomes in RNA virus infection. Viruses, 13 (2) (2021), p. 256.
[3]
M. Hassanpour, J. Rezaie, M. Nouri, Y. Panahi. The role of extracellular vesicles in COVID-19 virus infection. Infect Genet Evol, 85 (2020), Article 104422.
[4]
G. Raposo, W. Stoorvogel. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol, 200 (4) (2013), pp. 373-383.
[5]
T. Kouwaki, M. Okamoto, H. Tsukamoto, Y. Fukushima, H. Oshiumi. Extracellular vesicles deliver host and virus RNA and regulate innate immune response. Int J Mol Sci, 18 (3) (2017), p. 666.
[6]
D.K. Jeppesen, A.M. Fenix, J.L. Franklin, J.N. Higginbotham, Q. Zhang, L.J. Zimmerman, et al. Reassessment of exosome composition. Cell, 177 (2) (2019). 428-45e18.
[7]
C. Schwechheimer, M.J. Kuehn. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol, 13 (10) (2015), pp. 605-619.
[8]
M. Toyofuku, N. Nomura, L. Eberl. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol, 17 (1) (2018), pp. 13-24.
[9]
D.M. Pegtel, S.J. Gould. Exosomes. Annu Rev Biochem, 88 (2019), pp. 487-514.
[10]
P.D. Robbins, A.E. Morelli. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol, 14 (3) (2014), pp. 195-208.
[11]
E.R. Abels, X.O. Breakefield. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol, 36 (3) (2016), pp. 301-312.
[12]
Z. Zhao, H. Wijerathne, A.K. Godwin, S.A. Soper. Isolation and analysis methods of extracellular vesicles (EVs). Extracell Vesicles and Circ Nucl Acids, 2 (2021), pp. 80-103.
[13]
R.P. McNamara, D.P. Dittmer. Extracellular vesicles in virus infection and pathogenesis. Curr Opin Virol, 44 (2020), pp. 129-138.
[14]
J.M. Reyes-Ruiz, J.F. Osuna-Ramos, L.A. De Jesús-González, S.N. Palacios-Rápalo, C.D. Cordero-Rivera, C.N. Farfan-Morales, et al. The regulation of flavivirus infection by hijacking exosome-mediated cell-cell communication: new insights on virus-host interactions. Viruses, 12 (7) (2020), p. 765.
[15]
M.J. Shurtleff, J. Yao, Y. Qin, R.M. Nottingham, M.M. Temoche-Diaz, R. Schekman, et al. Broad role for YBX1 in defining the small noncoding RNA composition of exosomes. Proc Natl Acad Sci U S A, 114 (43) (2017), pp. e8987-e8995.
[16]
J.M. Escola, M.J. Kleijmeer, W. Stoorvogel, J.M. Griffith, O. Yoshie, H.J. Geuze. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem, 273 (32) (1998), pp. 20121-20127.
[17]
Z. Wei, A.O. Batagov, S. Schinelli, J. Wang, Y. Wang, R. El Fatimy, et al. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat Commun, 8 (1) (2017), p. 1145.
[18]
Y. Zhou, R.P. McNamara, D.P. Dittmer. Purification methods and the presence of RNA in virus particles and extracellular vesicles. Viruses, 12 (9) (2020), p. 917.
[19]
Z. Onódi, C. Pelyhe, C. Terézia Nagy, G.B. Brenner, L. Almási, Á. Kittel, et al. Isolation of high-purity extracellular vesicles by the combination of iodixanol density gradient ultracentrifugation and bind-elute chromatography from blood plasma. Front Physiol, 9 (2018), p. 1479.
[20]
T. Arab, A. Raffo-Romero, C. Van Camp, Q. Lemaire, F. Le Marrec-Croq, F. Drago, et al. Proteomic characterisation of leech microglia extracellular vesicles (EVs): comparison between differential ultracentrifugation and Optiprep™ density gradient isolation. J Extracell Vesicles, 8 (1) (2019), Article 1603048.
[21]
M.A. Rider, S.N. Hurwitz, D.G. Meckes Jr. ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles. Sci Rep, 6 (2016), p. 23978.
[22]
D. Enderle, A. Spiel, C.M. Coticchia, E. Berghoff, R. Mueller, M. Schlumpberger, et al. Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin column-based method. PLoS One, 10 (8) (2015), Article e0136133.
[23]
M.L. Heinemann, M. Ilmer, L.P. Silva, D.H. Hawke, A. Recio, M.A. Vorontsova, et al. Benchtop isolation and characterization of functional exosomes by sequential filtration. J Chromatogr A, 1371 (2014), pp. 125-135.
[24]
S. Ayala-Mar, J. Donoso-Quezada, R.C. Gallo-Villanueva, V.H. Perez-Gonzalez, J. González-Valdez. Recent advances and challenges in the recovery and purification of cellular exosomes. Electrophoresis, 40 (23-24) (2019), pp. 3036-3049.
[25]
M. Kalamvoki, T. Du, B. Roizman. Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs. Proc Natl Acad Sci USA, 111 (46) (2014), pp. E4991-E4996.
[26]
L. Liao, W. Chen, X. Zhang, H. Zhang, A. Li, Y. Yan, et al. Semen extracellular vesicles mediate vertical transmission of subgroup J avian leukosis virus. Virol Sin, 37 (2) (2022), pp. 284-294.
[27]
B.C.T. Le, A. Burassakarn, P. Tongchai, T. Ekalaksananan, S. Aromseree, S. Phanthanawiboon, et al. Characterization and involvement of exosomes originating from Chikungunya virus-infected epithelial cells in the transmission of infectious viral elements. Int J Mol Sci, 23 (20) (2022), p. 12117.
[28]
L. Mao, P. Liang, W. Li, S. Zhang, M. Liu, L. Yang, et al. Exosomes promote caprine parainfluenza virus type 3 infection by inhibiting autophagy. J Gen Virol, 101 (7) (2020), pp. 717-734.
[29]
R.J. Kuhn, Y. Fu, S. Xiong. Exosomes mediate coxsackievirus B3 transmission and expand the viral tropism. PLOS Pathog, 19 (1) (2023), p. e1011090.
[30]
J.M. Reyes-Ruiz, J.F. Osuna-Ramos, L.A. De Jesús-González, A.M. Hurtado-Monzón, C.N. Farfan-Morales, M. Cervantes-Salazar, et al. Isolation and characterization of exosomes released from mosquito cells infected with dengue virus. Virus Res, 266 (2019), pp. 1-14.
[31]
K. Zhang, S. Xu, X. Shi, G. Xu, C. Shen, X. Liu, et al. Exosomes-mediated transmission of foot-and-mouth disease virus in vivo and in vitro. Vet Microbiol, 233 (2019), pp. 164-173.
[32]
G. Xu, S. Xu, X. Shi, C. Shen, D. Zhang, T. Zhang, et al. Foot-and-mouth disease virus degrades Rab27a to suppress the exosome-mediated antiviral immune response. Vet Microbiol, 251 (2020), Article 108889.
[33]
X. Xu, J. Qian, J. Ding, J. Li, F. Nan, W. Wang, et al. Detection of viral components in exosomes derived from NDV-infected DF-1 cells and their promoting ability in virus replication. Microb Pathog, 128 (2019), pp. 414-422.
[34]
Z. Li, S. Mu, Y. Tian, J. Shi, Y. Lan, J. Guan, et al. Porcine hemagglutinating encephalomyelitis virus co-opts multivesicular-derived exosomes for transmission. mBio, 14 (1) (2022), Article e0305422.
[35]
Wang T, Fang L, Zhao F, Wang D, Xiao S. Exosomes mediate intercellular transmission of porcine reproductive and respiratory syndrome virus. J Virol 2018; 92(4):e01734-17.
[36]
Q. Su, Y. Zhang, Z. Cui, S. Chang, P. Zhao. Semen-derived exosomes mediate immune escape and transmission of reticuloendotheliosis virus. Front Immunol, 12 (2021), Article 735280.
[37]
J. Wang, Y. Teng, G. Zhao, F. Li, A. Hou, B. Sun, et al. Exosome-mediated delivery of inducible miR-423-5p enhances resistance of MRC-5 cells to rabies virus infection. Int J Mol Sci, 20 (7) (2019), p. 1537.
[38]
G. Xu, S. Xu, X. Shi, C. Shen, J. Hao, M. Yan, et al. Intercellular transmission of Seneca Valley virus mediated by exosomes. Vet Res, 51 (1) (2020), p. 91.
[39]
J.A. Silvas, V.L. Popov, A. Paulucci-Holthauzen, P.V. Aguilar, S. Schultz-Cherry. Extracellular vesicles mediate receptor-independent transmission of novel tick-borne bunyavirus. J Virol, 90 (2) (2016), pp. 873-886.
[40]
R.A. Dragovic, C. Gardiner, A.S. Brooks, D.S. Tannetta, D.J. Ferguson, P. Hole, et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine, 7 (6) (2011), pp. 780-788.
[41]
Y. You, Y. Tian, Z. Yang, J. Shi, K.J. Kwak, Y. Tong, et al. Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat Biomed Eng, 7 (7) (2023), pp. 887-900.
[42]
H. Li, R. Bai, Z. Zhao, L. Tao, M. Ma, Z. Ji, et al. Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci Rep, 38 (6) (2018), Article BSR20181170.
[43]
A.A. Kojabad, M. Farzanehpour, H.E.G. Galeh, R. Dorostkar, A. Jafarpour, M. Bolandian, et al. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J Med Virol, 93 (7) (2021), pp. 4182-4197.
[44]
R. Nyaruaba, C. Mwaliko, D. Dobnik, P. Neužil, P. Amoth, M. Mwau, et al. Digital PCR applications in the SARS-CoV-2/COVID-19 era: a roadmap for future outbreaks. Clin Microbiol Rev, 35 (3) (2022), Article e0016821.
[45]
E.N. Nolte-'t Hoen, E.J. van der Vlist, M. Aalberts, H.C. Mertens, B.J. Bosch, W. Bartelink, et al. Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine, 8 (5) (2012), pp. 712-720.
[46]
E.J. van der Vlist, E.N. Nolte-'t Hoen, W. Stoorvogel, G.J. Arkesteijn, M.H. Wauben. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc, 7 (7) (2012), pp. 1311-1326.
[47]
E.N. Nolte-'t Hoen, E.J. van der Vlist, M. de Boer-Brouwer, G.J. Arkesteijn, W. Stoorvogel, M.H. Wauben. Dynamics of dendritic cell-derived vesicles: high-resolution flow cytometric analysis of extracellular vesicle quantity and quality. J Leukoc Biol, 93 (3) (2013), pp. 395-402.
[48]
L. Zhu, K. Wang, J. Cui, H. Liu, X. Bu, H. Ma, et al. Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal Chem, 86 (17) (2014), pp. 8857-8864.
[49]
J. Su, S. Chen, Y. Dou, Z. Zhao, X. Jia, X. Ding, et al. Smartphone-based electrochemical biosensors for directly detecting serum-derived exosomes and monitoring their secretion. Anal Chem, 94 (7) (2022), pp. 3235-3244.
[50]
S.S. Kanwar, C.J. Dunlay, D.M. Simeone, S. Nagrath. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip, 14 (11) (2014), pp. 1891-1900.
[51]
D. Gupta, X. Liang, S. Pavlova, O.P.B. Wiklander, G. Corso, Y. Zhao, et al. Quantification of extracellular vesicles in vitro and in vivo using sensitive bioluminescence imaging. J Extracell Vesicles, 9 (1) (2020), Article 1800222.
[52]
M.E. Kuipers, C.H. Hokke, H.H. Smits, E.N.M. Nolte-'t Hoen. Pathogen-derived extracellular vesicle-associated molecules that affect the host immune system: an overview. Front Microbiol, 9 (2018), p. 2182.
[53]
C. Théry, M. Ostrowski, E. Segura. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol, 9 (8) (2009), pp. 581-593.
[54]
J. Chen, L. Jin, M. Yan, Z. Yang, H. Wang, S. Geng, et al. Serum exosomes from newborn piglets restrict porcine epidemic diarrhea virus infection. J Proteome Res, 18 (5) (2019), pp. 1939-1947.
[55]
S. Montaner-Tarbes, M. Pujol, T. Jabbar, P. Hawes, D. Chapman, H.D. Portillo, et al. Serum-derived extracellular vesicles from African swine fever virus-infected pigs selectively recruit viral and porcine proteins. Viruses, 11 (10) (2019), p. 882.
[56]
Q. Wu, M. Glitscher, S. Tonnemacher, A. Schollmeier, J. Raupach, T. Zahn, et al. Presence of intact hepatitis B virions in exosomes. Cell Mol Gastroenterol Hepatol, 15 (1) (2023), pp. 237-259.
[57]
N.T. Streck, Y. Zhao, J.M. Sundstrom, N.J. Buchkovich. Human cytomegalovirus utilizes extracellular vesicles to enhance virus spread. J Virol, 94 (16) (2020), pp. e00609-e00620.
[58]
Morris-Love J, Gee GV, O'Hara BA, Assetta B, Atkinson AL, Dugan AS, et al. JC polyomavirus uses extracellular vesicles to infect target cells. mBio 2019; 10(2):e00379-19.
[59]
T. Kouwaki, Y. Fukushima, T. Daito, T. Sanada, N. Yamamoto, E.J. Mifsud, et al. Extracellular vesicles including exosomes regulate innate immune responses to hepatitis B virus infection. Front Immunol, 7 (2016), p. 335.
[60]
T. Deschamps, M. Kalamvoki. Extracellular vesicles released by herpes simplex virus 1-infected cells block virus replication in recipient cells in a STING-dependent manner. J Virol, 92 (18) (2018), pp. e01102-e01118.
[61]
M. Kalamvoki, T. Deschamps. Extracellular vesicles during herpes simplex virus type1 infection: an inquire. Virol J, 13 (2016), p. 63.
[62]
R.P. McNamara, P.E. Chugh, A. Bailey, L.M. Costantini, Z. Ma, R. Bigi, et al. Extracellular vesicles from Kaposi sarcoma-associated herpesvirus lymphoma induce long-term endothelial cell reprogramming. PLoS Pathog, 15 (2) (2019), Article e1007536.
[63]
H. Jeon, J. Lee, S. Lee, S.K. Kang, S.J. Park, S.M. Yoo, et al. Extracellular vesicles from KSHV-infected cells stimulate antiviral immune response through mitochondrial DNA. Front Immunol, 10 (2019), p. 876.
[64]
Q. Chen, Y. Liu, J. Ren, P. Zhong, M. Chen, D. Jia, et al. Exosomes mediate horizontal transmission of viral pathogens from insect vectors to plant phloem. Elife, 10 (2021), Article e064603.
[65]
B. Xia, X. Pan, R.-H. Luo, X. Shen, S. Li, Y. Wang, et al. Extracellular vesicles mediate antibody-resistant transmission of SARS-CoV-2. Cell Discov, 9 (1) (2023), p. 2.
[66]
T. Wang, L. Zhang, W. Liang, S. Liu, W. Deng, Y. Liu, et al. Extracellular vesicles originating from autophagy mediate an antibody-resistant spread of classical swine fever virus in cell culture. Autophagy, 18 (6) (2022), pp. 1433-1449.
[67]
A. Vora, W. Zhou, B. Londono-Renteria, M. Woodson, M.B. Sherman, T.M. Colpitts, et al. Arthropod EVs mediate dengue virus transmission through interaction with a tetraspanin domain containing glycoprotein Tsp29Fb. Proc Natl Acad Sci U S A, 115 (28) (2018), pp. e6604-e6613.
[68]
A.S. Gold, F. Feitosa-Suntheimer, R.V. Araujo, R.M. Hekman, S. Asad, B. Londono-Renteria, et al. Dengue virus infection of Aedes aegypti alters extracellular vesicle protein cargo to enhance virus transmission. Int J Mol Sci, 21 (18) (2020), p. 6609.
[69]
V. Ramakrishnaiah, C. Thumann, I. Fofana, F. Habersetzer, Q. Pan, P.E. de Ruiter, et al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc Natl Acad Sci USA, 110 (32) (2013), pp. 13109-13113.
[70]
S. Mukherjee, I. Akbar, B. Kumari, S. Vrati, A. Basu, A. Banerjee. Japanese encephalitis virus-induced let-7a/b interacted with the NOTCH-TLR7 pathway in microglia and facilitated neuronal death via caspase activation. J Neurochem, 149 (4) (2019), pp. 518-534.
[71]
W. Zhou, M. Woodson, B. Neupane, F. Bai, M.B. Sherman, K.H. Choi, et al. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathog, 14 (1) (2018), Article e1006764.
[72]
A. Slonchak, B. Clarke, J. Mackenzie, A.A. Amarilla, Y.X. Setoh, A.A. Khromykh. West Nile virus infection and interferon alpha treatment alter the spectrum and the levels of coding and noncoding host RNAs secreted in extracellular vesicles. BMC Genomics, 20 (1) (2019), p. 474.
[73]
P.P. Martínez-Rojas, E. Quiroz-García, V. Monroy-Martínez, L.T. Agredano-Moreno, L.F. Jiménez-García, B.H. Ruiz-Ordaz. Participation of extracellular vesicles from Zika-virus-infected mosquito cells in the modification of naïve cells' behavior by mediating cell-to-cell transmission of viral elements. Cells, 9 (1) (2020), p. 123.
[74]
S.B. York, L. Sun, A.S. Cone, L.C. Duke, M.R. Cheerathodi, D.G. Meckes Jr. Zika virus hijacks extracellular vesicle tetraspanin pathways for cell-to-cell transmission. mSphere, 6 (3) (2021), Article e0019221.
[75]
Y. Fu, L. Zhang, F. Zhang, T. Tang, Q. Zhou, C. Feng, et al. Exosome-mediated miR-146a transfer suppresses type I interferon response and facilitates EV71 infection. PLoS Pathog, 13 (9) (2017), Article e1006611.
[76]
L. Mao, J. Wu, L. Shen, J. Yang, J. Chen, H. Xu. Enterovirus 71 transmission by exosomes establishes a productive infection in human neuroblastoma cells. Virus Genes, 52 (2) (2016), pp. 189-194.
[77]
Z. Feng, L. Hensley, K.L. McKnight, F. Hu, V. Madden, L. Ping, et al. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature, 496 (7445) (2013), pp. 367-371.
[78]
W. Jiang, P. Ma, L. Deng, Z. Liu, X. Wang, X. Liu, et al. Hepatitis A virus structural protein pX interacts with ALIX and promotes the secretion of virions and foreign proteins through exosome-like vesicles. J Extracell Vesicles, 9 (1) (2020), Article 1716513.
[79]
M. Aqil, A.R. Naqvi, S. Mallik, S. Bandyopadhyay, U. Maulik, S. Jameel. The HIV Nef protein modulates cellular and exosomal miRNA profiles in human monocytic cells. J Extracell Vesicles, 3 (1) (2014), p. 23129.
[80]
H. Lu, J. Zhu, J. Yu, Q. Li, L. Luo, F. Cui. Key role of exportin 6 in exosome-mediated viral transmission from insect vectors to plants. Proc Natl Acad Sci USA, 119 (36) (2022), Article e2207848119.
[81]
S.G. van der Grein, K.A.Y. Defourny, H.H. Rabouw, C.R. Galiveti, M.A. Langereis, M.H.M. Wauben, et al. Picornavirus infection induces temporal release of multiple extracellular vesicle subsets that differ in molecular composition and infectious potential. PLoS Pathog, 15 (2) (2019), Article e1007594.
[82]
M.N. Freitas, A.D. Marten, G.A. Moore, M.O. Tree, S.P. McBrayer, M.J. Conway. Extracellular vesicles restrict dengue virus fusion in Aedes aegypti cells. Virology, 541 (2020), pp. 141-149.
[83]
R. Wang, G.G. Gornalusse, Y. Kim, U. Pandey, F. Hladik, L. Vojtech. Potent restriction of sexual Zika virus infection by the lipid fraction of extracellular vesicles in semen. Front Microbiol, 11 (2020), Article 574054.
[84]
M. Dreux, U. Garaigorta, B. Boyd, E. Décembre, J. Chung, C. Whitten-Bauer, et al. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe, 12 (4) (2012), pp. 558-570.
[85]
N. Mukhamedova, A. Hoang, D. Dragoljevic, L. Dubrovsky, T. Pushkarsky, H. Low, et al. Exosomes containing HIV protein Nef reorganize lipid rafts potentiating inflammatory response in bystander cells. PLoS Pathog, 15 (7) (2019), Article e1007907.
[86]
J.V. de Carvalho, R.O. de Castro, E.Z. da Silva, P.P. Silveira, M.E. da Silva-Januário, E. Arruda, et al. Nef neutralizes the ability of exosomes from CD4+ T cells to act as decoys during HIV-1 infection. PLoS One, 9 (11) (2014), Article e113691.
[87]
Y. Yang, Q. Han, Z. Hou, C. Zhang, Z. Tian, J. Zhang. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction. Cell Mol Immunol, 14 (5) (2016), pp. 465-475.
[88]
T. Wei, Y. Li. Rice reoviruses in insect vectors. Annu Rev Phytopathol, 54 (2016), pp. 99-120.
[89]
L. Yin, X. Shen, D. Yin, J. Wang, R. Zhao, Y. Dai, et al. Characteristics of the microRNA expression profile of exosomes released by vero cells infected with porcine epidemic Diarrhea virus. Viruses, 14 (4) (2022), p. 806.
[90]
W. Zhou, M. Woodson, M.B. Sherman, G. Neelakanta, H. Sultana. Exosomes mediate Zika virus transmission through SMPD3 neutral sphingomyelinase in cortical neurons. Emerg Microbes Infect, 8 (1) (2019), pp. 307-326.
[91]
C. Arenaccio, S. Anticoli, F. Manfredi, C. Chiozzini, E. Olivetta, M. Federico. Latent HIV-1 is activated by exosomes from cells infected with either replication-competent or defective HIV-1. Retrovirology, 12 (2015), p. 87.
[92]
P.P. Primadharsini, S. Nagashima, M. Takahashi, T. Kobayashi, T. Nishiyama, T. Nishizawa, et al. Multivesicular body sorting and the exosomal pathway are required for the release of rat hepatitis E virus from infected cells. Virus Res, 278 (2020), Article 197868.
[93]
S.G. Van der Grein, K.A.Y. Defourny, H.H. Rabouw, S.S. Goerdayal, M.J.C. van Herwijnen, R.W. Wubbolts, et al. The encephalomyocarditis virus Leader promotes the release of virions inside extracellular vesicles via the induction of secretory autophagy. Nat Commun, 13 (1) (2022), p. 3625.
[94]
S.K. Tey, H. Lam, S.W.K. Wong, H. Zhao, K.K. To, J.W.P. Yam. ACE2-enriched extracellular vesicles enhance infectivity of live SARS-CoV-2 virus. J Extracell Vesicles, 11 (5) (2022), p. e12231.
[95]
F. Cocozza, N. Névo, E. Piovesana, X. Lahaye, J. Buchrieser, O. Schwartz, et al. Extracellular vesicles containing ACE 2 efficiently prevent infection by SARS-CoV-2 spike protein-containing virus. J Extracell Vesicles, 10 (2) (2020), Article e12050.
[96]
Y. Huang, Y. Li, H. Zhang, R. Zhao, R. Jing, Y. Xu, et al. Zika virus propagation and release in human fetal astrocytes can be suppressed by neutral sphingomyelinase-2 inhibitor GW4869. Cell Discov, 4 (2018), p. 19.
[97]
V.R. Yenuganti, S. Afroz, R.A. Khan, C. Bharadwaj, D.K. Nabariya, N. Nayak, et al. Milk exosomes elicit a potent anti-viral activity against dengue virus. J Nanobiotechnology, 20 (1) (2022), p. 317.
[98]
J.Q. Liang, M.Y. Xie, L.J. Hou, H.L. Wang, J.Y. Luo, J.J. Sun, et al. miRNAs derived from milk small extracellular vesicles inhibit porcine epidemic diarrhea virus infection. Antiviral Res, 212 (2023), Article 105579.
[99]
C. Conzelmann, R. Groß, M. Zou, F. Krüger, A. Görgens, M.O. Gustafsson, et al. Salivary extracellular vesicles inhibit Zika virus but not SARS-CoV-2 infection. J Extracell Vesicles, 9 (1) (2020), Article 1808281.
[100]
K.D. Fasae, G. Neelakanta, H. Sultana. Alterations in arthropod and neuronal exosomes reduce virus transmission and replication in recipient cells. Extracell Vesicles Circ Nucl Acids, 3 (3) (2022), pp. 247-279.
[101]
M. Kakizaki, Y. Yamamoto, S. Yabuta, N. Kurosaki, T. Kagawa, A. Kotani. The immunological function of extracellular vesicles in hepatitis B virus-infected hepatocytes. PLoS One, 13 (12) (2018), Article e0205886.
[102]
S. Chettimada, D.R. Lorenz, V. Misra, S.T. Dillon, R.K. Reeves, C. Manickam, et al. Exosome markers associated with immune activation and oxidative stress in HIV patients on antiretroviral therapy. Sci Rep, 8 (1) (2018), p. 7227.
[103]
P.S. Sung, T.F. Huang, S.L. Hsieh. Extracellular vesicles from CLEC2-activated platelets enhance dengue virus-induced lethality via CLEC5A/TLR2. Nat Commun, 10 (1) (2019), p. 2402.
[104]
A. Lapitz, M. Azkargorta, P. Milkiewicz, P. Olaizola, E. Zhuravleva, M.M. Grimsrud, et al. Liquid biopsy-based protein biomarkers for risk prediction, early diagnosis, and prognostication of cholangiocarcinoma. J Hepatol, 79 (1) (2023), pp. 93-108.
[105]
H. Li, C.L. Chiang, K.J. Kwak, X. Wang, S. Doddi, L.V. Ramanathan, et al. Extracellular vesicular analysis of glypican 1 mRNA and protein for pancreatic cancer diagnosis and prognosis. Adv Sci, 11 (11) (2024), Article 2306373.
[106]
J.K. Sandberg, M.W. Welker, D. Reichert, S. Susser, C. Sarrazin, Y. Martinez, et al. Soluble serum CD 81 Is elevated in patients with chronic hepatitis C and correlates with alanine aminotransferase serum activity. PLoS One, 7 (2) (2012), Article e30796.
[107]
X. Zou, M. Yuan, T. Zhang, N. Zheng, Z. Wu. EVs Containing host restriction factor IFITM3 inhibited ZIKV infection of fetuses in pregnant mice through trans-placenta delivery. Mol Ther, 29 (1) (2021), pp. 176-190.
[108]
S.J. Tsai, N.A. Atai, M. Cacciottolo, J. Nice, A. Salehi, C. Guo, et al. Exosome-mediated mRNA delivery in vivo is safe and can be used to induce SARS-CoV-2 immunity. J Biol Chem, 297 (5) (2021), Article 101266.
[109]
J.A. Roden, D.H. Wells, B.B. Chomel, R.W. Kasten, J.E. Koehler, B.A. McCormick. Hemin binding protein C is found in outer membrane vesicles and protects bartonella henselae against toxic concentrations of hemin. Infect Immun, 80 (3) (2012), pp. 929-942.
[110]
K. Vanaja Sivapriya, J. Russo Ashley, B. Behl, I. Banerjee, M. Yankova, D. Deshmukh Sachin, et al. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell, 165 (5) (2016), pp. 1106-1119.
[111]
F.K. Stevenson, M.L.A. Perez Vidakovics, J. Jendholm, M. Mörgelin, A. Månsson, C. Larsson, et al. B cell activation by outer membrane vesicles—a novel virulence mechanism. PLoS Pathog, 6 (1) (2010), Article e1000724.
[112]
M.D. Keller, K.L. Ching, F.X. Liang, A. Dhabaria, K. Tam, B.M. Ueberheide, et al. Decoy exosomes provide protection against bacterial toxins. Nature, 579 (7798) (2020), pp. 260-264.
[113]
T. Kubori, P. Deo, S.H. Chow, I.D. Hay, O. Kleifeld, A. Costin, et al. Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis. PLoS Pathog, 14 (3) (2018), Article e1006945.
[114]
C. Farrugia, G.P. Stafford, C. Murdoch. Porphyromonas gingivalis outer membrane vesicles increase vascular permeability. J Dent Res, 99 (13) (2020), pp. 1494-1501.
[115]
Yerneni SS, Werner S, Azambuja JH, Ludwig N, Eutsey R, Aggarwal SD, et al. Pneumococcal extracellular vesicles modulate host immunity. mBio 2021; 12(4):e01657-21.
[116]
E. Bielska, M.A. Sisquella, M. Aldeieg, C. Birch, E.J. O'Donoghue, R.C. May. Pathogen-derived extracellular vesicles mediate virulence in the fatal human pathogen Cryptococcus gattii. Nat Commun, 9 (1) (2018), p. 1556.
[117]
J.M. Silverman, J. Clos, C.C. de'Oliveira, O. Shirvani, Y. Fang, C. Wang, et al. An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J Cell Sci, 123 (6) (2010), pp. 842-852.
[118]
A.J. Szempruch, S.E. Sykes, R. Kieft, L. Dennison, A.C. Becker, A. Gartrell, et al. Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell, 164 (1-2) (2016), pp. 246-257.
[119]
Q. Cai, L. Qiao, M. Wang, B. He, F.M. Lin, J. Palmquist, et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science, 360 (6393) (2018), pp. 1126-1129.
[120]
S. Wang, B. He, H. Wu, Q. Cai, O. Ramírez-Sánchez, C. Abreu-Goodger, et al. Plant mRNAs move into a fungal pathogen via extracellular vesicles to reduce infection. Cell Host Microbe, 32 (1) (2024), pp. 93-105.e6.
[121]
K. Sundaram, D.P. Miller, A. Kumar, Y. Teng, M. Sayed, J. Mu, et al. Plant-derived exosomal nanoparticles inhibit pathogenicity of Porphyromonas gingivalis. iScience, 21 (2019), pp. 308-327.
[122]
Y. Teng, F. Xu, X. Zhang, J. Mu, M. Sayed, X. Hu, et al. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol Ther, 29 (8) (2021), pp. 2424-2440.
[123]
M. Regente, M. Pinedo, H. San Clemente, T. Balliau, E. Jamet, L. de la Canal. Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth. J Exp Bot, 68 (20) (2017), pp. 5485-5495.
[124]
J. Mu, X. Zhuang, Q. Wang, H. Jiang, Z.B. Deng, B. Wang, et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol Nutr Food Res, 58 (7) (2014), pp. 1561-1573.
[125]
F.J. Verweij, L. Balaj, C.M. Boulanger, D.R.F. Carter, E.B. Compeer, G. D'Angelo, et al. The power of imaging to understand extracellular vesicle biology in vivo. Nat Methods, 18 (9) (2021), pp. 1013-1026.
[126]
W. Luo, Y. Dai, Z. Chen, X. Yue, K.C. Andrade-Powell, J. Chang. Spatial and temporal tracking of cardiac exosomes in mouse using a nano-luciferase-CD63 fusion protein. Commun Biol, 3 (1) (2020), p. 114.
AI Summary AI Mindmap
PDF(2536 KB)

Accesses

Citations

Detail

Sections
Recommended

/