Pesticide Engineering from Natural Vanillin: Recent Advances and a Perspective

Mingshu Lou, Sha Li, Fangru Jin, Tangbing Yang, Runjiang Song, Baoan Song

Engineering ›› 2024, Vol. 43 ›› Issue (12) : 241-257.

PDF(4342 KB)
PDF(4342 KB)
Engineering ›› 2024, Vol. 43 ›› Issue (12) : 241-257. DOI: 10.1016/j.eng.2024.06.015
Research
Review

Pesticide Engineering from Natural Vanillin: Recent Advances and a Perspective

Author information +
History +

Abstract

Pesticide ecological safety continues to be a hot issue. The inherent biosafety and physiological functions of vanillin, a widely used natural flavor in food additives, have unlocked numerous applications in the medical field, leading to a plethora of pharmaceutically active derivatives and commercial drugs. Despite its extensive use in pharmaceutical discovery and the food industry, vanillin’s potential in the domain of green pesticide development has only recently come to light. Significantly, its advantages of safety and low price make vanillin ideal for green pesticide research and development (R&D). In this context, this review illuminates the research on vanillin’s transformation into a suite of innovative agrochemicals. By delving into the design, synthesis, action mechanisms, and bio-safety of these vanillin-derived compounds, we uncover novel pathways for sustainable agriculture. Further possible directions for the exploration of this substance are also outlined. We believe that this story about vanillin will serve as a source of inspiration for those seeking to derive innovative ideas from natural substances, particularly in the realm of green pesticide R&D.

Graphical abstract

Keywords

Immune activator / Mechanism of action / Pesticide research and development / Sustainable agriculture / Vanillin

Cite this article

Download citation ▾
Mingshu Lou, Sha Li, Fangru Jin, Tangbing Yang, Runjiang Song, Baoan Song. Pesticide Engineering from Natural Vanillin: Recent Advances and a Perspective. Engineering, 2024, 43(12): 241‒257 https://doi.org/10.1016/j.eng.2024.06.015

References

[1]
R.A. Brain, J.C. Anderson. The agro-enabled urban revolution, pesticides, politics, and popular culture: a case study of land use, birds, and insecticides in the USA. Environ Sci Pollut R, 26 (21) (2019), pp. 21717-21735.
[2]
P.M. Ngegba, G. Cui, M.Z. Khalid, G. Zhong. Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture, 12 (5) (2022), p. 600.
[3]
T.C. Sparks, F. Wessels, B.A. Lorsbach, B.M. Nugent, G.B. Watson. The new age of insecticide discovery—the crop protection industry and the impact of natural products. Pestic Biochem Physiol, 161 (2019), pp. 12-22.
[4]
F. Liaqat, L.X. Xu, M.I. Khazi, S. Ali, M.U. Rahman, D. Zhu. Extraction, purification and applications of vanillin: a review of recent advances and challenges. Ind Crops Prod, 204 (2023), Article 117372.
[5]
H. Peng, S. Wang, Z. Zhang, H. Xiong, J. Li, L. Chen, et al. Molecularly imprinted photonic hydrogels as colorimetric sensors for rapid and label-free detection of vanillin. J Agric Food Chem, 60 (8) (2012), pp. 1921-1928.
[6]
A. Olatunde, A. Mohammed, M.A. Ibrahim, N. Tajuddeen, M.N. Shuaibu. Vanillin: a food additive with multiple biological activities. Eur J Med Chem, 5 (2022), Article 100055.
[7]
J. Burri, M. Graf, P. Lambelet, J. Löliger. Vanillin: more than a flavouring agent—a potent antioxidant. J Sci Food Agric, 48 (1) (1989), pp. 49-56.
[8]
L.F. Dalmolin, N.M. Khalil, R.M. Mainardes. Delivery of vanillin by poly(lactic-acid) nanoparticles: development, characterization and in vitro evaluation of antioxidant activity. Mater Sci Eng C, 62 (2016), pp. 1-8.
[9]
A. Tai, T. Sawano, F. Yazama, H. Ito. Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochim Biophys Acta, 1810 (2) (2011), pp. 170-177.
[10]
H.M. Cheng, F.Y. Chen, C.C. Li, H.Y. Lo, Y.F. Liao, T.Y. Ho, et al. Oral administration of vanillin improves imiquimod-induced psoriatic skin inflammation in mice. J Agric Food Chem, 65 (47) (2017), pp. 10233-10242.
[11]
K. Lirdprapamongkol, J.P. Kramb, T. Suthiphongchai, R. Surarit, C. Srisomsap, G. Dannhardt, et al. Vanillin suppresses metastatic potential of human cancer cells through PI3K inhibition and decreases angiogenesis in vivo. J Agric Food Chem, 57 (8) (2009), pp. 3055-3063.
[12]
A.L.V. Kumar Reddy, N.E. Kathale. Synthesis and anti-inflammatory activity of hydrazones bearing biphenyl moiety and vanillin based hybrids. Orient J Chem, 33 (2) (2017), pp. 971-978.
[13]
D. Srikanth, V.H. Menezes, N. Saliyan, U.P. Rathnakar, P.G. Shiv, S.D. Acaharya, et al. Evaluation of anti-inflammatory property of vanillin in carrageenan induced paw edema model in rats. lnt J Bioassays, 2 (1) (2013), pp. 269-271.
[14]
D. Zhao, Y. Jiang, J. Sun, H. Li, M. Zhao. Elucidation of the anti-inflammatory effect of vanillin in Lps-activated THP-1 cells. Int J Food Sci, 84 (7) (2019), pp. 1920-1928.
[15]
P. Anand, B. Singh, N. Singh. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg Med Chem, 20 (3) (2012), pp. 1175-1180.
[16]
L. Piazzi, A. Cavalli, F. Colizzi, F. Belluti, M. Bartolini, F. Mancini, et al. Multi-target-directed coumarin derivatives: hAChE and BACE 1 inhibitors as potential anti-Alzheimer compounds. Bioorg Med Chem Lett, 18 (1) (2008), pp. 423-426.
[17]
M. Scipioni, G. Kay, I.L. Megson, P.K.T. Lin. Synthesis of novel vanillin derivatives: novel multi-targeted scaffold ligands against Alzheimer’s disease. MedChemComm, 10 (5) (2019), pp. 764-777.
[18]
M.W. Zheng, H.K. Lai, K.Y.A. Lin. Valorization of vanillyl alcohol by pigments: prussian blue analogue as a highly-effective heterogeneous catalyst for aerobic oxidation of vanillyl alcohol to vanillin. Waste Biomass Valoriz, 10 (10) (2019), pp. 2933-2942.
[19]
P.R.G.N. Reddy, B.G. Rao, T.V. Rao, B.M. Reddy. Selective aerobic oxidation of vanillyl alcohol to vanillin catalysed by nanostructured Ce-Zr-O solid solutions. Catal Lett, 149 (2) (2019), pp. 533-543.
[20]
S. Cai, J. Lin, M. Wang, X. Ji, Z. Zhang. Biosynthesis of vanillin from vanillyl alcohol by recombinant Escherichia coli cells expressing 5-hydroxymethylfurfural oxidase. Ind Crops Prod, 204 (2023), Article 117285.
[21]
T. Klaus, A. Seifert, T. Häbe, B.M. Nestl, B. Hauer. An enzyme cascade synthesis of vanillin. Catalysts, 9 (3) (2019), p. 252.
[22]
K. Ogawa, A. Tashima, M. Sadakata, O. Morinaga. Appetite-enhancing effects of vanilla flavours such as vanillin. J Nat Med-Tokyo, 72 (3) (2018), pp. 798-802.
[23]
R. Morissette, J. Mihalov, S.J. Carlson, K.J. Kaneko. Trends in ingredients added to infant formula: FDA’s experiences in the GRAS notification program. Food Chem Toxicol, 178 (2023), Article 113876.
[24]
A.S. Vanilla. In: Chemistry of spices. Beijing: CABI Digital Library; (2008), pp. 287-311.
[25]
M. Fache, B. Boutevin, S. Caillol. Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem & Eng, 4 (1) (2016), pp. 35-46.
[26]
J. Ni, F. Tao, H. Du, P. Xu. Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources. Sci Rep-Uk, 5 (2015), p. 13670.
[27]
Y. Wang, S. Sun, F. Li, X. Cao, R. Sun. Production of vanillin from lignin: the relationship between β-O-4 linkages and vanillin yield. Ind Crops Prod, 116 (2018), pp. 116-121.
[28]
M.N. Mohamad Ibrahim, M.Y.N. Nadiah, M.S. Norliyana, C.S. Sipaut, S. Shuib. Separation of vanillin from oil palm empty fruit bunch lignin. CLEAN-Soil Air Water, 36 (3) (2008), pp. 287-291.
[29]
P. Sivagurunathan, T. Raj, C.S. Mohanta, S. Semwal, A. Satlewal, R.P. Gupta, et al. 2G waste lignin to fuel and high value-added chemicals: approaches, challenges and future outlook for sustainable development. Chemosphere, 268 (21) (2020), pp. 1-25.
[30]
X. Xu, P. Li, Y. Zhong, J. Yu, C. Miao, G. Tong. Review on the oxidative catalysis methods of converting lignin into vanillin. Int J Biol Macromol, 243 (2023), Article 125203.
[31]
Q. Ma, K. Liu, J. Mao, K. Chen, C. Liang, J. Yao, et al. Kinetic studies on the liquid-phase catalytic oxidation of 4-methyl guaiacol to vanillin. Can J Chem Eng, 95 (8) (2017), pp. 1544-1553.
[32]
S. Ren, Z. Wu, Q. Guo, B. Shen. Zeolites as shape-selective catalysts: highly selective synthesis of vanillin from reimer-tiemann reaction of guaiacol and chloroform. Catal Lett, 145 (2) (2015), pp. 712-714.
[33]
N.Y. Selikhova, D.A. Kurgachev, V.S. Sidelnikov, D.V. Novikov, V.V. Botvin, O.K. Poleshchuk. Optimization of the conditions of guaiacol and glyoxylic acid condensation to vanillylmandelic acid as an intermediate product in vanillin synthesis. J Phys Conf Ser, 1145 (2019), Article 012047.
[34]
L. Xu, F. Liaqat, J. Sun, M. Khazi, R. Xie, D. Zhu. Advances in the vanillin synthesis and biotransformation: a review. Renew Sustain Energy Rev, 189 (2024), Article 113905.
[35]
Q. Ma, L. Liu, S. Zhao, Z. Huang, C. Li, S. Jiang, et al. Biosynthesis of vanillin by different microorganisms: a review. World J Microb Biot, 38 (3) (2022), pp. 1-9.
[36]
R.S. Kumar, S. Naveena, S. Praveen, N. Yogadharshini. Therapeutic aspects of biologically potent vanillin derivatives: a critical review. J Drug Deliv Sci Technol, 13 (7) (2023), pp. 177-189.
[37]
W. Jiang, X. Chen, Y. Feng, J. Sun, Y. Jiang, W. Zhang, et al. Current status, challenges, and prospects for the biological production of vanillin. Fermentation (Basel), 9 (4) (2023), p. 389.
[38]
Y. Wang, Y. Luo, D. Hu, B. Song. Design, synthesis, anti-tomato spotted wilt virus activity, and mechanism of action of thienopyrimidine-containing dithioacetal derivatives. J Agric Food Chem, 70 (20) (2022), pp. 6015-6025.
[39]
L. Zhao, D. Hu, Z. Wu, C. Wei, S. Wu, B. Song. Coumarin derivatives containing sulfonamide and dithioacetal moieties: design, synthesis, antiviral activity, and mechanism. J Agric Food Chem, 70 (19) (2022), pp. 5773-5783.
[40]
H.M. Guo, S.K. Wu, R.J. Song, T. Liu, S.Q. He, B.A. Song, et al. Discovery of mesoionic derivatives containinga dithioacetal skeletonas novel potential antibacterial agentsand mechanism research. J Agric Food Chem, 70 (23) (2022), pp. 7015-7028.
[41]
D. Liu, R. Song, Z. Wu, Z. Xing, D. Hu. Pyrido[1,2-a]pyrimidinone mesoionic compounds containing vanillin moiety: design, synthesis, antibacterial activity, and mechanism. J Agric Food Chem, 70 (34) (2022), pp. 10443-10452.
[42]
H.C. Arca, L.I. Mosquera-Giraldo, V. Bi, D. Xu, L.S. Taylor, K.J. Edgar. Pharmaceutical applications of cellulose ethers and cellulose ether esters. Biomacromolecules, 19 (7) (2018), pp. 2351-2376.
[43]
S. Buwalda, S. Rotman, D. Eglin, F. Moriarty, A. Bethry, X. Garric, et al. Synergistic anti-fouling and bactericidal poly(ether ether ketone) surfaces via a one-step photo modification. Mater Sci Eng C, 111 (2020), Article 110811.
[44]
T. Chen, H. Xiong, J. Yang, X. Zhu, R. Qu, G. Yang. Diaryl ether: a privileged scaffold for drug and agrochemical discovery. J Agric Food Chem, 68 (37) (2020), pp. 9839-9877.
[45]
X. Zhu, J. Sipila, A. Potthast, A. Potthast, T. Rosenau, M. Balakshin. Exploring Alkyl-O-Alkyl ether structures in softwood milled wood lignins. J Agric Food Chem, 71 (1) (2022), pp. 580-591.
[46]
S. Zhou, Z. Wang, X. Zhu, Q. Wu, G. Yang. Synthesis and insecticidal activity study of azidopyridryl containing dichlorolpropene ether derivatives. J Agric Food Chem, 71 (47) (2023), pp. 18205-18211.
[47]
G. Merhi, A.W. Coleman, J.P. Devissaguet, G.M. Barratt. Synthesis and immunostimulating properties of lipophilic ester and ether muramyl peptide derivatives. J Med Chem, 39 (22) (1996), pp. 4483-4488.
[48]
M. Hrubý, Č. Koňák, K. Ulbrich. Poly(allyl glycidyl ether)-block-poly(ethylene oxide): a novel promising polymeric intermediate for the preparation of micellar drug delivery systems. J Appl Polym Sci, 95 (2) (2005), pp. 201-211.
[49]
S.S. Kar, V.G. Bhat, V.P. Shenoy, L. Bairy, G.G. Shenoy. Design, synthesis, and evaluation of novel diphenyl ether derivatives against drug-susceptible and drug-resistant strains of Mycobacterium tuberculosis. Chem Biol Drug Des, 93 (1) (2019), pp. 60-66.
[50]
J.M. Dean, I.J. Lodhi. Structural and functional roles of ether lipids. Protein Cell, 9 (2) (2018), pp. 196-206.
[51]
P. Hu, B. Dong, Z. Zhou, W. Chen, B. Zeng. Chemoselective thioacetalisation and transthioacetalisation of aldehydes catalyzed by PVP-I. ChemistrySelect, 4 (36) (2019), pp. 10798-10804.
[52]
N. Taniguchi, K. Kitayama. Dihydrosulfenylation of alkynes with thiols using a nickel catalyst through a radical process. Asian J Org Chem, 8 (8) (2019), pp. 1468-1471.
[53]
D. Xie, J. Shi, A. Zhang, Z. Lei, G. Zu, Y. Fu, et al. Syntheses, antiviral activities and induced resistance mechanisms of novel quinazoline derivatives containing a dithioacetal moiety. Bioorg Chem, 80 (2018), pp. 433-443.
[54]
Z. Xing, M. Yang, H. Sun, Z. Wang, P. Chen, L. Liu, et al. Visible-light promoted dithioacetalization of aldehydes with thiols under aerobic and photocatalyst-free conditions. Green Chem, 20 (22) (2018), pp. 5117-5122.
[55]
J. Wu, F.Z. Xu, S.L. Feng, W. Xue, Z.Z. Wang. A facile preparation of imidazo[1,2-a] pyridin-3-amine derivatives via a three-component reaction with β-cyclodextrin-SO3H as catalyst. J Heterocycl Chem, 92 (9) (2016), pp. 1629-1642.
[56]
D. Luo, S. Guo, F. He, S. Chen, A. Dai, R. Zhang, et al. Design, synthesis, and bioactivity of α-ketoamide derivatives bearing a vanillin skeleton for crop diseases. J Agric Food Chem, 68 (27) (2020), pp. 7226-7234.
[57]
G. Zu, X. Gan, D. Xie, H. Yang, A. Zhang, S. Li, et al. Design, synthesis, and anti-ToCV activity of novel 4(3H)-quinazolinone derivatives bearing dithioacetal moiety. J Agric Food Chem, 68 (20) (2020), pp. 5539-5544.
[58]
H. He, F. Wang, D. Zhang, C. Chen, D. Xu, H. Zhou, et al. Discovery of novel α-methylene-γ-butyrolactone derivatives containing vanillin moieties as antiviral and antifungal agents. J Agric Food Chem, 70 (33) (2022), pp. 10316-10325.
[59]
J. Zhang, L. Zhao, C. Zhu, Z. Wu, G. Zhang, X. Gan, et al. Facile synthesis of novel vanillin derivatives incorporating a bis(2-hydroxyethyl) dithhioacetal moiety as antiviral agents. J Agric Food Chem, 65 (23) (2017), pp. 4582-4588.
[60]
V. Potkin, Y. Zubenko, A. Bykhovetz, R. Zolotar, V. Goncharuk. Synthesis of novel vanillin derivatives containing isothiazole moieties and its synergistic effect in mixtures with insecticides. Nat Prod Commun, 4 (9) (2009), pp. 1205-1208.
[61]
W. Si, M. Chen, X. Wang, M. Wang, J. Jiao, X. Fu, et al. Synthesis and insecticidal activity of novel benzothiazole derivatives containing the coumarin moiety. Arkivoc, vii (2018), pp. 86-99.
[62]
H. Sauter, W. Steglich, T. Anke. Strobilurins: evolution of a new class of active substances. Angew Chem Int Ed, 38 (10) (1999), pp. 1328-1349.
[63]
W. Huang, P. Zhao, C. Liu, Q. Chen, Z. Liu, G. Yang. Design, synthesis, and fungicidal activities of new strobilurin derivatives. J Agric Food Chem, 55 (8) (2007), pp. 3004-3010.
[64]
P. Zhao, C. Liu, W. Huang, Y. Wang, G. Yang. Synthesis and fungicidal evaluation of novel chalcone-based strobilurin analogues. J Agric Food Chem, 55 (14) (2007), pp. 5697-5700.
[65]
D.W. Bartlett, J.M. Clough, J.R. Godwin, A.A. Hall, M. Hamer, B. Parr-Dobrzanski. The strobilurin fungicides. Pest Manag Sci, 58 (7) (2002), pp. 649-662.
[66]
M. Kovačević, D.K. Hackenberger, B.K. Hackenberger. Effects of strobilurin fungicides (azoxystrobin, pyraclostrobin, and trifloxystrobin) on survival, reproduction and hatching success of Enchytraeus crypticus. Sci Total Environ, 790 (2021), Article 148143.
[67]
B. Chai, C. Liu, H. Li, S. Liu, Y. Xu, Y. Song, et al. Synthesis and acaricidal activity of strobilurin-pyrimidine derivatives. Chin Chem Lett, 25 (1) (2014), pp. 137-140.
[68]
D. Debona, K.J.T. Nascimento, J.G.O. Gomes, C.E. Aucique-Perez, F.A. Rodrigues. Physiological changes promoted by a strobilurin fungicide in the rice-Bipolaris oryzae interaction. Pestic Biochem Physiol, 130 (2016), pp. 8-16.
[69]
S. Herms, K. Seehaus, H. Koehle, U. Conrath. A strobilurin fungicide enhances the resistance of tobacco against tobacco mosaic virus and Pseudomonas syringae pv tabaci. Plant Physiol, 130 (1) (2002), pp. 120-127.
[70]
A. Liu, X. Wang, X. Ou, M. Huang, C. Chen, S. Liu, et al. Synthesis and fungicidal activities of novel bis(trifluoromethyl) phenyl-based strobilurins. J Agric Food Chem, 56 (15) (2008), pp. 6562-6566.
[71]
P. Zhao, F. Wang, M. Zhang, Z. Liu, W. Huang, G. Yang. Synthesis, fungicidal, and insecticidal activities of β-methoxyacrylate-containing N-acetyl pyrazoline derivatives. J Agric Food Chem, 56 (22) (2008), pp. 10767-10773.
[72]
J. Chen, J. Shi, L. Yu, D. Liu, X. Gan, B. Song, et al. Design, synthesis, antiviral bioactivity, and defense mechanisms of novel dithioacetal derivatives bearing a strobilurin moiety. J Agric Food Chem, 66 (21) (2018), pp. 5335-5345.
[73]
D. Xie, J. Zhang, H. Yang, Y. Liu, D. Hu, B. Song. First anti-ToCV activity evaluation of glucopyranoside derivatives containing a dithioacetal moiety through a novel ToCVCP-oriented screening method. J Agric Food Chem, 67 (26) (2019), pp. 7243-7248.
[74]
Z. Lei, J. Wang, G. Mao, Y. Wen, Y. Tian, H. Wu, et al. Glucose positions affect the phloem mobility of glucose-fipronil conjugates. J Agric Food Chem, 62 (26) (2014), pp. 6065-6071.
[75]
Y. Liu, J. Chen, D. Xie, B. Song, D. Hu. First report on anti-TSWV activities of quinazolinone derivatives containing a dithioacetal moiety. J Agric Food Chem, 69 (41) (2021), pp. 12135-12142.
[76]
L. Christodoulopoulou, M. Tsoukatou, L.A. Tziveleka, C. Vagias, P.V. Petrakis, V. Roussis. Piperidinyl amides with insecticidal activity from the maritime plant Otanthus maritimus. J Agric Food Chem, 53 (5) (2005), pp. 1435-1439.
[77]
J. Ma, P. Li, X. Li, Q. Shi, Z. Wan, D. Hu, et al. Synthesis and antiviral bioactivity of novel 3-((2-((1E, 4E)-3-oxo-5-arylpenta-1, 4-dien-1-yl) phenoxy) methyl)-4 (3H)-quinazolinone derivatives. J Agric Food Chem, 62 (36) (2014), pp. 8928-8934.
[78]
A.R. Aguiar, E.S. Alvarenga, E.M.P. Silva, E.S. Farias, M.C. Picanço. Synthesis, insecticidal activity, and phytotoxicity of novel chiral amides. Pest Manag Sci, 75 (6) (2019), pp. 1689-1696.
[79]
J.D. Eckelbarger, M.H. Parker, M.C.H. Yap, A.M. Buysse, J.M. Babcock, R. Hunter, et al. Synthesis and biological activity of a new class of insecticides: the N-(5-aryl-1, 3, 4-thiadiazol-2-yl) amides. Pest Manag Sci, 73 (4) (2017), pp. 761-773.
[80]
M. Tsikolia, U.R. Bernier, N.M. Agramonte, A.S. Estep, J.J. Becnel, N. Tabanca, et al. Insecticidal and repellent properties of novel trifluoromethylphenyl amides II. Pestic Biochem Physiol, 151 (2018), pp. 40-46.
[81]
P. Kaushik, D.J. Sarkar, S. Chander, V.S. Rana, N.A. Shakil. Insecticidal activity of phenolic acid amides against brown planthopper (BPH), Nilaparvata lugens (Stål) and their QSAR analysis. J Environ Sci Health B, 54 (6) (2019), pp. 489-497.
[82]
G.M. Richoux, L. Yang, E.J. Norris, K.J. Linthicum, J.R. Bloomquist. Structural exploration of novel pyrethroid esters and amides for repellent and insecticidal activity against mosquitoes. J Agric Food Chem, 71 (47) (2023), pp. 18285-18291.
[83]
M. Tsikolia, U.R. Bernier, N.M. Agramonte, A.S. Estep, J.J. Becnel, K.J. Linthicum, et al. Insecticidal and repellent properties of novel trifluoromethylphenyl amides III. Pestic Biochem Physiol, 161 (2019), pp. 5-11.
[84]
W. Dong, J. Xu, L. Xiong, Z. Li. Synthesis, structure and insecticidal activities of some novel amides containing N-pyridylpyrazole moeities. Molecules, 17 (9) (2012), pp. 10414-10428.
[85]
A.M. Buysse, M.C.H. Yap, R. Hunter, J. Babcock, X. Huang. Synthesis and biological activity of pyridazine amides, hydrazones and hydrazides. Pest Manag Sci, 73 (4) (2017), pp. 782-795.
[86]
G. Li, M. Obul, J.Y. Zhao, G.Y. Liu, W. Lu, H.A. Aisa. Novel amides modified rupestonic acid derivatives as anti-influenza virus reagents. Bioorg Med Chem Lett, 29 (19) (2019), Article 126605.
[87]
E.V. Suslov, E.S. Mozhaytsev, D.V. Korchagina, N.I. Bormotov, O.I. Yarovaya, K.P. Volcho, et al. New chemical agents based on adamantane-monoterpene conjugates against orthopoxvirus infections. Rsc Med Chem, 11 (10) (2020), pp. 1185-1195.
[88]
E.S. Mozhaitsev, E.V. Suslov, D.A. Rastrepaeva, O.I. Yarovaya, S.S. Borisevich, E.M. Khamitov, et al. Structure-based design, synthesis, and biological evaluation of the cage-amide derived orthopox virus replication inhibitors. Viruses, 15 (1) (2022), p. 29.
[89]
V.A. Fedorova, R.A. Kadyrova, A.V. Slita, A.A. Muryleva, P.R. Petrova, A.V. Kovalskaya, et al. Antiviral activity of amides and carboxamides of quinolizidine alkaloid (-)-cytisine against human influenza virus A (H1N1) and parainfluenza virus type 3. Nat Prod Res, 35 (22) (2021), pp. 4256-4264.
[90]
A.I. Dalinger, D.S. Baev, O.I. Yarovaya, V.Y. Chirkova, E.A. Sharlaeva, S.V. Belenkaya, et al. Synthesis of non-symmetric N-benzylbispidinol amides and study of their inhibitory activity against the main protease of the SARS-CoV-2 virus. Russ Chem Bull, 72 (1) (2023), pp. 239-247.
[91]
Z. Sun, C. Wei, S. Wu, W. Zhang, R. Song, D. Hu. Synthesis, anti-potato virus Y activities, and interaction mechanisms of novel quinoxaline derivatives bearing dithioacetal moiety. J Agric Food Chem, 70 (23) (2022), pp. 7029-7038.
[92]
G.R. Silveira, K.A. Campelo, G.R.S. Lima, L.P. Carvalho, S.S. Samarão, O. Vieira-da-Motta, et al. In vitro anti-Toxoplasma gondii and antimicrobial activity of amides derived from cinnamic acid. Molecules, 23 (4) (2018), p. 774.
[93]
S. Matysiak, J. Zabielska, J. Kula, A. Kunicka-Styczyńska. Synthesis of (R)- and (S)-ricinoleic acid amides and evaluation of their antimicrobial activity. J Am Oil Chem Soc, 95 (1) (2018), pp. 69-77.
[94]
G.C. Look, C. Vacin, T.M. Dias, S. Ho, T.H. Tran, L.L. Lee, et al. The discovery of biaryl acids and amides exhibiting antibacterial activity against Gram-positive bacteria. Bioorg Med Chem Lett, 14 (6) (2004), pp. 1423-1426.
[95]
B. Erkuş, H. Özcan, Ö. Zaim. Synthesis, antimicrobial activity, and ion transportation investigation of four new [1+1] condensed furan and thiophene-based cycloheterophane amides. J Heterocycl Chem, 57 (4) (2020), pp. 1956-1962.
[96]
M. Krátký, Š. Štěpánková, K. Vorčáková, L. Navrátilová, F. Trejtnar, J. Stolaříková, et al. Synthesis of readily available fluorophenylalanine derivatives and investigation of their biological activity. Bioorg Chem, 71 (2017), pp. 244-256.
[97]
W. Zhang, C.W. Holyoke Jr, T.F. Pahutski, G.P. Lahm, J.D. Barry, D. Cordova, et al. Mesoionic Pyrido[1,2-a]pyrimidinones: discovery of triflumezopyrim as a potent hopper insecticide. Bioorg Med Chem Lett, 27 (1) (2017), pp. 16-20.
[98]
W. Zhang, C.W. Holyoke Jr, J.D. Barry, D. Cordova, R.M. Leighty, M.H.T. Tong. Mesoionic Pyrido[1,2-a]pyrimidinones: discovery of dicloromezotiaz as a lepidoptera insecticide acting on nicotinic acetylcholine receptors. Bioorg Med Chem Lett, 27 (4) (2017), pp. 911-917.
[99]
D. Liu, J. Zhang, L. Zhao, W.J. He, G. Liu, X. Gan, et al. First discovery of novel pyrido[1,2-a]pyrimidinone mesoionic compounds as antibacterial agents. J Agric Food Chem, 67 (43) (2019), pp. 11860-11866.
[100]
W. Zhang. Mesoionic pyrido[1,2-a]pyrimidinone insecticides: from discovery to triflumezopyrim and dicloromezotiaz. Acc Chem Res, 50 (9) (2017), pp. 2381-2388.
[101]
H. Li, W. Peng, W. Feng, Y. Wang, G. Chen, S. Wang, et al. A novel dual-emission fluorescent probe for the simultaneous detection of H2S and GSH. Chem Commun, 52 (25) (2016), pp. 4628-4631.
[102]
C. Zhou, X. Xu. Synthesis of New C2-Symmetric Chiral Bisamides from (1S, 2S)-Cyclohexane-1,2-dicarboxylic Acid. Helv Chim Acta, 97 (10) (2014), pp. 1396-1405.
[103]
J. Shi, L. Yu, B. Song. Proteomics analysis of Xiangcaoliusuobingmi-treated Capsicum annuum L. infected with cucumber mosaic virus. Pestic Biochem Physiol, 149 (2018), pp. 113-122.
[104]
J. Shi, H. He, D. Hu, B. Song. Defense mechanism of Capsicum annuum L. infected with pepper mild mottle virus induced by vanisulfane. J Agric Food Chem, 70 (12) (2022), pp. 3618-3632.
[105]
S. Zhang, C. Wei, L. Yu, B. Song. Vanisulfane induced plant resistance toward potato virus Y via the salicylic-depended acid signaling pathway. J Agric Food Chem, 71 (40) (2023), pp. 14527-14538.
[106]
J. Shi, H. He, Z. Liu, D. Hu. Pepper mild mottle virus coat protein as a novel target to screen antiviral drugs. J Agric Food Chem, 70 (27) (2022), pp. 8233-8242.
[107]
S. Shao, X. Cheng, R. Zheng, S. Zhang, Z. Yu, H. Wang, et al. Sex-related deposition and metabolism of vanisulfane, a novel vanillin-derived pesticide, in rats and its hepatotoxic and gonadal effects. Sci Total Environ, 813 (2022), Article 152545.
[108]
E.A. Iverson, D.A. Goodman, M.E. Gorchels, K.M. Stedman. Extreme mutation tolerance: nearly half of the archaeal fusellovirus sulfolobus spindle-shaped virus 1 genes are not required for virus function, including the minor capsid protein gene vp3. J Virol, 91 (10) (2017), pp. e02406-e02416.
[109]
N. Zan, J. Li, H. He, D. Hu, B. Song. Discovery of novel chromone derivatives as potential anti-TSWV agents. J Agric Food Chem, 69 (37) (2021), pp. 10819-10829.
[110]
G. Banerjee, P. Chattopadhyay. Vanillin biotechnology: the perspectives and future. J Sci Food Agric, 99 (2) (2018), pp. 499-506.
[111]
H. Priefert, J. Rabenhorst, A. Steinbüchel. Biotechnological production of vanillin. Appl Microbiol Biot, 56 (3-4) (2001), pp. 296-314.
[112]
A. Kundu. Vanillin biosynthetic pathways in plants. Planta, 245 (6) (2017), pp. 1069-1078.
[113]
M. Ashengroph, I. Nahvi, H. Zarkesh-Esfahani, F. Momenbeik. Conversion of isoeugenol to vanillin by Psychrobacter sp. Strain CSW4. Appl Biochem Biotechnol, 166 (1) (2012), pp. 1-12.
[114]
X.G. Meng, N. Wang, X.F. Long, D.Y. Hu. Degradation of a novel pesticide antiviral agent vanisulfane in aqueous solution: kinetics, identification of photolysis products, and pathway. ACS Omega, 5 (38) (2020), pp. 24881-24889.
[115]
S. Shao, R. Zheng, X. Cheng, S. Zhang, Z. Yu, X. Pang, et al. Diverse positional 14C labeling-assisted metabolic analysis of pesticides in rats: the case of vanisulfane, a novel vanillin-derived pesticide. Sci Total Environ, 826 (2022), Article 153920.
[116]
S. Shao, S. Zhang, Z. Yu, H. Wang, Q. Ye. Insights into the fate of the novel pesticide vanisulfane from animal manure in plant-soil systems: assisted by carbon-14 labeling. J Agric Food Chem, 71 (2) (2023), pp. 1139-1148.
[117]
J. Ouyang, X. Xing, L. Zhou, C. Zhang, J. Heng. Cocrystal design of vanillin with amide drugs: crystal structure determination, solubility enhancement, DFT calculation. Chem Eng Res Des, 183 (2022), pp. 170-180.
[118]
X. Xing, J. Ouyang, S. Guo, M. Chen, Z. Gao, F. He, et al. Spherical particles design of vanillin via crystallization method: preparation, characterization and mechanism. Separ Purif Tech, 314 (2023), Article 123622.
[119]
J. Ouyang, X. Xing, B. Yang, Y. Li, L. Xu, L. Zhou, et al. Terahertz spectroscopic characterization and DFT calculations of vanillin cocrystals with nicotinamide and isonicotinamide. CrystEngComm, 25 (14) (2023), pp. 2038-2051.
AI Summary AI Mindmap
PDF(4342 KB)

Accesses

Citations

Detail

Sections
Recommended

/