Microfluidic Barcode Biochips for High-Throughput Real-Time Biomolecule and Single-Cell Screening

Jiaoyan Qiu, Yanbo Liang, Chao Wang, Yang Yu, Yu Zhang, Hong Liu, Lin Han

Engineering ›› 2025, Vol. 46 ›› Issue (3) : 130-146.

PDF(7211 KB)
PDF(7211 KB)
Engineering ›› 2025, Vol. 46 ›› Issue (3) : 130-146. DOI: 10.1016/j.eng.2024.06.016
Research
Review

Microfluidic Barcode Biochips for High-Throughput Real-Time Biomolecule and Single-Cell Screening

Author information +
History +

Abstract

The real-time screening of biomolecules and single cells in biochips is extremely important for disease prediction and diagnosis, cellular analysis, and life science research. Barcode biochip technology, which is integrated with microfluidics, typically comprises barcode array, sample loading, and reaction unit array chips. Here, we present a review of microfluidics barcode biochip analytical approaches for the high-throughput screening of biomolecules and single cells, including protein biomarkers, microRNA (miRNA), circulating tumor DNA (ctDNA), single-cell secreted proteins, single-cell exosomes, and cell interactions. We begin with an overview of current high-throughput detection and analysis approaches. Following this, we outline recent improvements in microfluidic devices for biomolecule and single-cell detection, highlighting the benefits and limitations of these devices. This paper focuses on the research and development of microfluidic barcode biochips, covering their self-assembly substrate materials and their specific applications with biomolecules and single cells. Looking forward, we explore the prospects and challenges of this technology, with the aim of contributing toward the use of microfluidic barcode detection biochips in medical diagnostics and therapies, and their large-scale commercialization.

Graphical abstract

Keywords

High-throughput / Microfluidic barcode biochip / Single-cell analysis / Biomolecules

Cite this article

Download citation ▾
Jiaoyan Qiu, Yanbo Liang, Chao Wang, Yang Yu, Yu Zhang, Hong Liu, Lin Han. Microfluidic Barcode Biochips for High-Throughput Real-Time Biomolecule and Single-Cell Screening. Engineering, 2025, 46(3): 130‒146 https://doi.org/10.1016/j.eng.2024.06.016

References

[1]
Du X, Chang D, Kaneko S, Maruyama H, Sugiura H, Tsujii M, et al.Dynamic deformation measurement of an intact single cell via microfluidic chip with integrated liquid exchange.Engineering 2023; 24:94-101.
[2]
Wu Z, Guo W, Bai Y, Zhang L, Hu J, Pang D, et al.Digital single virus electrochemical enzyme-linked immunoassay for ultrasensitive H7N9 Avian influenza virus counting.Anal Chem 2018; 90(3):1683-1690.
[3]
Navarro A, Gómez L, Sanseverino I, Niegowska M, Roka E, Pedraccini R, et al.SARS-CoV-2 detection in wastewater using multiplex quantitative PCR.Sci Total Environ 2021; 797(25):148890-148897.
[4]
Wörner T, Snijder J, Bennett A, Agbandje-McKenna M, Makarov A, Heck A.Resolving heterogeneous macromolecular assemblies by orbitrap-based single-particle charge detection mass spectrometry.Nat Methods 2020; 17(4):395-398.
[5]
Kim K, Kim D, Lee S, Kim S, Noh J, Kim J, et al.Pairwise detection of site-specific receptor phosphorylations using single-molecule blotting.Nat Commun 2016; 7(1):11107.
[6]
Li Q, Wang Y, Xue Y, Qiao L, Yu G, Liu Y, et al.Ultrasensitive analysis of exosomes using a 3D self-assembled nanostructured SiO2 microfluidic chip.ACS Appl Mater Interfaces 2022; 14(12):14693-14702.
[7]
Wang F, Gui Y, Liu W, Li C, Yang Y.Precise molecular profiling of circulating exosomes using a metal–organic framework-based sensing interface and an enzyme-based electrochemical logic platform.Anal Chem 2022; 94(2):875-883.
[8]
Daniel M, Mathew G, Anpo M, Neppolian B.MOF based electrochemical sensors for the detection of physiologically relevant biomolecules: an overview.Coordin Chem Rev 2022; 468(1):214627-214661.
[9]
Chen M, He Y, Chen X, Wang J.Quantum-dot-conjugated graphene as a probe for simultaneous cancer-targeted fluorescent imaging, tracking, and monitoring drug delivery.Bioconjugate Chem 2013; 24(3):387-397.
[10]
Lin D, Hsieh C, Hsu K, Liao P, Qiu S, Gong T, et al.Geometrically encoded SERS nanobarcodes for the logical detection of nasopharyngeal carcinoma-related progression biomarkers.Nat Commun 2021; 12(1):3430.
[11]
Komatsu T, Tokeshi M, Fan S.Determination of blood lithium-ion concentration using digital microfluidic whole-blood separation and preloaded paper sensors.Biosens Bioelectron 2022; 195:113631.
[12]
Sackmann E, Fulton A, Beebe D.The present and future role of microfluidics in biomedical research.Nature 2014; 507(7491):181-189.
[13]
Hengoju S, Shvydkiv O, Tovar M, Roth M, Rosenbaum M.Advantages of optical fibers for facile and enhanced detection in droplet microfluidics.Biosens Bioelectron 2022; 200:113910.
[14]
LaBaer J, Ramachandran N.Protein microarrays as tools for functional proteomics.Curr Opin Chem Biol 2005; 9(1):14-19.
[15]
Lu Y, Chen J, Mu L, Xue Q, Wu Y, Wu P, et al.High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity.Anal Chem 2013; 85(4):2548-2556.
[16]
Qiu J, Jiang P, Wang C, Chu Y, Zhang Y, Wang Y, et al.Lys-Au NPs@MoS2 nanocomposite self-assembled microfluidic immunoassay biochip for ultrasensitive detection of multiplex biomarkers for cardiovascular diseases.Anal Chem 2022; 94(11):4720-4728.
[17]
Jiang Z, Shi H, Tang X, Qin J.Recent advances in droplet microfluidics for single-cell analysis.Trac-Trend Anal Chem 2023; 159:116932.
[18]
Shang L, Cheng Y, Zhao Y.Emerging droplet microfluidics.Chem Rev 2017; 117(12):7964-8040.
[19]
Xiao M, Zou K, Li L, Wang L, Tian Y, Fan C, et al.Stochastic DNA walkers in droplets for super-multiplexed bacterial phenotype detection.Angew Chem Int Edit 2019; 58(43):15448-15454.
[20]
Vabre L, Dubois A, Potier M, Stehl Jé, Boccara A.DNA microarray inspection by interference microscopy.Rev Sci Instrum 2001; 72(6):2834-2836.
[21]
Wu J, Chen Y, Yang M, Wang Y, Zhang C, Yang M, et al.Streptavidin–biotin–peroxidase nanocomplex-amplified microfluidics immunoassays for simultaneous detection of inflammatory biomarkers.Anal Chim Acta 2017; 982:138-147.
[22]
Chi J, Su M, Xue B, Cheng L, Lian Z, Yun Y, et al.Fast and sensitive detection of protein markers using an all-printing photonic crystal microarray via fingertip blood.ACS Sens 2023; 8(4):1742-1749.
[23]
Zhang D, Dai W, Hu H, Chen W, Liu Y, Guan Z, et al.Controlling the immobilization process of an optically enhanced protein microarray for highly reproducible immunoassay.Nanoscale 2021; 13(7):4269-4277.
[24]
Wang C, Wang C, Qiu J, Gao J, Liu H, Zhang Y, et al.Ultrasensitive, high-throughput, and rapid simultaneous detection of SARS-CoV-2 antigens and IgG/IgM antibodies within 10 min through an immunoassay biochip.Microchim Acta 2021; 188(8):262.
[25]
Lu Y, Xue Q, Eisele M, Sulistijo E, Brower K, Han L, et al.Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands.Proc Natl Acid Sci USA 2015; 112(7):607-615.
[26]
Deng Y, Finck A, Fan R.Single-cell omics analyses enabled by microchip technologies.Annu Rev Biomed Eng 2019; 21(1):365-393.
[27]
Wang C, Wang C, Wu Y, Gao J, Han Y, Chu Y, et al.High-throughput, living single-cell, multiple secreted biomarker profiling using microfluidic chip and machine learning for tumor cell classification.Adv Healthc Mater 2022; 11(13):2102800.
[28]
Song F, Wang C, Wang C, Wang J, Wu Y, Wang Y, et al.Multi-phenotypic exosome secretion profiling microfluidic platform for exploring single-cell heterogeneity.Small Methods 2022; 6(9):2200717.
[29]
Hu Y, Fan C.Nanocomposite DNA hydrogels emerging as programmable and bioinstructive materials systems.Chem 2022; 8(6):1554-1566.
[30]
Sun Z, Yang J, Li H, Wang C, Fletcher C, Li J, et al.Progress in the research of nanomaterial-based exosome bioanalysis and exosome-based nanomaterials tumor therapy.Biomaterials 2021; 274:120873.
[31]
Chen T, Yin S, Wu J.Nanomaterials meet microfluidics: improved analytical methods and high-throughput synthetic approaches.Trac-Trend Anal Chem 2021; 142:116309.
[32]
Li Z, Xu X, Wang D, Jiang X.Recent advancements in nucleic acid detection with microfluidic chip for molecular diagnostics.Trac-Trend Anal Chem 2023; 158:116871.
[33]
Zhang L, Parvin R, Chen M, Hu D, Fan Q, Ye F.High-throughput microfluidic droplets in biomolecular analytical system: a review.Biosens Bioelectron 2023; 228:115213.
[34]
Qin X, Liu J, Zhang Z, Li J, Yuan L, Zhang Z, et al.Microfluidic paper-based chips in rapid detection: current status, challenges, and perspectives. Trac-Trend Anal Chem (2021), p. 143
[35]
Wang C, Zhang Y, Tang W, Wang C, Han Y, Qiang L, et al.Ultrasensitive, high-throughput and multiple cancer biomarkers simultaneous detection in serum based on graphene oxide quantum dots integrated microfluidic biosensing platform.Anal Chim Acta 2021; 1178:338791.
[36]
Wang Y, Gao Y, Yin Y, Pan Y, Wang Y, Song Y.Nanomaterial-assisted microfluidics for multiplex assays.Microchim Acta 2022; 189(4):139.
[37]
Valiev R.Materials science—nanomaterial advantage.Nature 2002; 419(6910):887.
[38]
Bilge S, Dogan-Topal B, Yucel A, Sinag A, Ozkan S.Recent advances in flower-like nanomaterials: synthesis, characterization, and advantages in gas sensing applications.Trac-Trend Anal Chem 2022; 153:116638.
[39]
Shi C, He Y, Feng X, Fu D.ε-Polylysine and next-generation dendrigraft poly-L-lysine: chemistry, activity, and applications in biopharmaceuticals.J Biomat Sci Polym E 2015; 26(18):1343-1356.
[40]
Shih I, Shen M, Van Y.Microbial synthesis of poly(epsilon-lysine) and its various applications.Bioresource Technol 2006; 97(9):1148-1159.
[41]
Tade R, Patil P.Fabrication of poly-L-lysine-functionalized graphene quantum dots for the label-free fluorescent-based detection of carcinoembryonic antigen.ACS Biomater Sci Eng 2022; 8(2):470-483.
[42]
Patil N, Kandasubramanian B.Functionalized polylysine biomaterials for advanced medical applications: a review.Eur Polym J 2021; 146:110248.
[43]
Stearns N, Zhou S, Petri M, Binder S, Pisetsky D.The use of poly-L-lysine as a capture agent to enhance the detection of antinuclear antibodies by ELISA.PLOS ONE 2016; 11(9):e0161818.
[44]
Wu J, Chen Y, Wang Y, Yin H, Zhao Z, Liu N, et al.Poly-L-lysine brushes on magnetic nanoparticles for ultrasensitive detection of Escherichia coli O157: H7.Talanta 2017; 172:53-60.
[45]
Liu Y, DiStasio M, Su G, Asashima H, Enninful A, Qin X, et al.High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq.Nat Biotechnol 2023; 41(10):1405-1409.
[46]
Li L, Su H, Ji Y, Zhu F, Deng J, Bai X, et al.Deciphering cell–cell interactions with integrative single-cell secretion profiling.Adv Sci 2023; 10(19):2301018.
[47]
Liu M, Jin M, Li L, Ji Y, Zhu F, Luo Y, et al.PDMS microwell stencil based multiplexed single-cell secretion analysis.Proteomics 2020; 20(13):1900231.
[48]
Gao J, Wang C, Wang C, Chu Y, Wang S, Sun M, et al.Poly-L-lysine-modified graphene field-effect transistor biosensors for ultrasensitive breast cancer miRNAs and SARS-CoV-2 RNA detection.Anal Chem 2022; 94(3):1626-1636.
[49]
Chu Y, Gao Y, Tang W, Qiang L, Han Y, Gao J, et al.Attomolar-level ultrasensitive and multiplex microRNA detection enabled by a nanomaterial locally assembled microfluidic biochip for cancer diagnosis.Anal Chem 2021; 93(12):5129-5136.
[50]
Huang D, Chu Y, Qiu J, Chen X, Zhao J, Zhang Y, et al.A novel diagnostic signature of circulating tsRNAs and miRNAs in esophageal squamous cell carcinoma detected with a microfluidic platform.Analy Chim Acta 2023; 1272:341520.
[51]
Eivazzadeh-Keihan R, Bahojb Noruzi E, Chidar E, Jafari M, Davoodi F, Kashtiaray A, et al.Applications of carbon-based conductive nanomaterials in biosensors.Chem Eng J 2022; 442:136183.
[52]
Yang Y, Huang Q, Xiao Z, Liu M, Zhu Y, Chen Q, et al.Nanomaterial-based biosensor developing as a route toward in vitro diagnosis of early ovarian cancer.Mater Today Bio 2022; 13:100218.
[53]
Tripathi A, Bonilla-Cruz J.Review on healthcare biosensing nanomaterials.ACS Appl Nano Mater 2023; 6(7):5042-5074.
[54]
Zheng P, Wu N.Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review.Chem–Asian J 2017; 12(18):2343-2353.
[55]
Loh K, Bao Q, Eda G, Chhowalla M.Graphene oxide as a chemically tunable platform for optical applications.Nat Chem 2010; 2(12):1015-1024.
[56]
Gao Y, Qiang L, Chu Y, Han Y, Zhang Y, Han L.Microfluidic chip for multiple detection of miRNA biomarkers in breast cancer based on three-segment hybridization.AIP Adv 2020; 10(4):045022.
[57]
Chu Y, Qiu J, Wang Y, Wang M, Zhang Y, Han L.Rapid and high-throughput SARS-CoV-2 RNA detection without RNA extraction and amplification by using a microfluidic biochip.Chem–Europ J 2022; 28(18):e202104054.
[58]
Feng L, Wu Y, Zhang D, Hu X, Zhang J, Wang P, et al.Near infrared graphene quantum dots-based two-photon nanoprobe for direct bioimaging of endogenous ascorbic acid in living cells.Anal Chem 2017; 89(7):4077-4084.
[59]
Shao X, Wang C, Wang C, Han L, Han Y, et al.Mechanical stress induces a transient suppression of cytokine secretion in astrocytes assessed at the single-cell level with a high-throughput micro chip.2021;10(21):2100698.
[60]
Hu M, Yan J, He Y, Lu H, Weng L, Song S, et al.Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip.ACS Nano 2010; 4(1):488-494.
[61]
Wu Z, Zhao D, Hou C, Liu L, Chen J, Huang H, et al.Enhanced immunofluorescence detection of a protein marker using a PAA modified ZnO nanorod array-based microfluidic device.Nanoscale 2018; 10(37):17663-17670.
[62]
Liu Y, Hu W, Lu Z, Li C.ZnO nanomulberry and its significant nonenzymatic signal enhancement for protein microarray.ACS Appl Mater Interfaces 2014; 6(10):7728-7734.
[63]
Hu W, Liu Y, Chen T, Liu Y, Li CM.Hybrid ZnO nanorod-polymer brush hierarchically nanostructured substrate for sensitive antibody microarrays.Adv Mater 2015; 27(1):181-185.
[64]
Guo L, Shi Y, Liu X, Han Z, Zhao Z, Chen Y, et al.Enhanced fluorescence detection of proteins using ZnO nanowires integrated inside microfluidic chips.Biosens Bioelectron 2018; 99:368-374.
[65]
Xiang Y, Hu C, Wu G, Xu S, Li Y.Nanomaterial-based microfluidic systems for cancer biomarker detection: recent applications and future perspectives.TrAC Trends Anal Chem 2023; 158:116835.
[66]
Alizadeh N, Salimi A, Sham T.CuO/Cu-MOF nanocomposite for highly sensitive detection of nitric oxide released from living cells using an electrochemical microfluidic device.Microchim Acta 2021; 188(7):240.
[67]
Hogan B, Dyakov S, Brennan L, Younesy S, Perova T, Gun Y’ko, et al.Dynamic in-situ sensing of fluid-dispersed 2D materials integrated on microfluidic Si chip.Sci Rep 2017; 7(1):42120.
[68]
Wang R, Xu Y, Wang R, Wang C, Zhao H, Zheng X, et al.A microfluidic chip based on an ITO support modified with Ag–Au nanocomposites for SERS based determination of melamine.Microchim Acta 2017; 184(1):279-287.
[69]
He X, Ge C, Zheng X, Tang B, Chen L, Li S, et al.Rapid identification of alpha-fetoprotein in serum by a microfluidic SERS chip integrated with Ag/Au nanocomposites.Sens Actuat B: Chem 2020; 317:128196.
[70]
Song Q, Yu H, Han J, Lv J, Lv Q, Yang H.Exosomes in urological diseases—biological functions and clinical applications.Cancer Lett 2022; 544:215809.
[71]
Frangogiannis N.Biomarkers: hopes and challenges in the path from discovery to clinical practice.Transl Res 2012; 159(4):197-204.
[72]
Rifai N, Gillette M, Carr S.Protein biomarker discovery and validation: the long and uncertain path to clinical utility.Nat Biotechnol 2006; 24(8):971-983.
[73]
Ren C, Bayin Q, Feng S, Fu Y, Ma X, Guo J.Biomarkers detection with magnetoresistance-based sensors.Biosens Bioelectron 2020; 165:112340.
[74]
Masud M, Na J, Younus M, Hossain MSA, Bando Y, Shiddiky MJA, et al.Superparamagnetic nanoarchitectures for disease-specific biomarker detection.Chem Soc Rev 2019; 48(24):5717-5751.
[75]
Fahrmann J, Schmidt C, Mao X, Irajizad E, Loftus M, Zhang J, et al.Lead-time trajectory of CA19-9 as an anchor marker for pancreatic cancer early detection.Gastroenterology 2021; 160(4):1373-1383.
[76]
Zhang J, Shen Q, Zhou Y.Quantification of tumor protein biomarkers from lung patient serum using nanoimpact electrochemistry.ACS Sens 2021; 6(6):2320-2329.
[77]
Zhang D, Huang L, Liu B, Ni H, Sun L, Su E, et al.Quantitative and ultrasensitive detection of multiplex cardiac biomarkers in lateral flow assay with core-shell SERS nanotags.Biosens Bioelectron 2018; 106:204-211.
[78]
Zhao D, Wu Z, Yu J, Wang H, Li Y, Duan Y.Highly sensitive microfluidic detection of carcinoembryonic antigen via a synergetic fluorescence enhancement strategy based on the micro/nanostructure optimization of ZnO nanorod arrays and in situ ZIF-8 coating.Chem Eng J 2020; 383:123230.
[79]
Derbal Y.The adaptive complexity of cancer.BioMed Res Int 2018;5837235.
[80]
Chen X, Gole J, Gore A, He Q, Lu M, Min J, et al.Non-invasive early detection of cancer four years before conventional diagnosis using a blood test.Nat Commun 2020; 11(1):3475.
[81]
Yuan Y, Liu B, Wang T, Li N, Zhang Z, Zhang H.Electrochemical microfluidic paper-based analytical devices for tumor marker detection.TrAC-Trend Anal Chem 2022; 157:116816.
[82]
Sanjayan CG, Ravikumar C, Balakrishna R.Perovskite QD based paper microfluidic device for simultaneous detection of lung cancer biomarkers—carcinoembryonic antigen and neuron specific enolase.Chem Eng J 2023; 464:142581.
[83]
Chang N, Zhai J, Liu B, Zhou J, Zeng Z, Zhao X.Low cost 3D microfluidic chips for multiplex protein detection based on photonic crystal beads.Lab Chip 2018; 18(23):3638-3644.
[84]
Banal J, Bathe M.Scalable nucleic acid storage and retrieval using barcoded microcapsules.ACS Appl Mater Inter 2021; 13(42):49729-49736.
[85]
Catuogno S, Esposito CL, Condorelli G, de Franciscis V.Nucleic acids delivering nucleic acids.Adv Drug Deliver Rev 2018; 134:79-93.
[86]
Zhao Y, Zuo X, Li Q, Chen F, Chen Y, Deng J, et al.Nucleic acids analysis.Sci China Chem 2021; 64(2):171-203.
[87]
Gootenberg J, Abudayyeh O, Lee J, Essletzbichler P, Dy A, Joung J, et al.Nucleic acid detection with CRISPR-Cas13a/C2c2.Science 2017; 356(6336):438-442.
[88]
An instrument-free, programmable approach for nucleic acid detection.Nat Biomed Eng 2023;7:1537–8.
[89]
Kellner M, Koob J, Gootenberg J, Abudayyeh O, Zhang F.SHERLOCK: nucleic acid detection with CRISPR nucleases.Nat Protoc 2019; 14(10):2986-3012.
[90]
Li S, Cheng Q, Wang J, Li X, Zhang Z, Gao S, et al.CRISPR-Cas12a-assisted nucleic acid detection.Cell Discov 2018; 4(1):20.
[91]
Chen Y, Qian S, Yu X, Wu J, Xu J.Microfluidics: the propellant of CRISPR-based nucleic acid detection.Trends Biotechnology 2023; 41(4):557-574.
[92]
Zhou W, Li D, Yuan R, Xiang Y.Programmable DNA ring/hairpin-constrained structure enables ligation-free rolling circle amplification for imaging mRNAs in single cells.Anal Chem 2019; 91(5):3628-3635.
[93]
Zhan Y, Zhang J, Yao S, Luo G.High-throughput two-dimensional polymerase chain reaction technology.Anal Chem 2020; 92(1):674-682.
[94]
Zhao Y, Liao Y, Fu J, Li Y, Zhu Y, Chen Z, et al.Telomerase-initiated three-dimensional DNAzyme motor for monitoring of telomerase activity in living cells.Biosens Bioelectron 2023; 219:114757.
[95]
Lin X, Huang X, Urmann K, Xie X, Hoffmann M.Digital loop-mediated isothermal amplification on a commercial membrane.ACS Sens 2019; 4(1):242-249.
[96]
Ju Y, Kim H, Ahn J, Park H.Ultrasensitive version of nucleic acid sequence-based amplification (NASBA) utilizing a nicking and extension chain reaction system.Nanoscale 2021; 13(24):10785-10791.
[97]
Wang H, Yang C, Tang H, Li Y.Stochastic collision electrochemistry from single g-quadruplex/hemin: electrochemical amplification and microRNA sensing.Anal Chem 2021; 93(10):4593-4600.
[98]
Fan S, Xu J, Osakada Y, Hashimoto K, Takayama K, Natsume A, et al.Electron-transfer kinetics through nucleic acids untangled by single-molecular fluorescence blinking. Chem 2022; 8(11):3109-3119.
[99]
Choi J, Shin M, Yang L, Conley B, Yoon J, Lee S, et al.Clustered regularly interspaced short palindromic repeats-mediated amplification-free detection of viral DNAs using surface-enhanced raman spectroscopy-active nanoarray.ACS Nano 2021; 15(8):13475-13485.
[100]
Lee J, Cheon J.Pooled testing via magnetized droplets on a chip.Nat Biomed Eng 2023; 7:1533-1534.
[101]
Azizi M, Zaferani M, Cheong S, Abbaspourrad A.Pathogenic bacteria detection using RNA-based loop-mediated isothermal-amplification-assisted nucleic acid amplification via droplet microfluidics.ACS Sens 2019; 4(4):841-848.
[102]
Xiong H, Ye X, Li Y, Wang L, Zhang J, Fang X, et al.Rapid differential diagnosis of seven human respiratory coronaviruses based on centrifugal microfluidic nucleic acid assay.Anal Chem 2020; 92(21):14297-14302.
[103]
Tian F, Liu C, Deng J, Han Z, Zhang L, Chen Q, et al.A fully automated centrifugal microfluidic system for sample-to-answer viral nucleic acid testing.Sci China Chem 2020; 63(10):1498-1506.
[104]
Li X, Zhao X, Yang W, Xu F, Chen B, Peng J, et al.Stretch-driven microfluidic chip for nucleic acid detection.Biotechnol Bioeng 2021; 118(9):3559-3568.
[105]
Yang M, Zhang W, Zheng W, Cao F, Jiang X.Inkjet-printed barcodes for a rapid and multiplexed paper-based assay compatible with mobile devices.Lab Chip 2017; 17(22):3874-3882.
[106]
Du K, Park M, Griffiths A, Carrion R, Patterson J, Schmidt H, et al.Microfluidic system for detection of viral RNA in blood using a barcode fluorescence reporter and a photocleavable capture probe.Anal Chem 2017; 89(22):12433-21240.
[107]
Gauri S, Ahmad M.ctDNA detection in microfluidic platform: a promising biomarker for personalized cancer chemotherapy. J Sens (2020), p. 8353674
[108]
Dykes I, Emanueli C.Transcriptional and post-transcriptional gene regulation by long non-coding RNA.Genomics Proteomics Bioinf 2017; 15(3):177-186.
[109]
Balakrishnan S, Ahmad M, Koloor S, Petr Mů.Separation of ctDNA by superparamagnetic bead particles in microfluidic platform for early cancer detection.J Adv Res 2021; 33:109-116.
[110]
Dias T, Cardoso F, Martins S, Martins V, Cardoso S, Gaspar J, et al.Implementing a strategy for on-chip detection of cell-free DNA fragments using GMR sensors: a translational application in cancer diagnostics using ALU elements.Anal Methods 2016; 8(1):119-128.
[111]
Cao X, Mao Y, Gu Y, Ge S, Lu W, Gu Y, et al.Highly sensitive and simultaneous detection of ctDNAs related to non-small cell lung cancer in serum using a catalytic hairpin assembly strategy in a SERS microfluidic chip.J Mater Chem B 2022; 10(32):6194-6206.
[112]
Dawson S, Tsui D, Murtaza M, Biggs H, Rueda O, Chin S, et al.Analysis of circulating tumor DNA to monitor metastatic breast cancer.N Engl J Med 2013; 368(13):1199-1209.
[113]
Mack S, Witt H, Piro R, Gu L, Zuyderduyn S, Stütz A, et al.Epigenomic alterations define lethal CIMP-positive ependymomas of infancy.Nature 2014; 506(7489):445-450.
[114]
Zou Z, Qi P, Qing Z, Zheng J, Yang S, Chen W, et al.Technologies for analysis of circulating tumour DNA: progress and promise.TrAC Trend Anal Chem 2017; 97:36-49.
[115]
Forder A, Hsing C, Trejo Vazquez J, Garnis C.Emerging role of extracellular vesicles and cellular communication in metastasis.Cells 2021; 10(12):3429.
[116]
Adekoya T, Richardson R.Cytokines and chemokines as mediators of prostate cancer metastasis.Int J Mol Sci 2020; 21(12):4449.
[117]
De Palma M, Lewis CE.Macrophage regulation of tumor responses to anticancer therapies.Cancer Cell 2013; 23(3):277-286.
[118]
Rosenberg S, Restifo N.Adoptive cell transfer as personalized immunotherapy for human cancer.Science 2015; 348(6230):62-68.
[119]
Kim M, Pinto S, Getnet D, Nirujogi R, Manda S, Chaerkady R, et al.A draft map of the human proteome.Nature 2014; 509(7502):575-581.
[120]
Frauenfelder H, McMahon B.Dynamics and function of proteins: the search for general concepts. 1998;95(9):4795–7.
[121]
Benham A.Protein secretion and the endoplasmic reticulum.Cold Spring Harbor Perspect Biol 2012; 4(8):a012872.
[122]
Dranoff G.Cytokines in cancer pathogenesis and cancer therapy.Nat Rev Cancer 2004; 4(1):11-22.
[123]
Lo Cicero A, Stahl P, Raposo G.Extracellular vesicles shuffling intercellular messages: for good or for bad.Curr Opin Cell Biol 2015; 35:69-77.
[124]
György B, Szabó T, Pásztói M, Pál Z, Misják P, Aradi B, et al.Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles.Cell Mol Life Sci 2011; 68(16):2667-2688.
[125]
Zhang J, Campbell R, Ting A, Tsien R.Creating new fluorescent probes for cell biology.Nat Rev Mol Cell Bio 2002; 3(12):906-918.
[126]
Chappell L, Russell A, Voet T.Single-cell (multi)omics technologies.Annu Rev Genom Hum G 2018; 19(1):15-41.
[127]
Xu L, Brito L, Alm E, Blainey P.Virtual microfluidics for digital quantification and single-cell sequencing.Nat Methods 2016; 13(9):759-762.
[128]
Fan H, Fu G, Fodor S.Combinatorial labeling of single cells for gene expression cytometry. 2015;347(6222):1258367.
[129]
Spiller D, Wood C, Rand D, White MRH.Measurement of single-cell dynamics.Nature 2010; 465(7299):736-745.
[130]
Spencer S, Gaudet S, Albeck J, Burke J, Sorger P.Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis.Nature 2009; 459(7245):428-432.
[131]
Elitas M, Brower K, Lu Y, Chen J, Fan R.A microchip platform for interrogating tumor–macrophage paracrine signaling at the single-cell level.Lab Chip 2014; 14(18):3582-3588.
[132]
Ma C, Fan R, Ahmad H, Shi Q, Comin-Anduix B, Chodon T, et al.A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells.Nat Med 2011; 17(6):738-743.
[133]
Khajvand T, Huang P, Li L, Zhang M, Zhu F, Xu X, et al.Interfacing droplet microfluidics with antibody barcodes for multiplexed single-cell protein secretion profiling.Lab Chip 2021; 21(24):4823-4830.
[134]
Ji Y, Qi D, Li L, Su H, Li X, Luo Y, et al.Multiplexed profiling of single-cell extracellular vesicles secretion.Proc Natl Acid Sci USA 2019; 116(13):5979-5984.
[135]
Zhu F, Ji Y, Li L, Bai X, Liu X, Luo Y, et al.High-throughput single-cell extracellular vesicle secretion analysis on a desktop scanner without cell counting.Anal Chem 2021; 93(39):13152-13160.
[136]
Konry T, Sarkar S, Sabhachandani P, Cohen N.Innovative tools and technology for analysis of single cells and cell–cell interaction.Annu Rev of Biomed Eng 2016; 18(1):259-284.
[137]
Lu Y, Yang L, Wei W, Shi Q.Microchip-based single-cell functional proteomics for biomedical applications.Lab Chip 2017; 17(7):1250-1263.
[138]
Xue Q, Lu Y, Eisele M, Sulistijo E, Khan N, Fan R, et al.Analysis of single-cell cytokine secretion reveals a role for paracrine signaling in coordinating macrophage responses to TLR4 stimulation.Sci Signal 2015; 8(381):ra59.
[139]
Li L, Shi W, Liu M, Bai X, Sun Y, Zhu X, et al.Single-cell secretion analysis in the engineered tumor microenvironment reveals differential modulation of macrophage immune responses.Anal Chem 2021; 93(9):4198-4207.
[140]
Chen Z, Lu Y, Zhang K, Xiao Y, Lu J, Fan R.Multiplexed, sequential secretion analysis of the same single cells reveals distinct effector response dynamics dependent on the initial basal state.Adv Sci 2019; 6(9):1801361.
[141]
Kravchenko-Balasha N, Shin Y, Sutherland A, Levine R, Heath J.Intercellular signaling through secreted proteins induces free-energy gradient-directed cell movement.Proc Nati Acad Sci USA 2016; 113(20):5520-5525.
AI Summary AI Mindmap
PDF(7211 KB)

Accesses

Citations

Detail

Sections
Recommended

/