Sanhan Huashi Formula and Its Bioactive Compounds Exert Antiviral and Anti-Inflammatory Effects on COVID-19

Chuanxi Tian, Hang Liu, Qian Wang, Jinyue Zhao, Chensi Yao, Yanfeng Yao, Xu Zhang, Qinhai Ma, Weihao Wang, Yanyan Zhou, Mengxiao Wang, Xiaomeng Shi, Xiangyan Li, Shan Wang, Yingying Yang, Xiaowen Gou, Lijuan Zhou, Jingyi Zhao, Li Wan, Jiarui Li, Stefanie Tiefenbacher, Juntao Gao, Rudolf Bauer, Min Li, Xiaolin Tong

Engineering ›› 2024, Vol. 43 ›› Issue (12) : 159-172.

PDF(4631 KB)
PDF(4631 KB)
Engineering ›› 2024, Vol. 43 ›› Issue (12) : 159-172. DOI: 10.1016/j.eng.2024.07.007
Research
Article

Sanhan Huashi Formula and Its Bioactive Compounds Exert Antiviral and Anti-Inflammatory Effects on COVID-19

Author information +
History +

Abstract

Sanhan Huashi formula (SHHS), a traditional Chinese medicine (TCM), has shown significant therapeutic effects on coronavirus disease 2019 (COVID-19) in clinical settings. However, its specific mechanism and components still require further clarification. In vitro experiments with Vero-E6 cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demonstrated that SHHS effectively inhibited viral invasion and proliferation. Complementary in vivo experiments using K18-human angiotensin converting enzyme 2 (hACE2) mice exposed to virus-like particles (VLPs) further confirmed that SHHS impeded SARS-CoV-2 entry. Although SHHS did not demonstrate direct antiviral effects in K18-hACE2 mice challenged with SARS-CoV-2, it significantly alleviated pathological damage and decreased the expression of chemokines such as C-C motif ligand (CCL)-2, CCL-3, C-X-C motif ligand (CXCL)-1, CXCL-6, CXCL-9, CXCL-10, and CXCL-11 in the lungs, suggesting that SHHS exerts immunomodulatory and anti-inflammatory effects via the CCL-2-CXCL axis. Additional research using a lipopolysaccharide (LPS)-induced acute lung injury (ALI) and RAW264.7 cell model validated the ability of SHHS to reduce the levels of inflammatory biomarkers, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). Using advanced analytical techniques such as ultrahigh-performance liquid chromatography coupled with linear trap quadrupole Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap-MS) and surface plasmon resonance (SPR), nodakenin was identified as a potent antiviral component of SHHS that targets the 3C-like protease (3CLpro), a finding supported by the hydrogen-deuterium exchange mass spectrometry (HDX-MS) and molecular docking analyses. Furthermore, nodakenin demonstrated a significant antiviral effect, reducing the viral load by more than 66%. This investigation reveals that SHHS can combat COVID-19 by inhibiting viral invasion and promoting anti-inflammatory effects.

Graphical abstract

Keywords

Sanhan Huashi formula / Coronavirus disease 2019 / Anti-inflammatory properties / Nodakenin / 3C-like protease

Cite this article

Download citation ▾
Chuanxi Tian, Hang Liu, Qian Wang, Jinyue Zhao, Chensi Yao, Yanfeng Yao, Xu Zhang, Qinhai Ma, Weihao Wang, Yanyan Zhou, Mengxiao Wang, Xiaomeng Shi, Xiangyan Li, Shan Wang, Yingying Yang, Xiaowen Gou, Lijuan Zhou, Jingyi Zhao, Li Wan, Jiarui Li, Stefanie Tiefenbacher, Juntao Gao, Rudolf Bauer, Min Li, Xiaolin Tong. Sanhan Huashi Formula and Its Bioactive Compounds Exert Antiviral and Anti-Inflammatory Effects on COVID-19. Engineering, 2024, 43(12): 159‒172 https://doi.org/10.1016/j.eng.2024.07.007

References

[1]
M. Zhou, X. Zhang, J. Qu. Coronavirus disease 2019 (COVID-19): a clinical update. Front Med, 14 (2) (2020), pp. 126-135.
[2]
P.V. Markov, M. Ghafari, M. Beer, K. Lythgoe, P. Simmonds, N.I. Stilianakis, et al. The evolution of SARS-CoV-2. Nat Rev Microbiol, 21 (6) (2023), pp. 361-379.
[3]
G. Li, R. Hilgenfeld, R. Whitley, E. De Clercq. Therapeutic strategies for COVID-19: progress and lessons learned. Nat Rev Drug Discov, 22 (6) (2023), pp. 449-475.
[4]
W. Yin, Y. Xu, P. Xu, X. Cao, C. Wu, C. Gu, et al. Structures of the Omicron spike trimer with ACE2 and an anti-Omicron antibody. Science, 375 (6584) (2022), pp. 1048-1053.
[5]
M. Liu, B. Lu, Y. Li, S. Yuan, Z. Zhuang, G. Li, et al. P21-activated kinase 1 (PAK1)-mediated cytoskeleton rearrangement promotes SARS-CoV-2 entry and ACE2 autophagic degradation. Signal Transduct Target Ther, 8 (1) (2023), p. 385.
[6]
S.T. Tan, A.T. Kwan, I. Rodríguez-Barraquer, B.J. Singer, H.J. Park, J.A. Lewnard, et al. Infectiousness of SARS-CoV-2 breakthrough infections and reinfections during the Omicron wave. Nat Med, 29 (2) (2023), pp. 358-365.
[7]
S. Iketani, H. Mohri, B. Culbertson, S.J. Hong, Y. Duan, M.I. Luck, et al. Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir. Nature, 613 (7944) (2023), pp. 558-564.
[8]
J. Wang, F. Qi. Traditional Chinese medicine to treat COVID-19: the importance of evidence-based research. Drug Discov Ther, 14 (3) (2020), pp. 149-150.
[9]
S. Zhang, Z. Yang, Z.L. Chen, Z.N. Li, S.J. Yue, J.J. Li, et al. Efficacy and safety of “three Chinese patent medicines and three TCM prescriptions” for COVID-19: a systematic review and network meta-analysis. Evid Based Complement Alternat Med, 2022 (2022), Article 4654793.
[10]
X. Zou, K. Chang, G. Fan, H. Zheng, H. Shen, L. Tang, et al. for CAP-China network. Effectiveness and safety of Sanhan Huashi granules versus nirmatrelvir-ritonavir in adult patients with COVID-19: a randomized, open-label, multicenter trial. Sci Bull, 69 (12) (2024), pp. 1954-1963.
[11]
J. Tian, S. Yan, H. Wang, Y. Zhang, Y. Zheng, H. Wu, et al. Hanshiyi formula, a medicine for SARS-CoV-2 infection in China, reduced the proportion of mild and moderate COVID-19 patients turning to severe status: a cohort study. Pharmacol Res, 161 (2020), Article 105127.
[12]
L. Han, X.X. Wei, Y.J. Zheng, L.L. Zhang, X.M. Wang, H.Y. Yang, et al. Potential mechanism prediction of Cold-Damp Plague formula against COVID-19 via network pharmacology analysis and molecular docking. Chin Med, 15 (1) (2020), p. 78.
[13]
S. Bibi, M.S. Khan, S.A. El-Kafrawy, T.A. Alandijany, M.M. El-Daly, Q. Yousafi, et al. Virtual screening and molecular dynamics simulation analysis of Forsythoside A as a plant-derived inhibitor of SARS-CoV-2 3CLpro. Saudi Pharm J, 30 (7) (2022), pp. 979-1002.
[14]
J. Song, L. Zhang, Y. Xu, D. Yang, L. Zhang, S. Yang, et al. The comprehensive study on the therapeutic effects of baicalein for the treatment of COVID-19 in vivo and in vitro. Biochem Pharmacol, 183 (2021), Article 114302.
[15]
L. Fu, S. Shao, Y. Feng, F. Ye, X. Sun, Q. Wang, et al. Mechanism of microbial metabolite leupeptin in the treatment of COVID-19 by traditional Chinese medicine herbs. MBio, 12 (5) (2021), Article e0222021.
[16]
D. Zhu, H. Su, C. Ke, C. Tang, M. Witt, R.J. Quinn, et al. Efficient discovery of potential inhibitors for SARS-CoV-2 3C-like protease from herbal extracts using a native MS-based affinity-selection method. J Pharm Biomed Anal, 209 (2022), Article 114538.
[17]
J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581 (7807) (2020), pp. 215-220.
[18]
Q. Sun, F. Ye, H. Liang, H. Liu, C. Li, R. Lu, et al. Bardoxolone and bardoxolone methyl, two Nrf2 activators in clinical trials, inhibit SARS-CoV-2 replication and its 3C-like protease. Signal Transduct Target Ther, 6 (1) (2021), p. 212.
[19]
N. Liu, Y. Zhang, Y. Lei, R. Wang, M. Zhan, J. Liu, et al. Design and evaluation of a novel peptide-drug conjugate covalently targeting SARS-CoV-2 papain-like protease. J Med Chem, 65 (1) (2022), pp. 876-884.
[20]
M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181 (2) (2020), pp. 271-280.e8.
[21]
J. Gao, C. Cao, M. Shi, S. Hong, S. Guo, J. Li, et al. Kaempferol inhibits SARS-CoV-2 invasion by impairing heptad repeats-mediated viral fusion. Phytomedicine, 118 (2023), Article 154942.
[22]
H. Liu, F. Ye, Q. Sun, H. Liang, C. Li, S. Li, et al. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J Enzyme Inhib Med Chem, 36 (1) (2021), pp. 497-503.
[23]
Brevini T, Maes M, Webb GJ, John BV, Fuchs CD, Buescher G, et al.; the UK-PBC Consortium. FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2. Nature 2023; 615(7950):134-42.
[24]
V. Callahan, S. Hawks, M.A. Crawford, C.W. Lehman, H.A. Morrison, H.M. Ivester, et al. The pro-inflammatory chemokines CXCL9, CXCL10 and CXCL 11 are upregulated following SARS-CoV-2 infection in an AKT-dependent manner. Viruses, 13 (6) (2021), p. 1062.
[25]
C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395 (10223) (2020), pp. 497-506.
[26]
Zhou Z, Ren L, Zhang L, Zhong J, Xiao Y, Jia Z, et al. Overly exuberant innate immune response to SARS-CoV-2 infection. 2020. ssrn.3551623.
[27]
M. Liao, Y. Liu, J. Yuan, Y. Wen, G. Xu, J. Zhao, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med, 26 (6) (2020), pp. 842-844.
[28]
K. Huang, P. Zhang, Z. Zhang, J.Y. Youn, C. Wang, H. Zhang, et al. Traditional Chinese medicine (TCM) in the treatment of COVID-19 and other viral infections: efficacies and mechanisms. Pharmacol Ther, 225 (2021), Article 107843.
[29]
Q. Li, H. Wang, X. Li, Y. Zheng, Y. Wei, P. Zhang, et al. The role played by traditional Chinese medicine in preventing and treating COVID-19 in China. Front Med, 14 (5) (2020), pp. 681-688.
[30]
A. Zaliani, L. Vangeel, J. Reinshagen, D. Iaconis, M. Kuzikov, O. Keminer, et al. Cytopathic SARS-CoV-2 screening on Vero-E6 cells in a large-scale repurposing effort. Sci Data, 9 (1) (2022), p. 405.
[31]
R.D. Jiang, M.Q. Liu, Y. Chen, C. Shan, Y.W. Zhou, X.R. Shen, et al. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell, 182 (1) (2020), pp. 50-58.e8.
[32]
M. Ranjbar, A. Rahimi, Z. Baghernejadan, A. Ghorbani, H. Khorramdelazad. Role of CCL2/CCR2 axis in the pathogenesis of COVID-19 and possible treatments: all options on the table. Int Immunopharmacol, 113 (Pt A) (2022), Article 109325.
[33]
L. Lu, H. Zhang, M. Zhan, J. Jiang, H. Yin, D.J. Dauphars, et al. Preventing mortality in COVID-19 patients: which cytokine to target in a raging storm?. Front Cell Dev Biol, 8 (2020), p. 677.
[34]
W. Liang, Z. Feng, S. Rao, C. Xiao, X. Xue, Z. Lin, et al. Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. Gut, 69 (6) (2020), pp. 1141-1143.
[35]
S. Ahlawat, S.KK. Asha. Immunological co-ordination between gut and lungs in SARS-CoV-2 infection. Virus Res, 286 (2020), Article 198103.
[36]
K.S. Cheung, I.F.N. Hung, P.P.Y. Chan, K.C. Lung, E. Tso, R. Liu, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: systematic review and meta-analysis. Gastroenterology, 159 (1) (2020), pp. 81-95.
[37]
Stein SR, Ramelli SC, Grazioli A, Chung JY, Singh M, Yinda CK, et al.; the NIH COVID-19 Autopsy Consortium. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 2022; 612(7941):758-63.
[38]
E.F. Brooks, A.S. Bhatt. The gut microbiome: a missing link in understanding the gastrointestinal manifestations of COVID-19?. Cold Spring Harb Mol Case Stud, 7 (2) (2021), Article a006031.
[39]
A. Natarajan, S. Zlitni, E.F. Brooks, S.E. Vance, A. Dahlen, H. Hedlin, et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med, 3 (6) (2022), pp. 371-387.e9.
[40]
S. Zheng, J. Fan, F. Yu, B. Feng, B. Lou, Q. Zou, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ, 369 (2020), Article m1443.
[41]
Y.F. Huang, C. Bai, F. He, Y. Xie, H. Zhou. Review on the potential action mechanisms of Chinese medicines in treating coronavirus disease 2019 (COVID-19). Pharmacol Res, 158 (2020), Article 104939.
[42]
J.Y. Lim, J.H. Lee, D.H. Yun, Y.M. Lee, D.K. Kim. Inhibitory effects of nodakenin on inflammation and cell death in lipopolysaccharide-induced liver injury mice. Phytomedicine, 81 (2021), Article 153411.
[43]
N. Yi, Y. Mi, X. Xu, N. Li, B. Chen, K. Yan, et al. Nodakenin attenuates cartilage degradation and inflammatory responses in a mice model of knee osteoarthritis by regulating mitochondrial Drp1/ROS/NLRP3 axis. Int Immunopharmacol, 113 (Pt A) (2022), Article 109349.
AI Summary AI Mindmap
PDF(4631 KB)

Accesses

Citations

Detail

Sections
Recommended

/