Modifiers of the Effects of Vitamin D Supplementation on Cardiometabolic Risk Factors: A Systematic Review and Meta-Analysis

Peng An, Sitong Wan, Langrun Wang, Tiancheng Xu, Teng Xu, Yonghui Wang, Jin Liu, Keji Li, Xifan Wang, Jingjing He, Simin Liu

Engineering ›› 2024, Vol. 42 ›› Issue (11) : 99-107.

PDF(1215 KB)
PDF(1215 KB)
Engineering ›› 2024, Vol. 42 ›› Issue (11) : 99-107. DOI: 10.1016/j.eng.2024.07.010
Research

Modifiers of the Effects of Vitamin D Supplementation on Cardiometabolic Risk Factors: A Systematic Review and Meta-Analysis

Author information +
History +

Abstract

The inconsistent findings concerning the effects of vitamin D supplementation on cardiometabolic risk factors and the large heterogeneity in the published literature call for further research to identify sources of heterogeneity and potential effect modifiers. We performed a meta-analysis of randomized controlled trials (RCTs) published until March 2024 that reported estimates for the effects of vitamin D supplementation on cardiometabolic factors and relevant baseline covariates of RCT participants. A total of 17 656 participants from 99 RCTs were analyzed, and weighted mean differences (95% confidence intervals (CI)) for the intervention status were derived using random-effects modeling. Overall, compared with the placebo, vitamin D supplementation (median dose: 3320 international unit (IU)·day−1; range 40-120 000 IU·day−1) had favorable effects on systolic blood pressure (SBP; −2.04 (95% CI, −3.50, −0.59) mmHg; 1 mmHg = 0.133 kPa), diastolic blood pressure (DBP; −3.00 (95% CI, −3.61, −2.39) mmHg), total cholesterol (TC; −0.12 (95% CI, −0.21, −0.03) mmol·L−1), fasting blood glucose (FBG; −0.13 (95% CI, −0.20, −0.05) mmol·L−1), hemoglobin A1C (A1C; −0.09% (95% CI, −0.13%, −0.05%)), and fasting blood insulin (FBI: −7.61 (95% CI, −11.93, −3.30) pmol·L−1). The benefits of vitamin D were most evident in trials performed in non-Westerners, participants with baseline 25-hydroxyvitamin D (25[OH]D) lower than 15.0 ng·mL−1, non-obese (body mass index (BMI) < 30 kg·m−2), and older (age ≥ 50 years). The findings of this study underscore the need for personalized vitamin D intervention strategies that comprehensively account for individual patient characteristics (such as ethnocultural background, age, BMI, and circulating 25[OH]D level), intervention dosage, and intervention duration to optimize cardiometabolic health outcomes.

Graphical abstract

Keywords

Vitamin D / Cardiometabolic risk factors / Meta-analysis / Ethnocultural differences / Obesity

Cite this article

Download citation ▾
Peng An, Sitong Wan, Langrun Wang, Tiancheng Xu, Teng Xu, Yonghui Wang, Jin Liu, Keji Li, Xifan Wang, Jingjing He, Simin Liu. Modifiers of the Effects of Vitamin D Supplementation on Cardiometabolic Risk Factors: A Systematic Review and Meta-Analysis. Engineering, 2024, 42(11): 99‒107 https://doi.org/10.1016/j.eng.2024.07.010

References

[1]
Powell-Wiley TM, Poirier P, Burke LE, Després JP, Gordon-Larsen P, Lavie CJ, et al.; the American Heart Association Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Epidemiology and Prevention; Stroke Council. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 2021 ;143(21):e984-1010.
[2]
S.P. Fortmann, B.U. Burda, C.A. Senger, J.S. Lin, E.P. Whitlock.Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer: an updated systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med, 159 (12) (2013), pp. 824-834
[3]
M. Barbarawi, B. Kheiri, Y. Zayed, O. Barbarawi, H. Dhillon, B. Swaid, et al. Vitamin D supplementation and cardiovascular disease risks in more than 83 000 individuals in 21 randomized clinical trials: a meta-analysis. JAMA Cardiol, 4 (8) (2019), pp. 765-776
[4]
J.E. Manson, N.R. Cook, I.M. Lee, W. Christen, S.S. Bassuk, S. Mora, et al. the VITAL Research Group. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med, 380 (1) (2019), pp. 33-44
[5]
A.L. Schneider, P.L. Lutsey, E. Selvin, T.H. Mosley, A.R. Sharrett, K.A. Carson, et al. Vitamin D, vitamin D binding protein gene polymorphisms, race and risk of incident stroke: the Atherosclerosis Risk in Communities (ARIC) study. Eur J Neurol, 22 (8) (2015), pp. 1220-1227
[6]
K. Chin, D. Zhao, M. Tibuakuu, S.S. Martin, C.E. Ndumele, R. Florido, et al. Physical activity, vitamin D, and incident atherosclerotic cardiovascular disease in whites and blacks: the ARIC study. J Clin Endocrinol Metab, 102 (4) (2017), pp. 1227-1236
[7]
P.L. Lutsey, E.D. Michos, J.R. Misialek, J.S. Pankow, L. Loehr, E. Selvin, et al. Race and vitamin D binding protein gene polymorphisms modify the association of 25-hydroxyvitamin D and incident heart failure: the ARIC (Atherosclerosis Risk in Communities) study. JACC Heart Fail, 3 (5) (2015), pp. 347-356
[8]
E.D. Michos, J.P. Reis, W.S. Post, P.L. Lutsey, R.F. Gottesman, T.H. Mosley, et al. 25-hydroxyvitamin D deficiency is associated with fatal stroke among whites but not blacks: the NHANES-III linked mortality files. Nutrition, 28 (4) (2012), pp. 367-371
[9]
F. Carbone, L. Liberale, P. Libby, F. Montecucco. Vitamin D in atherosclerosis and cardiovascular events. Eur Heart J, 44 (23) (2023), pp. 2078-2094
[10]
X. Chen, Z. Wan, T. Geng, K. Zhu, R. Li, Q. Lu, et al. Vitamin D status, vitamin D receptor polymorphisms, and risk of microvascular complications among individuals with type 2 diabetes: a prospective study. Diabetes Care, 46 (2) (2023), pp. 270-277
[11]
R. Scragg, A.W. Stewart, D. Waayer, C.M.M. Lawes, L. Toop, J. Sluyter, et al. Effect of monthly high-dose vitamin D supplementation on cardiovascular disease in the vitamin D assessment study: a randomized clinical trial. JAMA Cardiol, 2 (6) (2017), pp. 608-616
[12]
G. Muscogiuri, L. Barrea, B. Altieri, C. Di Somma, H.P. Bhattoa, D. Laudisio, et al. Calcium and vitamin D supplementation. Myths and realities with regard to cardiovascular risk. Curr Vasc Pharmacol, 17 (6) (2019), pp. 610-617
[13]
D.K. Tobias, H. Luttmann-Gibson, S. Mora, J. Danik, V. Bubes, T. Copeland, et al. Association of body weight with response to vitamin D supplementation and metabolism. JAMA Netw Open, 6 (1) (2023), Article e2250681
[14]
A.G. Pittas, T. Kawahara, R. Jorde, B. Dawson-Hughes, E.M. Vickery, E. Angellotti, et al. Vitamin D and risk for type 2 diabetes in people with prediabetes : a systematic review and meta-analysis of individual participant data from 3 randomized clinical trials. Ann Intern Med, 176 (3) (2023), pp. 355-363
[15]
Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al.; the PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 2015; 349:g7647.
[16]
P. An, S. Wan, Y. Luo, J. Luo, X. Zhang, S. Zhou, et al. Micronutrient supplementation to reduce cardiovascular risk. J Am Coll Cardiol, 80 (24) (2022), pp. 2269-2285
[17]
Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ 2010; 340:c221.
[18]
M. Cumpston, T. Li, M.J. Page, J. Chandler, V.A. Welch, J.P. Higgins, et al. Updated guidance for trusted systematic reviews: a new edition of the cochrane handbook for systematic reviews of interventions. Cochrane Database Syst Rev, 10 (10) (2019), Article ED000142
[19]
G.H. Guyatt, A.D. Oxman, G.E. Vist, R. Kunz, Y. Falck-Ytter, P. Alonso-Coello, et al. GRADE Working Group. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ, 336 (7650) (2008), pp. 924-926
[20]
Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM; the American Heart Association. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension 2006 ;47(2):296-308.
[21]
A. Langsted, J.J. Freiberg, B.G. Nordestgaard. Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction. Circulation, 118 (20) (2008), pp. 2047-2056
[22]
E. Lenters-Westra, R.K. Schindhelm, H.J. Bilo, K.H. Groenier, R.J. Slingerland. Differences in interpretation of haemoglobin A1C values among diabetes care professionals. Neth J Med, 72 (9) (2014), pp. 462-466
[23]
M. Wei, L.W. Gibbons, T.L. Mitchell, J.B. Kampert, M.P. Stern, S.N. Blair. Low fasting plasma glucose level as a predictor of cardiovascular disease and all-cause mortality. Circulation, 101 (17) (2000), pp. 2047-2052
[24]
L. Chiavaroli, D. Lee, A. Ahmed, A. Cheung, T.A. Khan, S. Blanco, et al. Effect of low glycaemic index or load dietary patterns on glycaemic control and cardiometabolic risk factors in diabetes: systematic review and meta-analysis of randomised controlled trials. BMJ, 374 (2021), Article n1651
[25]
J.P. Higgins, S.G. Thompson, J.J. Deeks, D.G. Altman. Measuring inconsistency in meta-analyses. BMJ, 327 (7414) (2003), pp. 557-560
[26]
D. Jackson, I.R. White, R.D. Riley. Quantifying the impact of between-study heterogeneity in multivariate meta-analyses. Stat Med, 31 (29) (2012), pp. 3805-3820
[27]
M. Egger, G. Davey Smith, M. Schneider, C. Minder. Bias in meta-analysis detected by a simple, graphical test. BMJ, 315 (7109) (1997), pp. 629-634
[28]
A. Tobias. Assessing the influence of a single study in the meta-analysis estimate. Stata Technical Bull, 8 (47) (1998), Article sbe26
[29]
R. Jain, P.R. von Hurst, W. Stonehouse, D.R. Love, C.M. Higgins, J. Coad. Association of vitamin D receptor gene polymorphisms with insulin resistance and response to vitamin D. Metabolism, 61 (3) (2012), pp. 293-301
[30]
M. Barbarawi, Y. Zayed, O. Barbarawi, A. Bala, A. Alabdouh, I. Gakhal, et al. Effect of vitamin D supplementation on the incidence of diabetes mellitus. J Clin Endocrinol Metab, 105 (8) (2020), p. 2857
[31]
S.C. Larsson, N. Orsini, A. Wolk. Dietary calcium intake and risk of stroke: a dose-response meta-analysis. Am J Clin Nutr, 97 (5) (2013), pp. 951-957
[32]
M.S. Elkhwanky, O. Kummu, T.T. Piltonen, J. Laru, L. Morin-Papunen, M. Mutikainen, et al. Obesity represses CYP2R1, the vitamin D 25-hydroxylase, in the liver and extrahepatic tissues. JBMR Plus, 4 (11) (2020), p. e10397
[33]
F. Saponaro, A. Saba, R. Zucchi. An update on vitamin D metabolism. Int J Mol Sci, 21 (18) (2020), p. 6573
[34]
P. Lips. Vitamin D physiology. Prog Biophys Mol Biol, 92 (1) (2006), pp. 4-8
[35]
Y.L. Cheng, T.W. Lee, T.I. Lee, Y.H. Kao, C.Y. Wu, Y.J. Chen. Sex and age differences modulate association of vitamin D with serum triglyceride levels. J Pers Med, 12 (3) (2022), p. 440
[36]
D. Wang, Y. Yang. The relationship between serum 25-hydroxyvitamin D levels and osteoporosis in postmenopausal women. Clin Interv Aging, 18 (2023), pp. 619-627
[37]
J.C. Gallagher, C.J. Rosen. Vitamin D: 100 years of discoveries, yet controversy continues. Lancet Diabetes Endocrinol, 11 (5) (2023), pp. 362-374
[38]
Institute of Medicine Committee to Review Dietary Reference Intakes for Vitamin and Calcium. In: Ross AC, Taylor CL, Yaktine AL, Del Valle HB, edtiors. Dietary reference intakes for calcium and vitamin D. Washington, DC: National Academies Press; 2011.
[39]
F. Risco, M.L. Traba.Influence of magnesium on the in vitro synthesis of 24, 25-dihydroxyvitamin D3 and 1 alpha, 25-dihydroxyvitamin D3. Magnes Res, 5 (1) (1992), pp. 5-14
[40]
F. Risco, M.L. Traba.Possible involvement of a magnesium dependent mitochondrial alkaline phosphatase in the regulation of the 25-hydroxyvitamin D3-1 alpha-and 25-hydroxyvitaminD3-24R-hydroxylases in LLC-PK1 cells. Magnes Res, 7 (3-4) (1994), pp. 169-178
[41]
X. Deng, Y. Song, J.E. Manson, L.B. Signorello, S.M. Zhang, M.J. Shrubsole, et al. Magnesium,vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Med, 11 (1) (2013), p. 187
[42]
J. Mursu, T. Nurmi, S. Voutilainen, T.P. Tuomainen, J.K. Virtanen. The association between serum 25-hydroxyvitamin D3 concentration and risk of disease death in men: modification by magnesium intake. Eur J Epidemiol, 30 (4) (2015), pp. 343-347
[43]
Q. Dai, X. Zhu, J.E. Manson, Y. Song, X. Li, A.A. Franke, et al. Magnesium status and supplementation influence vitamin D status and metabolism: results from a randomized trial. Am J Clin Nutr, 108 (6) (2018), pp. 1249-1258
[44]
P. Reddy, L.R. Edwards. Magnesium supplementation in vitamin D deficiency. Am J Ther, 26 (1) (2019), pp. e124-e132
[45]
Kirii K, Iso H, Date C, Fukui M, Tamakoshi A; the JACC Study Group. Magnesium intake and risk of self-reported type 2 diabetes among Japanese. J Am Coll Nutr 2010 ;29(2):99-106.
[46]
S.C. Shah, Q. Dai, X. Zhu, R.M. Peek Jr, W. Smalley, C. Roumie, et al. Associations between calcium and magnesium intake and the risk of incident gastric cancer: a prospective cohort analysis of the National Institutes of Health-American Association of Retired Persons (NIH-AARP) diet and health study. Int J Cancer, 146 (11) (2020), pp. 2999-3010
[47]
S. Liu, Q. Liu. Personalized magnesium intervention to improve vitamin D metabolism: applying a systems approach for precision nutrition in large randomized trials of diverse populations. Am J Clin Nutr, 108 (6) (2018), pp. 1159-1161
AI Summary AI Mindmap
PDF(1215 KB)

Accesses

Citations

Detail

Sections
Recommended

/