Innovative Inverse-Design Approach for On-Chip Computational Spectrometers: Enhanced Performance and Reliability

Ang Li, Yifan Wu, Gongyuan Zhang, Chang Wang, Jijun He, Yaqi Shi, Zongyin Yang, Shilong Pan

Engineering ›› 2024, Vol. 43 ›› Issue (12) : 81-88.

PDF(2581 KB)
PDF(2581 KB)
Engineering ›› 2024, Vol. 43 ›› Issue (12) : 81-88. DOI: 10.1016/j.eng.2024.07.011
Research
Article

Innovative Inverse-Design Approach for On-Chip Computational Spectrometers: Enhanced Performance and Reliability

Author information +
History +

Abstract

Computational spectrometers utilizing disordered structures have emerged as promising solutions for meeting the imperative demand for integrated spectrometers, offering high performance and improved resilience to fabrication variations and temperature fluctuations. However, the current computational spectrometers are impractical because they rely on a brute-force random design approach for disordered structures. This leads to an uncontrollable, non-reproducible, and suboptimal spectrometer performance. In this study, we revolutionize the existing paradigm by introducing a novel inverse design approach for computational spectrometers. By harnessing the power of inverse design, which has traditionally been applied to optimize single devices with simple performance, we successfully adapted it to optimize a complex system comprising multiple correlated components with intricate spectral responses. This approach can be applied to a wide range of structures. We validated this by realizing a spectrometer utilizing a new type of disordered structure based on interferometric effects that exhibits negligible loss and high sensitivity. For a given structure, our approach yielded a remarkable 12-times improvement in the spectral resolution and a four-fold reduction in the cross-correlation between the filters. The resulting spectrometer demonstrated reliable and reproducible performance with the precise determination of structural parameters.

Graphical abstract

Keywords

Silicon photonics / Integrated spectrometers / Inverse design

Cite this article

Download citation ▾
Ang Li, Yifan Wu, Gongyuan Zhang, Chang Wang, Jijun He, Yaqi Shi, Zongyin Yang, Shilong Pan. Innovative Inverse-Design Approach for On-Chip Computational Spectrometers: Enhanced Performance and Reliability. Engineering, 2024, 43(12): 81‒88 https://doi.org/10.1016/j.eng.2024.07.011

References

[1]
Z. Yang, T. Albrow-Owen, W. Cai, T. Hasan. Miniaturization of optical spectrometers. Science, 371 (6528) (2021), Article eabe0722.
[2]
A. Li, C. Yao, J. Xia, H. Wang, Q. Cheng, R. Penty, et al. Advances in cost-effective integrated spectrometers. Light Sci Appl, 11 (2022), p. 174.
[3]
Z. Xiao, W. Liu, S. Xu, J. Zhou, Z. Ren, C. Lee. Recent progress in silicon-based photonic integrated circuits and emerging applications. Adv Opt Mater, 11 (20) (2023), Article 2301028.
[4]
K. Ma, K. Chen, N. Zhu, L. Liu, S. He. High-resolution compact on-chip spectrometer based on an echelle grating with densely packed waveguide array. IEEE Photonics J, 11 (1) (2019), Article 4900107.
[5]
X. Ma, M. Li, J.J. He. CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array. IEEE Photonics J, 5 (2) (2013), Article 6600807.
[6]
Z. Xia, A.A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators. Opt Express, 19 (13) (2011), pp. 12356-12364.
[7]
B. Redding, S.F. Liew, R. Sarma, H. Cao. Compact spectrometer based on a disordered photonic chip. Nat Photonics, 7 (9) (2013), pp. 746-751.
[8]
J. Bao, M.G. Bawendi. A colloidal quantum dot spectrometer. Nature, 523 (7558) (2015), pp. 67-70.
[9]
Z. Wang, S. Yi, A. Chen, M. Zhou, T.S. Luk, A. James, et al. Single-shot on-chip spectral sensors based on photonic crystal slabs. Nat Commun, 10 (2019), p. 1020.
[10]
X. Zhu, L. Bian, H. Fu, L. Wang, B. Zou, Q. Dai, et al. Broadband perovskite quantum dot spectrometer beyond human visual resolution. Light Sci Appl, 9 (2020), p. 73.
[11]
A. Boschetti, A. Taschin, P. Bartolini, A.K. Tiwari, L. Pattelli, R. Torre, et al. Spectral super-resolution spectroscopy using a random laser. Nat Photonics, 14 (3) (2020), pp. 177-182.
[12]
A. Li, Y. Fainman. On-chip spectrometers using stratified waveguide filters. Nat Commun, 12 (2021), p. 2704.
[13]
W. Hadibrata, H. Noh, H. Wei, S. Krishnaswamy, K. Aydin. Compact, high-resolution inverse-designed on-chip spectrometer based on tailored disorder modes. Laser Photonics Rev, 15 (9) (2021), Article 2000556.
[14]
L. Gao, Y. Qu, L. Wang, Z. Yu. Computational spectrometers enabled by nanophotonics and deep learning. Nanophotonics, 11 (11) (2022), pp. 2507-2529.
[15]
Y. Chang, S. Xu, B. Dong, J. Wei, X. Le, Y. Ma, et al. Development of triboelectric-enabled tunable Fabry-Pérot photonic-crystal-slab filter towards wearable mid-infrared computational spectrometer. Nano Energy, 89 (2021), Article 106446.
[16]
X. Liu, W. Liu, Z. Ren, Y. Ma, B. Dong, G. Zhou, et al. Progress of optomechanical micro/nano sensors: a review. Int J Optomechatronics, 15 (1) (2021), pp. 120-159.
[17]
L. Wu, Z. Cai, Y. Su, J. Wu. Simulative study on speckle’s spectral properties of a random pixelated grating. J Opt Soc Am A Opt Image Sci Vis, 36 (8) (2019), pp. 1410-1417.
[18]
Z. Lin, S. Yu, Y. Chen, W. Cai, B. Lin, J. Song, et al. High-performance, intelligent, on-chip speckle spectrometer using 2D silicon photonic disordered microring lattice. Optica, 10 (4) (2023), pp. 497-504.
[19]
A. Li, C. Wang, F. Bao, W. Fang, Y. Liang, R. Cheng, et al. An integrated single-shot spectrometer with large bandwidth-resolution ratio and wide operation temperature range. PhotoniX, 4 (2023), p. 29.
[20]
P.H. Fu, C.Y. Chao, D.W. Huang. Ultracompact silicon waveguide bends designed using a particle swarm optimization algorithm. IEEE Photonics J, 13 (1) (2021), Article 6600509.
[21]
J.C.C. Mak, C. Sideris, J. Jeong, A. Hajimiri, J.K.S. Poon. Binary particle swarm optimized 2 × 2 power splitters in a standard foundry silicon photonic platform. Opt Lett, 41 (16) (2016), pp. 3868-3871.
[22]
L. Zagaglia, F. Floris, P.A. O’Brien. Experimental characterization of particle swarm optimized focusing non-uniform grating coupler for multiple SOI thicknesses. J Lightwave Technol, 39 (15) (2021), pp. 5028-5034.
[23]
W. Chen, H. Li, B. Zhang, P. Wang, S. Dai, Y. Liu, et al. Silicon mode (de) multiplexer based on cascaded particle-swarm-optimized counter-tapered couplers. IEEE Photonics J, 13 (1) (2020), Article 6600210.
[24]
K. Abedi, S.M. Mirjalili. Slow light performance enhancement of Bragg slot photonic crystal waveguide with particle swarm optimization algorithm. Opt Commun, 339 (2015), pp. 7-13.
[25]
M. Djavid, S. Mirtaheri, M. Abrishamian. Photonic crystal notch-filter design using particle swarm optimization theory and finite-difference time-domain analysis. J Opt Soc Am B, 26 (4) (2009), pp. 849-853.
[26]
Y. Zhang, S. Yang, A.E.J. Lim, G.Q. Lo, C. Galland, T. Baehr-Jones, et al. A compact and low loss Y-junction for submicron silicon waveguide. Opt Express, 21 (1) (2013), pp. 1310-1316.
[27]
Kennedy J, Eberhart R.Particle swarm optimization. In:Proceedings of International Conference on Neural Networks; 1995 Nov 27-Dec 1; Perth, WA, Australia; 1995.
[28]
D.A. Guimaraes, G.H.F. Floriano, L.S. Chaves. A tutorial on the CVX system for modeling and solving convex optimization problems. IEEE Latin Am T, 13 (5) (2015), pp. 1228-1257.
[29]
J. Zhang, X. Zhu, J. Bao. Denoising autoencoder aided spectrum reconstruction for colloidal quantum dot spectrometers. IEEE Sens J, 21 (5) (2020), pp. 6450-6458.
[30]
J. Zhang, X. Zhu, J. Bao. Solver-informed neural networks for spectrum reconstruction of colloidal quantum dot spectrometers. Opt Express, 28 (22) (2020), pp. 33656-33672.
AI Summary AI Mindmap
PDF(2581 KB)

Accesses

Citations

Detail

Sections
Recommended

/