Microbial Electrochemical Wastewater Refining

Na Chu, Daping Li, Raymond Jianxiong Zeng, Yong Jiang, Peng Liang

Engineering ›› 2025, Vol. 46 ›› Issue (3) : 245-256.

PDF(2952 KB)
PDF(2952 KB)
Engineering ›› 2025, Vol. 46 ›› Issue (3) : 245-256. DOI: 10.1016/j.eng.2024.07.018
Research
Review

Microbial Electrochemical Wastewater Refining

Author information +
History +

Abstract

Wastewater treatment significantly contributes to greenhouse gas emissions, which are further exacerbated by the environmental impact of external chemical additions. In response, microbial electrochemical wastewater refining has gained prominence at the interdisciplinary frontier of wastewater resource recovery and green bio-manufacturing. Significant progress has been made in utilizing active electrodes to stimulate CO2 fixation rates, applying “binary electron donors” to produce high-value-added chemicals, and developing novel processes and equipment. This review explores various aspects of microbial electrochemical wastewater refining, including microbial electrochemical monitoring of water quality, chemical synthesis from diverse carbon sources, and the deployment of pilot-scale systems for generating electricity, hydrogen, and methane, as well as for in-situ remediation. Additionally, it discusses the challenges and future directions, highlighting the importance of understanding mechanisms, advancing electrocatalyst and microbial engineering, and innovating hybrid processes. In conclusion, the widespread adoption of microbial electrochemical wastewater refining is emphasized for resource recovery and sustainable chemical production, ultimately reducing environmental impact.

Graphical abstract

Keywords

Microbial electrosynthesis / Extracellular electron transfer / CO2 reduction / Wastewater treatment / Resources recovery

Cite this article

Download citation ▾
Na Chu, Daping Li, Raymond Jianxiong Zeng, Yong Jiang, Peng Liang. Microbial Electrochemical Wastewater Refining. Engineering, 2025, 46(3): 245‒256 https://doi.org/10.1016/j.eng.2024.07.018

References

[1]
Miller DM, Abels K, Guo J, Williams KS, Liu MJ, Tarpeh WA.Electrochemical wastewater refining: a vision for circular chemical manufacturing.J Am Chem Soc 2023; 145(36):19422-19439.
[2]
Leininger A, Chen J, Ramaswami A, Ren ZJ.Urban circular carbon economy through electrochemically influenced microbiomes.One Earth 2023; 6(3):278-289.
[3]
Zhang Y, Huo J, Zheng X.Wastewater: China’s next water source.Science 2021; 374(6573):1332.
[4]
Du WJ, Lu JY, Hu YR, Xiao J, Yang C, Wu J, et al.Spatiotemporal pattern of greenhouse gas emissions in China’s wastewater sector and pathways towards carbon neutrality.Nat Water 2023; 1(2):166-175.
[5]
Ku HC, Miao Y, Wang Y, Chen X, Zhu X, Lu H, et al.Frontier science and challenges on offshore carbon storage.Front Environ Sci Eng 2023; 17(7):80.
[6]
Zhang W, Chu H, Yang L, You X, Yu Z, Zhang Y, et al.Technologies for pollutant removal and resource recovery from blackwater: a review.Front Environ Sci Eng 2023; 17(7):83.
[7]
Lu X, Tong D, He K.China’s carbon neutrality: an extensive and profound systemic reform.Front Environ Sci Eng 2023; 17(2):14.
[8]
Qin C, Xue Q, Zhang J, Lu L, Xiong S, Xiao Y, et al.A beautiful China initiative towards the harmony between humanity and the nature.Front Environ Sci Eng 2024; 18(6):71.
[9]
Song C, Zhu JJ, Willis JL, Moore DP, Zondlo MA, Ren ZJ.Methane emissions from municipal wastewater collection and treatment systems.Environ Sci Technol 2023; 57(6):2248-2261.
[10]
Su Q, Dai H, Xie S, Yu X, Lin Y, Singh VP, et al.Water–energy–carbon nexus: greenhouse gas emissions from integrated urban drainage systems in China.Environ Sci Technol 2023; 57(5):2093-2104.
[11]
Tang XL, Yu JW, Geng YH, Wang JR, Zheng RC, Zheng YG.From discovery to mass production: a perspective on bio-manufacturing exemplified by the development of statins.Engineering 2023; 24:138-150.
[12]
Zhu X, Xu Z, Tang H, Nie L, Nie R, Wang R, et al.Photosynthesis-mediated intracellular biomineralization of gold nanoparticles inside chlorella cells towards hydrogen boosting under green light.Angew Chem Int Ed 2023; 62(33):e202308437.
[13]
Winkler MKH, van Loosdrecht MCM.Intensifying existing urban wastewater.Science 2022; 375(6579):377-378.
[14]
Liew FE, Nogle R, Abdalla T, Rasor BJ, Canter C, Jensen RO, et al.Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale.Nat Biotechnol 2022; 40(3):335-344.
[15]
Liu Q, Flores-Alsina X, Ramin E, Gernaey KV.Making waves: power-to-X for the water resource recovery facilities of the future.Water Res 2024; 257:121691.
[16]
Chu N, Jiang Y, Liang Q, Liu P, Wang D, Chen X, et al.Electricity-driven microbial metabolism of carbon and nitrogen: a waste-to-resource solution.Environ Sci Technol 2023; 57(11):4379-4395.
[17]
Ren ZJ, Pagilla K.Pathways to water sector decarbonization, carbon capture and utilization. IWA Publishing, London (2022)
[18]
Lu L, Guest JS, Peters CA, Zhu X, Rau GH, Ren ZJ.Wastewater treatment for carbon capture and utilization.Nat Sustain 2018; 1(12):750-758.
[19]
Kazmi M, Irfan M, Zhou L, Yuan S, Fatima H, Tian LY, et al.Electron donors and mediators in the thermodynamics and kinetics of CO2 bioreduction.Renew Sustain Energy Rev 2022; 156:111997.
[20]
Heidrich ES, Curtis TP, Dolfing J.Determination of the internal chemical energy of wastewater.Environ Sci Technol 2011; 45(2):827-832.
[21]
Boucher DG, Carroll E, Nguyen ZA, Jadhav RG, Simoska O, Beaver K, et al.Bioelectrocatalytic synthesis: concepts and applications.Angew Chem Int Ed Engl 2023; 62(46):e202307780.
[22]
Jiang Y, May HD, Lu L, Liang P, Huang X, Ren ZJ.Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation.Water Res 2019; 149:42-55.
[23]
Mertens J, Breyer C, Arning K, Bardow A, Belmans R, Dibenedetto A, et al.Carbon capture and utilization: more than hiding CO2 for some time.Joule 2023; 7(3):442-449.
[24]
Claassens NJ, Cotton CAR, Kopljar D, Bar-Even A.Making quantitative sense of electromicrobial production.Nat Catal 2019; 2(5):437-447.
[25]
Logan BE, Rossi R, Ragab A, Saikaly PE, Aa R, Saikaly PE.Electroactive microorganisms in bioelectrochemical systems.Nat Rev Microbiol 2019; 17(5):307-319.
[26]
Harnisch F, Deutzmann JS, Boto ST, Rosenbaum MA.Microbial electrosynthesis: opportunities for microbial pure cultures.Trends Biotechnol 2024; 42(8):1035-1047.
[27]
Xie Y, Ersan S, Guan X, Wang J, Sha J, Xu S, et al.Unexpected metabolic rewiring of CO2 fixation in H2-mediated materials–biology hybrids.Proc Natl Acad Sci USA 2023; 120(42):e2308373120.
[28]
Chu N, Wang D, Wang H, Liang Q, Chang J, Gao Y, et al.Flow-electrode microbial electrosynthesis for increasing production rates and lowering energy consumption.Engineering 2023; 25:157-167.
[29]
Sheng H, Liu C.Spatial decoupling boosts CO2 electro-biofixation.Nat Catal 2022; 5(5):357-358.
[30]
Zhu P, Wu ZY, Elgazzar A, Dong C, Wi TU, Chen FY, et al.Continuous carbon capture in an electrochemical solid-electrolyte reactor.Nature 2023; 618(7967):959-966.
[31]
de Arquer FPG, Dinh CT, Ozden A, Wicks J, McCallum C, Kirmani AR, et al.CO2 electrolysis to multicarbon products at activities greater than 1 A·cm−2.Science 2020; 367(6478):661-666.
[32]
Guerra OJ, Almajed HM, Smith WA, Somoza-Tornos A, Hodge BMS.Barriers and opportunities for the deployment of CO2 electrolysis in net-zero emissions energy systems.Joule 2023; 7(6):1111-1133.
[33]
Zhang Z, Huang X, Chen Z, Zhu J, Endrodi B, Janaky C, et al.Membrane electrode assembly for electrocatalytic CO2 reduction: principle and application.Angew Chem Int Ed Engl 2023; 62(28):e202302789.
[34]
Chen Q, Wang X, Zhou Y, Tan Y, Li H, Fu J, et al.Electrocatalytic CO2 reduction to C2+ products in flow cells.Adv Mater 2024; 36(5):2303902.
[35]
De Luna P, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH.What would it take for renewably powered electrosynthesis to displace petrochemical processes?.Science 2019; 364(6438):eaav3506.
[36]
Jin S, Hao Z, Zhang K, Yan Z, Chen J.Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization.Angew Chem Int Ed Engl 2021; 133(38):20795-20816.
[37]
Guo F, Qiao Y, Xin F, Zhang W, Jiang M.Bioconversion of C1 feedstocks for chemical production using Pichia pastoris.Trends Biotechnol 2023; 41(8):1066-1079.
[38]
Haas T, Krause R, Weber R, Demler M, Schmid G.Technical photosynthesis involving CO2 electrolysis and fermentation.Nat Catal 2018; 1(1):32-39.
[39]
Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, et al.Integrated electromicrobial conversion of CO2 to higher alcohols.Science 2012; 335(6076):1596.
[40]
Jiang Y, Chu N, Zhang W, Ma J, Zhang F, Liang P, et al.Zinc: a promising material for electrocatalyst-assisted microbial electrosynthesis of carboxylic acids from carbon dioxide.Water Res 2019; 159:87-94.
[41]
Lim J, Choi SY, Lee JW, Lee SY, Lee H.Biohybrid CO2 electrolysis for the direct synthesis of polyesters from CO2.Proc Natl Acad Sci USA 2023; 120(14):2221438120.
[42]
Li J, Kuang Y, Zhang X, Hung WH, Chiang CY, Zhu G, et al.Electrochemical acetate production from high-pressure gaseous and liquid CO2.Nat Catal 2023; 6(12):1151-1163.
[43]
Zhang P, Chen K, Xu B, Li J, Hu C, Yuan JS, et al.Chem–bio interface design for rapid conversion of CO2 to bioplastics in an integrated system.Chem 2022; 8(12):3363-3381.
[44]
Zhu HL, Huang JR, Zhang MD, Yu C, Liao PQ, Chen XM.Continuously producing highly concentrated and pure acetic acid aqueous solution via direct electroreduction of CO2.J Am Chem Soc 2024; 146(1):1144-1152.
[45]
Jin J, Wicks J, Min Q, Li J, Hu Y, Ma J, et al.Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction.Nature 2023; 617(7962):724-729.
[46]
Zhang J, Zeng G, Zhu S, Tao H, Pan Y, Lai W, et al.Steering CO2 electroreduction pathway toward ethanol via surface-bounded hydroxyl species-induced noncovalent interaction.Proc Natl Acad Sci USA 2023; 120(11):e2218987120.
[47]
Hann EC, Overa S, Harland-Dunaway M, Narvaez AF, Le DN, Orozco-Cárdenas ML, et al.A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production.Nat Food 2022; 3(6):461-471.
[48]
Zheng T, Zhang M, Wu L, Guo S, Liu X, Zhao J, et al.Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering.Nat Catal 2022; 5(5):388-396.
[49]
Zhu P, Xia C, Liu CY, Jiang K, Gao G, Zhang X, et al.Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction.Proc Natl Acad Sci USA 2021; 118(2):e2010868118.
[50]
Xia C, Zhu P, Jiang Q, Pan Y, Liang W, Stavitski E, et al.Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid–electrolyte devices.Nat Energy 2019; 4(9):776-785.
[51]
Masel RI, Liu Z, Yang H, Kaczur JJ, Carrillo D, Ren S, et al.An industrial perspective on catalysts for low-temperature CO2 electrolysis.Nat Nanotechnol 2021; 16(2):118-128.
[52]
Chu N, Wu X, Zhao Z, Zheng X, Lu Y, Pu Y, et al.Biohybrid CO2 electrolysis under external mode: using pure formic acid extracted from CO2 electroreduction for diverse microbial conversion.Fundam Res. In press.
[53]
Zhu Z, Zhu Y, Ren Z, Liu D, Yue F, Sheng D, et al.Covalent organic framework ionomer steering the CO2 electroreduction pathway on Cu at industrial-grade current density.J Am Chem Soc 2024; 146(2):1572-1579.
[54]
Fan M, Miao RK, Ou P, Xu Y, Lin ZY, Lee TJ, et al.Single-site decorated copper enables energy- and carbon-efficient CO2 methanation in acidic conditions.Nat Commun 2023; 14(1):3314.
[55]
Okatenko V, Loiudice A, Newton MA, Stoian DC, Blokhina A, Chen AN, et al.Alloying as a strategy to boost the stability of copper nanocatalysts during the electrochemical CO2 reduction reaction.J Am Chem Soc 2023; 145(9):5370-5383.
[56]
Xia R, Cheng J, Chen Z, Zhou X, Zhang Z, Zhou J, et al.Tailoring interfacial microbiome and charge dynamics via a rationally designed atomic-nanoparticle bridge for bio-electrochemical CO2-fixation.Energy Environ Sci 2023; 16(3):1176-1186.
[57]
Xia R, Cheng J, Chen Z, Zhang Z, Zhou X, Zhou J, et al.Revealing Co-N4@Co-NP bridge-enabled fast charge transfer and active intracellular methanogenesis in bio-electrochemical CO2-conversion with Methanosarcina barkeri.Adv Mater 2023; 35(52):2304920.
[58]
Qiu XF, Huang JR, Yu C, Zhao ZH, Zhu HL, Ke Z, et al.A stable and conductive covalent organic framework with isolated active sites for highly selective electroreduction of carbon dioxide to acetate.Angew Chem Int Ed Engl 2022; 61(36):e202206470.
[59]
De R, Gonglach S, Paul S, Haas M, Sreejith SS, Gerschel P, et al.Electrocatalytic reduction of CO2 to acetic acid by a molecular manganese corrole complex.Angew Chem Int Ed 2020; 59(26):10527-10534.
[60]
Jourdin L, Grieger T, Monetti J, Flexer V, Freguia S, Lu Y, et al.High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide.Environ Sci Technol 2015; 49(22):13566-13574.
[61]
Boto ST, Bardl B, Harnisch F, Rosenbaum MA.Microbial electrosynthesis with Clostridium ljungdahlii benefits from hydrogen electron mediation and permits a greater variety of products.Green Chem 2023; 25(11):4375-4386.
[62]
Zhu X, Jack J, Leininger A, Yang M, Bian Y, Lo J, et al.Syngas mediated microbial electrosynthesis for CO2 to acetate conversion using Clostridium ljungdahlii.Resour Conserv Recycling 2022; 184:106395.
[63]
Wu Q, Bao X, Guo W, Wang B, Li Y, Luo H, et al.Medium chain carboxylic acids production from waste biomass: current advances and perspectives.Biotechnol Adv 2019; 37(5):599-615.
[64]
Menon A, Lyng JG.Circular bioeconomy solutions: driving anaerobic digestion of waste streams towards production of high value medium chain fatty acids.Rev Environ Sci Bio 2021; 20(1):189-208.
[65]
Wu QL, Yuan KX, Ren WT, Deng L, Wang HZ, Feng XC, et al.Unveiling the mechanism underlying the effects of ammonia on n-caproate production: influenced pathways, key enzymes, and microbiota functions.Engineering 2024; 35:180-190.
[66]
Park JO, Liu N, Holinski KM, Emerson DF, Qiao K, Woolston BM, et al.Synergistic substrate cofeeding stimulates reductive metabolism.Nat Metab 2019; 1(6):643-651.
[67]
Wang D, Liang Q, Chu N, Zeng RJ, Jiang Y.Deciphering mixotrophic microbial electrosynthesis with shifting product spectrum by genome-centric metagenomics.Chem Eng J 2023; 451:139010.
[68]
Chu N, Hao W, Wu Q, Liang Q, Jiang Y, Liang P, et al.Microbial electrosynthesis for producing medium chain fatty acids.Engineering 2022; 16:141-153.
[69]
Angenent LT, Richter H, Buckel W, Spirito CM, Steinbusch KJJ, Plugge CM, et al.Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals.Environ Sci Technol 2016; 50(6):2796-2810.
[70]
Wang J, Yin Y.Biological production of medium-chain carboxylates through chain elongation: an overview.Biotechnol Adv 2022; 55:107882.
[71]
Dong W, Yang Y, Liu C, Zhang J, Pan J, Luo L, et al.Caproic acid production from anaerobic fermentation of organic waste—pathways and microbial perspective.Renew Sustain Energy Rev 2023; 175:113181.
[72]
Jiang Y, Chu N, Qian DK, Jianxiong ZR.Microbial electrochemical stimulation of caproate production from ethanol and carbon dioxide.Bioresour Technol 2020; 295:122266.
[73]
Chu N, Liang Q, Zhang W, Ge Z, Hao W, Jiang Y, et al.Waste C1 gases as alternatives to pure CO2 improved the microbial electrosynthesis of C4 and C6 carboxylates.ACS Sustain Chem Eng 2020; 8(23):8773-8782.
[74]
Shi X, Wu L, Wei W, Ni BJ.Insights into the microbiomes for medium-chain carboxylic acids production from biowastes through chain elongation.Crit Rev Environ Sci Technol 2022; 52(21):3787-3812.
[75]
Moscoviz R, Toledo-Alarcón J, Trably E, Bernet N.Electro-fermentation: how to drive fermentation using electrochemical systems.Trends Biotechnol 2016; 34(11):856-865.
[76]
Schievano A, Pep Té Sciarria, Vanbroekhoven K, De Wever H, Puig S, Andersen SJ, et al.Electro-fermentation—merging electrochemistry with fermentation in industrial applications.Trends Biotechnol 2016; 34(11):866-878.
[77]
Chu N, Liang Q, Jiang Y, Zeng RJ.Microbial electrochemical platform for the production of renewable fuels and chemicals.Biosens Bioelectron 2020; 150:111922.
[78]
Virdis B, Hoelzle RD, Marchetti A, Boto ST, Rosenbaum MA, Blasco-Gómez R, et al.Electro-fermentation: sustainable bioproductions steered by electricity.Biotechnol Adv 2022; 59:107950.
[79]
Vassilev I, Averesch NJH, Ledezma P, Kokko M.Anodic electro-fermentation: empowering anaerobic production processes via anodic respiration.Biotechnol Adv 2021; 48:107728.
[80]
Jiang Y, Lu L, Wang H, Shen R, Ge Z, Hou D, et al.Electrochemical control of redox potential arrests methanogenesis and regulates products in mixed culture electro-fermentation.ACS Sustain Chem Eng 2018; 6(7):8650-8658.
[81]
Jiang Y, Chu N, Zhang W, Zhang L, Jianxiong ZR.Electro-fermentation regulates mixed culture chain elongation with fresh and acclimated cathode.Energy Convers Manage 2020; 204:112285.
[82]
Chu N, Liang Q, Hao W, Jiang Y, Liang P, Zeng RJ.Microbial electrochemical sensor for water biotoxicity monitoring.Chem Eng J 2021; 404:127053.
[83]
Jiang Y, Yang X, Liang P, Liu P, Huang X.Microbial fuel cell sensors for water quality early warning systems: fundamentals, signal resolution, optimization and future challenges.Renew Sustain Energy Rev 2018; 81:292-305.
[84]
Qi X, Jiang Y, Liu P, Yin F, Liu X, Gu Y, et al.Dominating contribution of intracellular electron generation over extracellular electron transfer in signaling toxic formaldehyde exposure in electrochemically active biofilm sensors.Environ Sci Technol Lett 2023; 10(9):735-739.
[85]
Yan X, Wang Z, Liao C, Su H, Zhao Q, Tian L, et al.Understanding the tail current behavior of electroactive biofilms realizes the rapid measurement of biochemical oxygen demand.Environ Sci Technol 2024; 58(6):2881-2890.
[86]
Emaminejad SA, Sparks J, Cusick RD.Integrating bio-electrochemical sensors and machine learning to predict the efficacy of biological nutrient removal processes at water resource recovery facilities.Environ Sci Technol 2023; 57(46):18372-18381.
[87]
Han Y, Liao C, Meng X, Zhao Q, Yan X, Tian L, et al.Switchover of electrotrophic and heterotrophic respirations enables the biomonitoring of low concentration of bod in oxygen-rich environment.Water Res 2023; 235:119897.
[88]
Atkinson JT, Su L, Zhang X, Bennett GN, Silberg JJ, Ajo-Franklin CM.Real-time bioelectronic sensing of environmental contaminants.Nature 2022; 611(7936):548-553.
[89]
Lai CY, Zhou L, Yuan Z, Guo J.Hydrogen-driven microbial biogas upgrading: advances, challenges and solutions.Water Res 2021; 197:117120.
[90]
Bakkaloglu S, Cooper J, Hawkes A.Methane emissions along biomethane and biogas supply chains are underestimated.One Earth 2022; 5(6):724-736.
[91]
Fang W, Guo W, Lu R, Yan Y, Liu X, Wu D, et al.Durable CO2 conversion in the proton–exchange membrane system.Nature 2024; 626(7997):86-91.
[92]
Lee G, Rasouli AS, Lee BH, Zhang J, Won DH, Xiao YC, et al.CO2 electroreduction to multicarbon products from carbonate capture liquid.Joule 2023; 7(6):1277-1288.
[93]
Lees EW, Liu A, Bui JC, Ren S, Weber AZ, Berlinguette CP.Electrolytic methane production from reactive carbon solutions.ACS Energy Lett 2022; 7(5):1712-1718.
[94]
Pu Y, Wang Y, Wu G, Wu X, Lu Y, Yu Y, et al.Tandem acidic CO2 electrolysis coupled with syngas fermentation: a two-stage process for producing medium-chain fatty acids.Environ Sci Technol 2024; 58(17):7445-7456.
[95]
Wu GY, Pu Y, Wang Y, Zhang H, Wu Q, Zeng RJ, et al.Selective recovery of medium-chain fatty acids from secondary fermentation broth by flow-electrode capacitive deionization.Chem Eng J 2023; 470:144168.
[96]
Chu N, Jiang Y, Wang D, Li D, Zeng RJ.Super-fast charging biohybrid batteries through a power-to-formate-to-bioelectricity process by combining microbial electrochemistry and CO2 electrolysis.Angew Chem Int Ed 2023; 62(47):e202312147.
[97]
Liang P, Duan R, Jiang Y, Zhang X, Qiu Y, Huang X.One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment.Water Res 2018; 141:1-8.
[98]
He W, Dong Y, Li C, Han X, Liu G, Liu J, et al.Field tests of cubic-meter scale microbial electrochemical system in a municipal wastewater treatment plant.Water Res 2019; 155:372-380.
[99]
Li C, Liang D, Tian Y, Liu S, He W, Li Z, et al.Sorting out the latest advances in separators and pilot-scale microbial electrochemical systems for wastewater treatment: concomitant development, practical application, and future perspective.Environ Sci Technol 2024; 58(22):9471-9486.
[100]
Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, et al.Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater.Appl Microbiol Biotechnol 2011; 89(6):2053-2063.
[101]
Guerrero-Sodric O, Baeza JA, Guisasola A.Enhancing bioelectrochemical hydrogen production from industrial wastewater using Ni-foam cathodes in a microbial electrolysis cell pilot plant.Water Res 2024; 256:121616.
[102]
Wang T, Zhu G, Li C, Zhou M, Wang R, Li J.Anaerobic digestion of sludge filtrate using anaerobic baffled reactor assisted by symbionts of short chain fatty acid-oxidation syntrophs and exoelectrogens: pilot-scale verification.Water Res 2020; 170:115329.
[103]
Xie J, Zou X, Chang Y, Liu H, Cui MH, Zhang TC, et al.A feasibility investigation of a pilot-scale bioelectrochemical coupled anaerobic digestion system with centric electrode module for real membrane manufacturing wastewater treatment.Bioresour Technol 2023; 368:128371.
[104]
Li Z, Qiu Y, Yu Y, Ji Y, Li H, Liao M, et al.Long-term operation of cathode-enhanced ecological floating bed coupled with microbial electrochemical system for urban surface water remediation: from lab-scale research to engineering application.Water Res 2023; 237:119967.
[105]
Roy M, Aryal N, Zhang Y, Patil SA, Pant D.Technological progress and readiness level of microbial electrosynthesis and electrofermentation for carbon dioxide and organic wastes valorization.Curr Opin Green Sustain Chem 2022; 35:100605.
[106]
Wei P, Gao D, Liu T, Li H, Sang J, Wang C, et al.Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis.Nat Nanotechnol 2023; 18(3):299-306.
[107]
She X, Zhai L, Wang Y, Xiong P, Li MMJ, Wu TS, et al.Pure-water-fed, electrocatalytic CO2 reduction to ethylene beyond 1000 h stability at 10 A.Nat Energy 2024; 9(1):81-91.
[108]
Fackler N, Heijstra BD, Rasor BJ, Brown H, Martin J, Ni Z, et al.Stepping on the gas to a circular economy: accelerating development of carbon-negative chemical production from gas fermentation.Annu Rev Chem Biomol 2021; 12(1):439-470.
[109]
Seger B, Robert M, Jiao F.Best practices for electrochemical reduction of carbon dioxide.Nat Sustain 2023; 6(3):236-238.
[110]
O CP’Brien, Miao RK, Shayesteh Zeraati A, Lee G, Sargent EH, Sinton D.CO2 electrolyzers.Chem Rev 2024; 124(7):3648-3693.
[111]
Xia R, Fang Y, Chen Z, Zhou X, Cheng J, Zhou J, et al.Manipulating electron extraction efficiency in microbial electrochemical carbon fixation via single-atom engineering.Mater Today 2023; 68:51-61.
[112]
Quek G, Vazquez RJ, McCuskey SR, Lopez-Garcia F, Bazan GC.An n-type conjugated oligoelectrolyte mimics transmembrane electron transport proteins for enhanced microbial electrosynthesis.Angew Chem Int Ed Engl 2023; 62(33):e202305189.
[113]
Tian Y, Wu J, Liang D, Li J, Liu G, Lin N, et al.Insights into the electron transfer behaviors of a biocathode regulated by cathode potentials in microbial electrosynthesis cells for biogas upgrading.Environ Sci Technol 2023; 57(16):6733-6742.
[114]
Baek G, Logan BE.A comprehensive analysis of key factors influencing methane production from CO2 using microbial methanogenesis cells.Water Res 2023; 245:120657.
[115]
Lovley DR, Holmes DE.Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms.Nat Rev Microbiol 2022; 20(1):5-19.
[116]
Dong H, Huang L, Zhao L, Zeng Q, Liu X, Sheng Y, et al.A critical review of mineral-microbe interaction and co-evolution: mechanisms and applications.Natl Sci Rev 2022; 9:nwac128.
[117]
Gu Y, Qi X, Yang X, Jiang Y, Liu P, Quan X, et al.Extracellular electron transfer and the conductivity in microbial aggregates during biochemical wastewater treatment: a bottom-up analysis of existing knowledge.Water Res 2023; 231:119630.
[118]
Candry P, Chadwick GL, Caravajal-Arroyo JM, Lacoere T, Winkler MH, Ganigue R, et al.Trophic interactions shape the spatial organization of medium-chain carboxylic acid producing granular biofilm communities.ISME J 2023; 17(11):2014-2022.
[119]
Zhang J, Li F, Liu D, Liu Q, Song H.Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production.Chem Soc Rev 2024; 53(3):1375-1446.
[120]
Yu W, Zeng Y, Wang Z, Xia S, Yang Z, Chen W, et al.Solar-powered multi-organism symbiont mimic system for beyond natural synthesis of polypeptides from CO2 and N2.Sci Adv 2023; 9(11):eadf6772.
[121]
Crandall BS, Overa S, Shin H, Jiao F.Turning carbon dioxide into sustainable food and chemicals: how electrosynthesized acetate is paving the way for fermentation innovation.Acc Chem Res 2023; 56(12):1505-1516.
[122]
Montaño López J, Duran L, Avalos JL.Physiological limitations and opportunities in microbial metabolic engineering.Nat Rev Microbiol 2022; 20(1):35-48.
[123]
Sherbo RS, Silver PA, Nocera DG.Riboflavin synthesis from gaseous nitrogen and carbon dioxide by a hybrid inorganic-biological system.Proc Natl Acad Sci USA 2022; 119(37):e2210538119.
[124]
Wang B, Zhang Y, Minteer SD.Renewable electron-driven bioinorganic nitrogen fixation: a superior route toward green ammonia?.Energy Environ Sci 2023; 16(2):404-420.
[125]
Yang Y, Louisia S, Yu S, Jin J, Roh I, Chen C, et al.Operando studies reveal active Cu nanograins for CO2 electroreduction.Nature 2023; 614(7947):262-269.
[126]
Wang J, Tan HY, Qi MY, Li JY, Tang ZR, Suen NT, et al.Spatially and temporally understanding dynamic solid-electrolyte interfaces in carbon dioxide electroreduction.Chem Soc Rev 2023; 52(15):5013-5050.
[127]
Yan T, Chen X, Kumari L, Lin J, Li M, Fan Q, et al.Multiscale CO2 electrocatalysis to C2+ products: reaction mechanisms, catalyst design, and device fabrication.Chem Rev 2023; 123(17):10530-10583.
AI Summary AI Mindmap
PDF(2952 KB)

Accesses

Citations

Detail

Sections
Recommended

/