Mechanical Energy Drives the Growth and Carbon Fixation of Electroactive Microorganisms

Guoping Ren, Jie Ye, Lu Liu, Andong Hu, Kenneth H. Nealson, Christopher Rensing, Shungui Zhou

Engineering ›› 2025, Vol. 47 ›› Issue (4) : 194-203.

PDF(2729 KB)
PDF(2729 KB)
Engineering ›› 2025, Vol. 47 ›› Issue (4) : 194-203. DOI: 10.1016/j.eng.2024.08.006
Research
Article

Mechanical Energy Drives the Growth and Carbon Fixation of Electroactive Microorganisms

Author information +
History +

Highlights

• A bio-piezocatalytic system for microbial growth and CO2 fixation was proposed.

• The bioconversion of mechanical energy to chemical energy was achieved.

• The biohybrid piezoelectric effect was a sustainable energy utilization pathway.

• The capability to harness mechanical energy could be achieved by various microbes.

Abstract

Phototrophy and chemotrophy are two dominant types of microbial metabolism. However, to date, the potential of the ubiquitous and versatile mechanical energy as a renewable energy source to drive the growth of microorganisms has remained unknown and not utilized. Here, we present evidence in favor of a previously unidentified metabolic pathway, in which the electronic energy produced from mechanical energy by the piezoelectric materials is used to support the growth of microorganisms. When electroactive microorganism Rhodopseudomonas palustris (R. palustris; with barium titanate nanoparticles) was mechanically stirred, a powerful biohybrid piezoelectric effect (BPE) enabled sustainable carbon fixation coupled with nitrate reduction. Transcriptomic analyses demonstrated that mechanical stirring of the bacteria–barium titanate biohybrid led to upregulation of genes encoding functions involved in electron and energy transfer in R. palustris. Studies with other electroactive microorganisms suggested that the ability of microbes to utilize BPE may be a common phenomenon in the microbial world. Taken together, these findings imply a long-neglected and potentially important microbial metabolic pathway, with potential importance to microbial survival in the energy-limited environments.

Graphical abstract

Keywords

Mechanical energy / Biohybrid piezoelectric effect / Microbial metabolism / Carbon fixation / Nitrate reduction

Cite this article

Download citation ▾
Guoping Ren, Jie Ye, Lu Liu, Andong Hu, Kenneth H. Nealson, Christopher Rensing, Shungui Zhou. Mechanical Energy Drives the Growth and Carbon Fixation of Electroactive Microorganisms. Engineering, 2025, 47(4): 194‒203 https://doi.org/10.1016/j.eng.2024.08.006

References

[1]
Lu A, Li Y, Jin S, Wang X, Wu XL, Zeng C, et al.Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis.Nat Commun 2012; 3(1):768.
[2]
Schiffries CM, Mangum AJ, Mays JL, Hoon-Starr M, Hazen RM.The deep carbon observatory: a ten-year quest to study carbon in earth.Engineering 2019; 5(3):372-378.
[3]
Huang Q, Jiang F, Wang L, Yang C.Design of photobioreactors for mass cultivation of photosynthetic organisms.Engineering 2017; 3(3):318-329.
[4]
Croce R, Van H Amerongen.Natural strategies for photosynthetic light harvesting.Nat Chem Biol 2014; 10(7):492-501.
[5]
Schönheit P, Buckel W, Martin WF.On the origin of heterotrophy.Trends Microbiol 2016; 24(1):12-25.
[6]
Wang H, Fu P, Li J, Huang Y, Zhao Y, Jiang L, et al.Separation-and-recovery technology for organic waste liquid with a high concentration of inorganic particles.Engineering 2018; 4(3):406-415.
[7]
Hoehler TM, J BBørgensen.Microbial life under extreme energy limitation.Nat Rev Microbiol 2013; 11(2):83-94.
[8]
J BBørgensen, D S’Hondt.A starving majority deep beneath the seafloor.Science 2006; 314(5801):932-934.
[9]
D S’Hondt, J BBørgensen, Miller DJ, Batzke A, Blake R, Cragg BA, et al.Distributions of microbial activities in deep subseafloor sediments.Science 2004; 306(5705):2216-2221.
[10]
Hoehler TM, Mankel DJ, Girguis PR, McCollom TM, Kiang NY, J BBørgensen.The metabolic rate of the biosphere and its components.Proc Natl Acad Sci 2023; 120(25):2303764120.
[11]
Lovley DR, Holmes DE.Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms.Nat Rev Microbiol 2022; 20(1):5-19.
[12]
Chu N, Hao W, Wu Q, Liang Q, Jiang Y, Liang P, et al.Microbial electrosynthesis for producing medium chain fatty acids.Engineering 2022; 16:141-153.
[13]
Koch C, Harnisch F.Is there a specific ecological niche for electroactive microorganisms?.Chem Electro Chem 2016; 3(9):1282-1295.
[14]
Lovley DR, Holmes DE, Nevin KP.Dissimilatory Fe(III) and Mn(IV) reduction.Adv Microb Physiol 2004; 49(2):219-286.
[15]
Logan BE, Rossi R, Ragab A, Saikaly PE.Electroactive microorganisms in bioelectrochemical systems.Nat Rev Microbiol 2019; 17(5):307-319.
[16]
Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, et al.Extracellular electron transfer mechanisms between microorganisms and minerals.Nat Rev Microbiol 2016; 14(10):651-662.
[17]
Roden EE, Kappler A, Bauer I, Jiang J, Paul A, Stoesser R, et al.Extracellular electron transfer through microbial reduction of solid-phase humic substances.Nat Geosci 2010; 3(6):417-421.
[18]
Sezer N, Ko Mç.A comprehensive review on the state-of-the-art of piezoelectric energy harvesting.Nano Energy 2021; 80:105567.
[19]
Ivanova EP, Linklater DP, Werner M, Baulin VA, Xu X, Vrancken N, et al.The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces.Proc Natl Acad Sci 2020; 117(23):12598-12605.
[20]
Del A Valle, Torra J, Bondia P, Tone CM, Pedraz P, Vadillo-Rodriguez V, et al.Mechanically induced bacterial death imaged in real time: a simultaneous nanoindentation and fluorescence microscopy study.ACS Appl Mater Interfaces 2020; 12(28):31235-31241.
[21]
Yan Y, Geng LD, Liu H, Leng H, Li X, Wang YU, et al.Near-ideal electromechanical coupling in textured piezoelectric ceramics.Nat Commun 2022; 13(1):3565.
[22]
Bowen C, Kim H, Weaver P, Dunn S.Piezoelectric and ferroelectric materials and structures for energy harvesting applications.Energy Environ Sci 2014; 7(1):25-44.
[23]
Wang Y, Cui J, Yuan Q, Niu Y, Bai Y, Wang H.Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites.Adv Mater 2015; 27(42):6658-6663.
[24]
Jiang B, Iocozzia J, Zhao L, Zhang H, Harn YW, Chen Y, et al.Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties.Chem Soc Rev 2019; 48(4):1194-1228.
[25]
Ren G, Ye J, Hu Q, Zhang D, Yuan Y, Zhou S.Growth of electroautotrophic microorganisms using hydrovoltaic energy through natural water evaporation.Nat Commun 2024; 15(1):4992.
[26]
Rapp BJ, Wall JD.Genetic transfer in Desulfovibrio desulfuricans.Proc Natl Acad Sci 1987; 84(24):9128-9130.
[27]
Chen M, Cai Q, Chen X, Huang S, Feng Q, Majima T, et al.Anthraquinone-2-sulfonate as a microbial photosensitizer and capacitor drives solar-to-N2O production with a quantum efficiency of almost unity.Environ Sci Technol 2022; 56(8):5161-5169.
[28]
Ye J, Chen Y, Gao C, Wang C, Hu A, Dong G, et al.Sustainable conversion of microplastics to methane with ultrahigh selectivity by a biotic–abiotic hybrid photocatalytic system.Angew Chem Int Ed 2022; 61(52):202213244.
[29]
Ye J, Ren G, Wang C, Hu A, Li F, Zhou S, et al.A facile and fast strategy for cathodic electroactive-biofilm assembly via magnetic nanoparticle bioconjugation.Biosens Bioelectron 2021; 190:113464.
[30]
Ye J, Wang C, Gao C, Fu T, Yang C, Ren G, et al.Solar-driven methanogenesis with ultrahigh selectivity by turning down H2 production at biotic–abiotic interface.Nat Commun 2022; 13(1):6612.
[31]
Stick H, Karim J, Koropatnick J, Lo L.Mutagaenic action of ascorbic acid.Nature 1976; 260(5553):722-724.
[32]
Swainsbury DJ, Qian P, Jackson PJ, Faries KM, Niedzwiedzki DM, Martin EC, et al.Structures of Rhodopseudomonas palustris RC–LH1 complexes with open or closed quinone channels.Sci Adv 2021; 7(3):eabe2631.
[33]
Ratasuk N, Nanny MA.Characterization and quantification of reversible redox sites in humic substances.Environ Sci Technol 2007; 41(22):7844-7850.
[34]
Guzman MS, Rengasamy K, Binkley MM, Jones C, Ranaivoarisoa TO, Singh R, et al.Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris.Nat Commun 2019; 10(1):1355.
[35]
Minamino T, Namba K.Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export.Nature 2008; 451(7177):485-488.
[36]
Kanazuru T, Sato EF, Nagata K, Matsui H, Watanabe K, Kasahara E, et al.Role of hydrogen generation by Klebsiella pneumoniae in the oral cavity.J Microbiol 2010; 48(6):778-783.
[37]
Yu H, Leadbetter JR.Bacterial chemolithoautotrophy via manganese oxidation.Nature 2020; 583(7816):453-458.
[38]
Deng Z, Huang D, He Q, Chassagne C.Review of the action of organic matter on mineral sediment flocculation.Front Earth Sci 2022; 10:965919.
[39]
Ma Pćczak, Kaczmarek H, Ziegler-Borowska M.Recent achievements in polymer bio-based flocculants for water treatment.Materials 2020; 13(18):3951.
[40]
Huang G, Ng TW, An T, Li G, Wang B, Wu D, et al.Interaction between bacterial cell membranes and nano-TiO2 revealed by two-dimensional ftir correlation spectroscopy using bacterial ghost as a model cell envelope.Water Res 2017; 118:104-113.
[41]
Anthoniappen J, Chang WS, Soh AK, Tu CS, Vashan P, Lim FS.Electric field induced nanoscale polarization switching and piezoresponse in Sm and Mn co-doped BiFeO3 multiferroic ceramics by using piezoresponse force microscopy.Acta Mater 2017; 132:174-181.
[42]
Fu DW, Cai HL, Liu Y, Ye Q, Zhang W, Zhang Y, et al.Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal.Science 2013; 339(6118):425-428.
[43]
Su R, Wang Z, Zhu L, Pan Y, Zhang D, Wen H, et al.Strain-engineered nano-ferroelectrics for high-efficiency piezocatalytic overall water splitting.Angew Chem Int Ed 2021; 60(29):16019-16026.
[44]
Sakimoto KK, Wong AB, Yang PJS.Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production.Science 2016; 351(6268):74-77.
[45]
Li C, Liu J, Li H, Wu K, Wang J, Yang Q.Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution.Nat Commun 2022; 13(1):2357.
[46]
Aulenta F, Di V Maio, Ferri T, Majone M.The humic acid analogue antraquinone-2, 6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene.Bioresour Technol 2010; 101(24):9728-9733.
[47]
Liu X, Huang L, Rensing C, Ye J, Nealson KH, Zhou S.Syntrophic interspecies electron transfer drives carbon fixation and growth by Rhodopseudomonas palustris under dark, anoxic conditions.Sci. Adv. 2021; 7(27):eabh1852.
[48]
Venkidusamy K, Megharaj M, Schröder U, Karouta F, Mohan SV, Naidu R.Electron transport through electrically conductive nanofilaments in Rhodopseudomonas palustris strain RP2.RSC Advances 2015; 5(122):100790-100798.
[49]
Huang L, Liu X, Rensing C, Yuan Y, Zhou S, Nealson K.Light-independent anaerobic microbial oxidation of manganese driven by an electrosyntrophic coculture.ISME J 2022; 17:163-171.
[50]
Bird LJ, Saraiva IH, Park S, Cal EOçada, Salgueiro CA, Nitschke W, et al.Nonredundant roles for cytochrome c2 and two high-potential iron–sulfur proteins in the photoferrotroph Rhodopseudomonas palustris TIE-1.J Bacteriol 2014; 196(4):850-858.
[51]
Sun C, Benlekbir S, Venkatakrishnan P, Wang Y, Hong S, Hosler J, et al.Structure of the alternative complex III in a supercomplex with cytochrome oxidase.Nature 2018; 557(7703):123-126.
[52]
Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW, et al.Crystal structure of the RC–LH1 core complex from Rhodopseudomonas palustris.Science 2003; 302(5652):1969-1972.
[53]
Scheffen M, Marchal DG, Beneyton T, Schuller SK, Klose M, Diehl C, et al.A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation.Nat Catal 2021; 4(2):105-115.
[54]
Qu Z, Bakken LR, Molstad L, ÅFrosteg ård, Bergaust LL.Transcriptional and metabolic regulation of denitrification in paracoccus denitrificans allows low but significant activity of nitrous oxide reductase under oxic conditions.Environ Microbiol 2016; 18(9):2951-2963.
[55]
Yoon S, Song B, Phillips RL, Chang J, Song MJ.Ecological and physiological implications of nitrogen oxide reduction pathways on greenhouse gas emissions in agroecosystems.FEMS Microbiol Ecol 2019; 95(6):fiz066.
[56]
Lan S, Ke X, Li Z, Mai L, Zhu M, Zeng EY.Piezoelectric disinfection of water co-polluted by bacteria and microplastics energized by water flow.ACS EST Water 2022; 2(2):367-375.
[57]
Phongjarus N, Suvaphat C, Srichai N, Ritchie RJ.Photoheterotrophy of photosynthetic bacteria (Rhodopseudomonas palustris) growing on oil palm and soybean cooking oils.Environ Technol Inno 2018; 10290-10304.
[58]
Neutzling O, Imhoff JF, Trüper HG.Rhodopseudomonas adriatica sp. nov., a new species of the Rhodospirillaceae, dependent on reduced sulfur compounds.Arch Microbiol 1984; 137:256-261.
[59]
Yin S, Fuangthong M, Laratta WP, Shapleigh JP.Use of a green fluorescent protein-based reporter fusion for detection of nitric oxide produced by denitrifiers.Appl Environ Microbiol 2003; 69(7):3938-3944.
[60]
Rey FE, Harwood CS.Fixk, a global regulator of microaerobic growth, controls photosynthesis in Rhodopseudomonas palustris.Mol Microbiol 2010; 75(4):1007-1020.
[61]
Bueno E, Mesa S, Bedmar EJ, Richardson DJ, Delgado M.Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control.Antioxid Redox Signal 2012; 16(8):819-852.
[62]
Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, et al.Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris.Nat Biotechnol 2004; 22(1):55-61.
[63]
Ito T, Okabe S, Satoh H, Watanabe Y.Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions.Appl Environ Microbiol 2002; 68(3):1392-1402.
[64]
Zhou X, Kang F, Qu X, Fu H, Liu J, Alvarez PJ, et al.Probing extracellular reduction mechanisms of Bacillus subtilis and Escherichia coli with nitroaromatic compounds.Sci Total Environ 2020; 724:138291.
[65]
Zhang J, Bai Q, Bi X, Zhang C, Shi M, William WY, et al.Piezoelectric enhanced peroxidase-like activity of metal-free sulfur doped graphdiyne nanosheets for efficient water pollutant degradation and bacterial disinfection.Nano Today 2022; 43:101429.
[66]
Li J, Liu X, Zhao G, Liu Z, Cai Y, Wang S, et al.Piezoelectric materials and techniques for environmental pollution remediation.Sci Total Environ 2023; 869:161767.
[67]
Lu Z, Imlay JA.When anaerobes encounter oxygen: mechanisms of oxygen toxicity, tolerance and defence.Nat Rev Microbiol 2021; 19(12):774-785.
[68]
Hu A, Ye J, Ren G, Qi Y, Chen Y, Zhou S.Metal-free semiconductor-based bio-nano hybrids for sustainable CO2-to-CH4 conversion with high quantum yield.Angew Chem Int Ed 2022; 134(35):e202206508.
[69]
Lau MC, Kieft TL, Kuloyo O, Linage-Alvarez B, Van E Heerden, Lindsay MR, et al.An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers.Proc Natl Acad Sci USA 2016; 113(49):E7927-E7936.
[70]
Telling J, Boyd E, Bone N, Jones E, Tranter M, MacFarlane J, et al.Rock comminution as a source of hydrogen for subglacial ecosystems.Nat Geosci 2015; 8(11):851-855.
[71]
Cheng C, Zhang J, Zhu B, Liang G, Zhang L, Yu J.Verifying the charge-transfer mechanism in s-scheme heterojunctions using femtosecond transient absorption spectroscopy.Angew Chem 2023; 135(8):202218688.
[72]
Lu A, Li Y, Ding H, Xu X, Li Y, Ren G, et al.Photoelectric conversion on Earth’s surface via widespread Fe- and Mn-mineral coatings.Proc Natl Acad Sci 2019; 116(20):9741-9746.
[73]
He H, Wu X, Xian H, Zhu J, Yang Y, Lv Y, et al.An abiotic source of archean hydrogen peroxide and oxygen that pre-dates oxygenic photosynthesis.Nat Commun 2021; 12(1):6611.
[74]
Clementi G, Cottone F, Di A Michele, Gammaitoni L, Mattarelli M, Perna G, et al.Review on innovative piezoelectric materials for mechanical energy harvesting.Energies 2022; 15(17):6227.
[75]
J BBørgensen, Findlay AJ, Pellerin A.The biogeochemical sulfur cycle of marine sediments.Front Microbiol 2019; 10:00849.
[76]
Martin WF, Sousa FL, Lane N.Energy at life’s origin.Science 2014; 344(6188):1092-1093.
[77]
Fuchs G.Alternative pathways of carbon dioxide fixation: insights into the early evolution of life?.Annu Rev Microbiol 2011; 65:631-658.
[78]
Rosenman G, Shur D, Krasik YE, Dunaevsky A.Electron emission from ferroelectrics.J Appl Phys 2000; 88(11):6109-6161.
[79]
Vidal A, Klöffel T, Guigue J, Angst G, Steffens M, Hoeschen C, et al.Visualizing the transfer of organic matter from decaying plant residues to soil mineral surfaces controlled by microorganisms.Soil Biol Biochem 2021; 160:108347.
[80]
Oliva RL, Vogt C, Bublitz TA, Camenzind T, Dyckmans J, Joergensen RG.Galactosamine and mannosamine are integral parts of bacterial and fungal extracellular polymeric substances.ISME Commun 2024; 4(1):ycae038.
[81]
Liu J, Qi W, Xu M, Thomas T, Liu S, Yang M.Piezocatalytic techniques in environmental remediation.Angew Chem 2023; 135(5):202213927.
[82]
Ye J, Ren G, Liu L, Zhang D, Zeng RJ, van MC Loosdrecht, et al.Wastewater denitrification driven by mechanical energy through cellular piezo-sensitization.Nature Water 2024; 2531-2540.
[83]
Prywer J, Torzewska A, Cichomski M, Micha PPłowski.Insights into the physical and chemical properties of struvite crystal surfaces in terms of the effectiveness of bacterial adhesion.Sci Rep 2023; 13(1):5557.
[84]
Prywer J, Kruszy Rński, Soszy Ański, Kajewski D, Roleder K.First experimental evidence of the piezoelectric nature of struvite.Sci Rep 2021; 11(1):14860.
PDF(2729 KB)

Accesses

Citations

Detail

Sections
Recommended

/