A Decade Review of Video Compressive Sensing: A Roadmap to Practical Applications

Zhihong Zhang, Siming Zheng, Min Qiu, Guohai Situ, David J. Brady, Qionghai Dai, Jinli Suo, Xin Yuan

Engineering ›› 2025, Vol. 46 ›› Issue (3) : 172-185.

PDF(2254 KB)
PDF(2254 KB)
Engineering ›› 2025, Vol. 46 ›› Issue (3) : 172-185. DOI: 10.1016/j.eng.2024.08.013
Research
Review

A Decade Review of Video Compressive Sensing: A Roadmap to Practical Applications

Author information +
History +

Abstract

It has been over a decade since the first coded aperture video compressive sensing (CS) system was reported. The underlying principle of this technology is to employ a high-frequency modulator in the optical path to modulate a recorded high-speed scene within one integration time. The superimposed image captured in this manner is modulated and compressed, since multiple modulation patterns are imposed. Following this, reconstruction algorithms are utilized to recover the desired high-speed scene. One leading advantage of video CS is that a single captured measurement can be used to reconstruct a multi-frame video, thereby enabling a low-speed camera to capture high-speed scenes. Inspired by this, a number of variants of video CS systems have been built, mainly using different modulation devices. Meanwhile, in order to obtain high-quality reconstruction videos, many algorithms have been developed, from optimization-based iterative algorithms to deep-learning-based ones. Recently, emerging deep learning methods have been dominant due to their high-speed inference and high-quality reconstruction, highlighting the possibility of deploying video CS in practical applications. Toward this end, this paper reviews the progress that has been achieved in video CS during the past decade. We further analyze the efforts that need to be made—in terms of both hardware and algorithms—to enable real applications. Research gaps are put forward and future directions are summarized to help researchers and engineers working on this topic.

Graphical abstract

Keywords

Video compressive sensing / Computational imaging / Deep learning / Practical applications

Cite this article

Download citation ▾
Zhihong Zhang, Siming Zheng, Min Qiu, Guohai Situ, David J. Brady, Qionghai Dai, Jinli Suo, Xin Yuan. A Decade Review of Video Compressive Sensing: A Roadmap to Practical Applications. Engineering, 2025, 46(3): 172‒185 https://doi.org/10.1016/j.eng.2024.08.013

References

[1]
Smith GE.Nobel lecture: the invention and early history of the CCD.Rev Mod Phys 2010; 82(3):2307-2312.
[2]
Mait JN, Euliss GW, Athale RA.Computational imaging.Adv Opt Photonics 2018; 10(2):409-483.
[3]
Peng YE, Veeraraghavan A, Heidrich W, Wetzstein G.Deep optics: joint design of optics and image recovery algorithms for domain specific cameras.In: Proceedings of the ACM SIGGRAPH 2020 Courses; 2020 Aug 17–28; online. New York City: Association for Computing Machinery; 2020. p. 1–133.
[4]
Zhang B, Yuan X, Deng C, Zhang Z, Suo J, Dai Q.End-to-end snapshot compressed super-resolution imaging with deep optics.Optica 2022; 9(4):451-454.
[5]
Zhang Z, Dong K, Suo J, Dai Q.Deep coded exposure: end-to-end co-optimization of flutter shutter and deblurring processing for general motion blur removal.Photon Res 2023; 11(10):1678-1686.
[6]
Baek SH, Ikoma H, Jeon DS, Li Y, Heidrich W, Wetzstein G, et al.Single-shot hyperspectral-depth imaging with learned diffractive optics.In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV); 2021 Oct 11–17; online. New York City: IEEE; 2021. p. 2651–60.
[7]
Yuan X, Brady DJ, Katsaggelos AK.Snapshot compressive imaging: theory, algorithms, and applications.IEEE Signal Process Mag 2021; 38(2):65-88.
[8]
Tang H, Men T, Liu X, Hu Y, Su J, Zuo Y, et al.Single-shot compressed optical field topography.Light Sci Appl 2022; 11:244.
[9]
Zhang Z, Deng C, Liu Y, Yuan X, Suo J, Dai Q.Ten-mega-pixel snapshot compressive imaging with a hybrid coded aperture.Photon Res 2021; 9(11):2277-2287.
[10]
Luo Y, Zhao Y, Li J, Rivenson Y, Jarrahi M, et al.Computational imaging without a computer: seeing through random diffusers at the speed of light.eLight 2022; 2:4.
[11]
Sinha A, Lee J, Li S, Barbastathis G.Lensless computational imaging through deep learning.Optica 2017; 4(9):1117-1125.
[12]
Llull P, Liao X, Yuan X, Yang J, Kittle D, Carin L, et al.Coded aperture compressive temporal imaging.Opt Express 2013; 21(9):10526-10545.
[13]
Candes EJ, Tao T.Near-optimal signal recovery from random projections: universal encoding strategies?.IEEE Trans Inf Theory 2006; 52(12):5406-5425.
[14]
Donoho D.Compressed sensing.IEEE Trans Inf Theory 2006; 52(4):1289-1306.
[15]
Yao H, Dai F, Zhang S, Zhang Y, Tian Q, Xu C.DR2-Net: deep residual reconstruction network for image compressive sensing.Neurocomputing 2019; 359:483-493.
[16]
Zhang J, Xiong T, Tran T, Chin S, Etienne-Cummings R.Compact all-CMOS spatiotemporal compressive sensing video camera with pixel-wise coded exposure.Opt Express 2016; 24(8):9013-9024.
[17]
Wei M, Sarhangnejad N, Xia Z, Gusev N, Katic N, Genov R, et al.Coded two-bucket cameras for computer vision.In: Proceedings of the Computer Vision–ECCV 2018; 2018 Sep 8–14; Munich, Germany. Berlin: Springer; 2018. p. 54–71.
[18]
Liu Y, Yuan X, Suo J, Brady DJ, Dai Q.Rank minimization for snapshot compressive imaging.IEEE Trans Pattern Anal Mach Intell 2019; 41(12):2990-3006.
[19]
Yuan X, Liu Y, Suo J, Dai Q.Plug-and-play algorithms for large-scale snapshot compressive imaging.In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2020 Jun 13–19; Seattle, WA, USA. New York City: IEEE; 2020. p. 1444–54.
[20]
Izadi S, Sutton D, Hamarneh G.Image denoising in the deep learning era.Artif Intell Rev 2023; 56(7):5929-5974.
[21]
Zhang K, Ren W, Luo W, Lai WS, Stenger B, Yang MH, et al.Deep image deblurring: a survey.Int J Comput Vis 2022; 130(9):2103-2130.
[22]
Rawat W, Wang Z.Deep convolutional neural networks for image classification: a comprehensive review.Neural Comput 2017; 29(9):2352-2449.
[23]
Zhu H, Wei H, Li B, Yuan X, Kehtarnavaz N.A review of video object detection: datasets, metrics and methods.Appl Sci 2020; 10(21):7834.
[24]
Jiao L, Wang D, Bai Y, Chen P, Liu F.Deep learning in visual tracking: a review.IEEE Trans Neural Netw Learn Syst 2021; 34(9):5497-5516.
[25]
Yuan X.Various plug-and-play algorithms with diverse total variation methods for video snapshot compressive imaging.In: Proceedings of the Artificial Intelligence: First CAAI International Conference; 2021 Jun 5–6; Hangzhou, China. Berlin: Springer; 2021. p. 335–46.
[26]
Yuan X, Liu Y, Suo J, Durand F, Dai Q.Plug-and-play algorithms for video snapshot compressive imaging.IEEE Trans Pattern Anal Mach Intell 2021; 44(10):7093-7111.
[27]
Chen Y, Gui X, Zeng J, Zhao XL, He W.Combining low-rank and deep plug-and-play priors for snapshot compressive imaging.IEEE Trans Neural Netw Learn Syst. In press.
[28]
Meng Z, Yuan X, Jalali S.Deep unfolding for snapshot compressive imaging.Int J Comput Vis 2023; 131(11):2933-2958.
[29]
Wu Z, Zhang J, Mou C.Dense deep unfolding network with 3D-CNN prior for snapshot compressive imaging.In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV); 2021 Oct 11–17; Montreal, BC, Canada. New York City: IEEE; 2021. p. 4892–901.
[30]
Yang C, Zhang S, Yuan X.Ensemble learning priors driven deep unfolding for scalable video snapshot compressive imaging.In: Proceedings of the Computer Vision–ECCV 2022; 2022 Oct 23–27; Tel Aviv, Israel. Berlin: Springer; 2022. p. 600–18.
[31]
Suo J, Zhang W, Gong J, Yuan X, Brady DJ, Dai Q, et al.Computational imaging and artificial intelligence: the next revolution of mobile vision.Proc IEEE 2023; 111(12):1607-1639.
[32]
Kwan C, Chou B, Yang J, Rangamani A, Tran T, Zhang J, et al.Target tracking and classification using compressive measurements of MWIR and LWIR coded aperture cameras.JSIP 2019; 10(3):73-95.
[33]
Okawara T, Yoshida M, Nagahara H, Yagi Y.Action recognition from a single coded image.In: Proceedings of the 2020 IEEE International Conference on Computational Photography (ICCP); 2020 Apr 24–26; Saint Louis, MO, USA. New York City: IEEE; 2020. p. 1–11.
[34]
Hu C, Huang H, Chen M, Yang S, Chen H.Video object detection from one single image through opto-electronic neural network.APL Photonics 2021; 6(4):046104.
[35]
Zhang Z, Zhang B, Yuan X, Zheng S, Su X, Suo J, et al.From compressive sampling to compressive tasking: retrieving semantics in compressed domain with low bandwidth.PhotoniX 2022; 3:19.
[36]
Shannon C.Communication in the presence of noise.Proc IRE 1949; 37(1):10-21.
[37]
Jalali S, Yuan X.Snapshot compressed sensing: performance bounds and algorithms.IEEE Trans Inf Theory 2019; 65(12):8005-8024.
[38]
Yuan X.Generalized alternating projection based total variation minimization for compressive sensing.In: Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP); 2016 Sep 25–28; Phoenix, AZ, USA. New York City: IEEE; 2016. p. 2539–43.
[39]
Duarte MF, Davenport MA, Takhar D, Laska JN, Sun T, Kelly KF, et al.Single-pixel imaging via compressive sampling.IEEE Signal Process Mag 2008; 25(2):83-91.
[40]
Jalali S, Maleki A.From compression to compressed sensing.Appl Comput Harmon Anal 2016; 40(2):352-385.
[41]
Yuan X, Llull P, Liao X, Yang J, Brady DJ, Sapiro G, et al.Low-cost compressive sensing for color video and depth.In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2014 Jun 23–28; Columbus, OH, USA. New York City: IEEE; 2014. p. 3318–25.
[42]
Koller R, Schmid L, Matsuda N, Niederberger T, Spinoulas L, Cossairt O, et al.High spatio–temporal resolution video with compressed sensing.Opt Express 2015; 23(12):15992-16007.
[43]
Reddy D, Veeraraghavan A, Chellappa R.P2C2: programmable pixel compressive camera for high speed imaging.In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2011 Jun 21–23; Springs, CO, USA. New York City: IEEE; 2011. p. 329–36.
[44]
Hitomi Y, Gu J, Gupta M, Mitsunaga T, Nayar SK.Video from a single coded exposure photograph using a learned over-complete dictionary.In: Proceedings of the 2011 International Conference on Computer Vision (ICCV); 2011 Nov 6–13; Barcelona, Spain. New York City: IEEE; 2011. p. 287–94.
[45]
Liu D, Gu J, Hitomi Y, Gupta M, Mitsunaga T, Nayar S.Efficient space–time sampling with pixel-wise coded exposure for high-speed imaging.IEEE Trans Pattern Anal Mach Intell 2014; 36(2):248-260.
[46]
Qiao M, Meng Z, Ma J, Yuan X.Deep learning for video compressive sensing.APL Photonics 2020; 5(3):030801.
[47]
Guzmán F, Meza P, Vera E.Compressive temporal imaging using a rolling shutter camera array.Opt Express 2021; 29(9):12787-12800.
[48]
Vera E, Guzmán F, Díaz N.Shuffled rolling shutter for snapshot temporal imaging.Opt Express 2022; 30(2):887-901.
[49]
Sun Y, Yuan X, Pang S.High-speed compressive range imaging based on active illumination.Opt Express 2016; 24(20):22836-22846.
[50]
Guzmán F, Skowronek J, Vera E, Brady DJ.Compressive video via IR-pulsed illumination.Opt Express 2023; 31(23):39201-39212.
[51]
Luo Y, Jiang J, Cai M, Mirabbasi S.CMOS computational camera with a two-tap coded exposure image sensor for single-shot spatial–temporal compressive sensing.Opt Express 2019; 27(22):31475-31489.
[52]
Yoshida M, Sonoda T, Nagahara H, Endo K, Sugiyama Y, Taniguchi R.High-speed imaging using CMOS image sensor with quasi pixel-wise exposure.IEEE Trans Comput Imaging 2020; 6:463-476.
[53]
Qiao M, Liu X, Yuan X.Snapshot spatial–temporal compressive imaging.Opt Lett 2020; 45(7):1659-1662.
[54]
Deng C, Zhang Y, Mao Y, Fan J, Suo J, Zhang Z, et al.Sinusoidal sampling enhanced compressive camera for high speed imaging.IEEE Trans Pattern Anal Mach Intell 2021; 43(4):1380-1393.
[55]
Liang J, Zhu L, Wang LV.Single-shot real-time femtosecond imaging of temporal focusing.Light Sci Appl 2018; 7:42.
[56]
Gao L, Liang J, Li C, Wang LV.Single-shot compressed ultrafast photography at one hundred billion frames per second.Nature 2014; 516(7529):74-77.
[57]
Czajkowski KM, Pastuszczak A, Koty Rński.Real-time single-pixel video imaging with Fourier domain regularization.Opt Express 2018; 26(16):20009-20022.
[58]
Higham CF, Murray-Smith R, Padgett MJ, Edgar MP.Deep learning for real-time single-pixel video.Sci Rep 2018; 8:2369.
[59]
Wang P, Liang J, Wang LV.Single-shot ultrafast imaging attaining 70 trillion frames per second.Nat Commun 2020; 11:2091.
[60]
Lu R, Chen B, Liu G, Cheng Z, Qiao M, Yuan X.Dual-view snapshot compressive imaging via optical flow aided recurrent neural network.Int J Comput Vis 2021; 129(12):3279-3298.
[61]
Liu X, Zhu M, Zheng S, Luo R, Wu H, Yuan X.Video snapshot compressive imaging using adaptive progressive coding for high-quality reconstruction under different illumination circumstances.Opt Lett 2024; 49(1):85-88.
[62]
Wang P, Wang L, Qiao M, Yuan X.Full-resolution and full-dynamic-range coded aperture compressive temporal imaging.Opt Lett 2023; 48(18):4813-4816.
[63]
Hahamovich E, Monin S, Hazan Y, Rosenthal A.Single pixel imaging at megahertz switching rates via cyclic hadamard masks.Nat Commun 2021; 12:4516.
[64]
Kilcullen P, Ozaki T, Liang J.Compressed ultrahigh-speed single-pixel imaging by swept aggregate patterns.Nat Commun 2022; 13:7879.
[65]
Mur AL, Peyrin F, Ducros N.Recurrent neural networks for compressive video reconstruction.In: Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI); 2020 Apr 3–7; Iowa City, IA, USA. New York City: IEEE; 2020. p. 1651–4.
[66]
Ma X, Yuan X, Arce GR.High resolution LED-based snapshot compressive spectral video imaging with deep neural networks.IEEE Trans Comput Imaging 2023; 9:869-880.
[67]
Martel JNP, Muller LK, Carey SJ, Dudek P, Wetzstein G.Neural sensors: learning pixel exposures for HDR imaging and video compressive sensing with programmable sensors.IEEE Trans Pattern Anal Mach Intell 2020; 42(7):1642-1653.
[68]
Carey SJ, Lopich A, Barr DRW, Wang B, Dudek PA.100,000 fps vision sensor with embedded 535GOPS/W 256×256 SIMD processor array.In: Proceedings of the 2013 Symposium on VLSI Circuits; 2013 Jun 12–14; Kyoto, Japan. New York City: IEEE; 2013. p. C182–3.
[69]
Sarhangnejad N, Katic N, Xia Z, Wei M, Gusev N, Dutta G, et al.5.5 Dual-tap pipelined-code-memory coded-exposure-pixel CMOS image sensor for multi-exposure single-frame computational imaging. In: Proceedings of the 2019 IEEE International Solid-State Circuits Conference (ISSCC); 2019 Feb 17–21; San Francisco, CA, USA. New York City: IEEE; 2019. p. 102–4.
[70]
Luo Y, Ho D, Mirabbasi S.Exposure-programmable CMOS pixel with selective charge storage and code memory for computational imaging.IEEE Trans Circuits Syst 2018; 65(5):1555-1566.
[71]
Shedligeri P, Anupama S, Mitra K.A unified framework for compressive video recovery from coded exposure techniques.In: Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV); 2021 Jan 3–8; Waikoloa, HI, USA. New York City: IEEE; 2021. p. 1599–608.
[72]
Gulve R, Sarhangnejad N, Dutta G, Sakr M, Nguyen D, Rangel R, et al.A 39,000 subexposures/s CMOS image sensor with dual-tap coded-exposure data-memory pixel for adaptive single-shot computational imaging.In: Proceedings of the 2022 IEEE Symposium on VLSI Technology and Circuits; 2022 Jun 12–17; Honolulu, HI, USA. New York City: IEEE; 2022. p. 78–9.
[73]
Gulve R, Rangel R, Barman A, Nguyen D, Wei M, Skar MA, et al.Dual-port CMOS image sensor with regression-based HDR flux-to-digital conversion and 80 ns rapid-update pixel-wise exposure coding.In: Proceedings of the 2023 IEEE International Solid State Circuits Conference (ISSCC); 2023 Feb 19–23; San Francisco, CA, USA. New York City: IEEE; 2023. p. 104–6.
[74]
Wagadarikar A, John R, Willett R, Brady D.Single disperser design for coded aperture snapshot spectral imaging.Appl Opt 2008; 47(10):B44-B51.
[75]
Qi D, Zhang S, Yang C, He Y, Cao F, Yao J, et al.Single-shot compressed ultrafast photography: a review.Adv Photonics 2020; 2(1):014003.
[76]
Tsai TH, Llull P, Yuan X, Carin L, Brady DJ.Spectral–temporal compressive imaging.Opt Lett 2015; 40(17):4054-4057.
[77]
Sun Y, Yuan X, Pang S.Compressive high-speed stereo imaging.Opt Express 2017; 25(15):18182.
[78]
Dou Y, Cao M, Wang X, Liu X, Yuan X.Coded aperture temporal compressive digital holographic microscopy.Opt Lett 2023; 48(20):5427-5430.
[79]
Luo R, Cao M, Liu X, Yuan X.Snapshot compressive structured illumination microscopy.Opt Lett 2024; 49(2):186-189.
[80]
Chen Z, Zheng S, Wang W, Song J, Yuan X.Temporal structured illumination and vision-transformer enables large field-of-view binary snapshot ptychography.Opt Express 2024; 32(2):1540-1551.
[81]
Hu M, Wu Z, Huang Q, Yuan X, Brady D.Sampling for snapshot compressive imaging.Intell Comput 2023; 2:0038.
[82]
Qiao M, Liu X, Yuan X.Snapshot temporal compressive microscopy using an iterative algorithm with untrained neural networks.Opt Lett 2021; 46(8):1888-1891.
[83]
Yang J, Yuan X, Liao X, Llull P, Brady DJ, Sapiro G, et al.Video compressive sensing using gaussian mixture models.IEEE Trans Image Process 2014; 23(11):4863-4878.
[84]
Wu Z, Yang C, Su X, Yuan X.Adaptive deep PnP algorithm for video snapshot compressive imaging.Int J Comput Vis 2023; 131(7):1662-1679.
[85]
Cheng Z, Lu R, Wang Z, Zhang H, Chen B, Meng Z, et al.BIRNAT: bidirectional recurrent neural networks with adversarial training for video snapshot compressive imaging.In: Proceedings of the Computer Vision—ECCV 2020; 2020 Aug 23–28; Glasgow, UK. Berlin: Springer; 2020. p. 258–75.
[86]
Cheng Z, Chen B, Liu G, Zhang H, Lu R, Wang Z.Memory-efficient network for large-scale video compressive sensing.In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2021 Jun 20–25; Nashville, TN, USA. New York City: IEEE; 2021. p. 16241–50.
[87]
Wang Z, Zhang H, Cheng Z, Chen B, Yuan X.MetaSCI: scalable and adaptive reconstruction for video compressive sensing.In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2021 Jun 20–25; Nashville, TN, USA. New York City: IEEE; 2021. p. 2083–92.
[88]
Meng Z, Jalali S, Yuan X.GAP-Net for snapshot compressive imaging.2020. arXiv: 2012.08364.
[89]
Ma J, Liu XY, Shou Z, Yuan X.Deep tensor ADMM-net for snapshot compressive imaging.In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV); 2019 Oct 27–Nov 2; Seoul, Republic of Korea. New York City: IEEE; 2019. p. 10222–31.
[90]
Zhao Y, Zheng S, Yuan X.Deep equilibrium models for snapshot compressive imaging.In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI); 2023 Feb 7–14; Washington, DC, USA. Pennsylvania Ave: The Association for the Advancement of Artificial Intelligence; 2023. p. 3642–50.
[91]
Zheng S, Yuan X.Unfolding framework with prior of convolution-transformer mixture and uncertainty estimation for video snapshot compressive imaging.In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV); 2023 Oct 2–6; Paris, France. New York City: IEEE; 2023. p. 12738–49.
[92]
Wang L, Cao M, Yuan X.EfficientSCI: densely connected network with space–time factorization for large-scale video snapshot compressive imaging.In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2023 Jun 17–24; Vancouver, BC, Canada. New York City: IEEE; 2023. p. 18477–86.
[93]
Iliadis M, Spinoulas L, Katsaggelos AK.Deep fully-connected networks for video compressive sensing.Digit Signal Process 2018; 72:9-18.
[94]
Dong W, Shi G, Li X, Ma Y, Huang F.Compressive sensing via nonlocal low-rank regularization.IEEE Trans Image Process 2014; 23(8):3618-3632.
[95]
Maggioni M, Boracchi G, Foi A, Egiazarian K.Video denoising, deblocking, and enhancement through separable 4D nonlocal spatiotem-poral transforms.IEEE Trans Image Process 2012; 21(9):3952-3966.
[96]
Yang J, Liao X, Yuan X, Llull P, Brady DJ, Sapiro G, et al.Compressive sensing by learning a gaussian mixture model from measurements.IEEE Trans Image Process 2015; 24(1):106-119.
[97]
Venkatakrishnan SV, Bouman CA, Wohlberg B.Plug-and-play priors for model based reconstruction.In: Proceedings of the 2013 IEEE Global Conference on Signal and Information Processing; 2013 Dec 3–5; Austin, TX, USA. New York City: IEEE; 2013. p. 945–8.
[98]
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J.Distributed optimization and statistical learning via the alternating direction method of multipliers. Now Foundations and Trends, Norwell (2011)
[99]
Liao X, Li H, Carin L.Generalized alternating projection for weighted-ℓ2,1 minimization with applications to model-based compressive sensing.SIAM J Imaging Sci 2014; 7(2):797-823.
[100]
Li Y, Qi M, Wei M, Genov R, Kutulakos KN, Heidrich W, et al.End-to-end video compressive sensing using Anderson-accelerated unrolled networks.In: Proceedings of the 2020 IEEE International Conference on Computational Photography (ICCP); 2020 Apr 24–26; Saint Louis, MO, USA. New York City: IEEE; 2020. p. 1–12.
[101]
Zheng S, Yang X, Yuan X.Two-stage is enough: a concise deep unfolding reconstruction network for flexible video compressive sensing.2022. arXiv: 2201.05810.
[102]
Wang L, Cao M, Zhong Y, Yuan X.Spatial–temporal transformer for video snapshot compressive imaging.IEEE Trans Pattern Anal Mach Intell 2022; 45(7):9072-9089.
[103]
Cao M, Wang L, Zhu M, Yuan X.Hybrid CNN-transformer architecture for efficient large-scale video snapshot compressive imaging.Int J Comput Vis 2024;132:4521–40.
[104]
Ronneberger O, Fischer P, Brox T.U-net: convolutional networks for biomedical image segmentation.In: Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; 2015 Oct 5–9; Munich, Germany. Berlin: Springer; 2015. p. 234–41.
[105]
Cheng Z, Chen B, Lu R, Wang Z, Zhang H, Meng Z, et al.Recurrent neural networks for snapshot compressive imaging.IEEE Trans Pattern Anal Mach Intell 2023; 45(2):2264-2281.
[106]
Cai Y, Zheng Y, Lin J, Yuan X, Zhang Y, Wang H.Binarized spectral compressive imaing.In: Proceedings of the Thirty-Seventh Conference on Neural Information Processing Systems (NeurIPS-2023); 2023 Dec 10; New Orleans, LA, USA. San Diego: NeurIPS Proceedings; 2023. p. 1–9.
[107]
Wang P, Wang L, Yuan X.Deep optics for video snapshot compressive imaging.In: Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV); 2023 Oct 1–6; Paris, France. New York City: IEEE; 2023. p. 10646–56.
[108]
Lu S, Yuan X, Shi W.Edge compression: an integrated framework for compressive imaging processing on CAVs.In: Proceedings of the 2020 IEEE/ACM Symposium on Edge Computing (SEC); .2020 Nov 11–13; San Jose, CA, USA. New York City: IEEE; 2020. p. 125–38.
[109]
Lu S, Yuan X, Katsaggelos AK, Shi W.Reinforcement learning for adaptive video compressive sensing.ACM Trans Intell Syst Technol 2023; 14(5):1-21.
[110]
Bethi YRT, Narayanan S, Rangan V, Chakraborty A, Thakur CS.Real-time object detection and localization in compressive sensed video.In: Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP); 2021 Sep 19–22; Anchorage, AK, USA. New York City: IEEE; 2021. p. 1489–93.
[111]
Gallego G, Delbruck T, Orchard G, Bartolozzi C, Taba B, Censi A, et al.Event-based vision: a survey.IEEE Trans Pattern Anal Mach Intell 2022; 44(1):154-180.
AI Summary AI Mindmap
PDF(2254 KB)

Accesses

Citations

Detail

Sections
Recommended

/