PAI-1 Derived from Alveolar Type 2 Cells Drives Aging-Associated Pulmonary Fibrosis

Rui Quan, Chenhong Shi, Yanan Sun, Chengying Zhang, Ran Bi, Yiran Zhang, Xin Bi, Bin Liu, Ziheng Dong, Dekui Jin, Yixuan Li

Engineering ›› 2024, Vol. 42 ›› Issue (11) : 74-87.

PDF(6502 KB)
PDF(6502 KB)
Engineering ›› 2024, Vol. 42 ›› Issue (11) : 74-87. DOI: 10.1016/j.eng.2024.08.014
Research

PAI-1 Derived from Alveolar Type 2 Cells Drives Aging-Associated Pulmonary Fibrosis

Author information +
History +

Abstract

Pulmonary fibrosis (PF) is a lethal lung disease that predominantly affects older adults; however, whether and how aging triggers fibrosis remains unclear. To pinpoint the predominant initiating factors of PF, we first analyzed single-cell RNA sequencing (scRNA-seq) data from the lung tissues of 45 normal donors and 51 PF patients and found that aging might serve as the primary catalyst for PF development. To further investigate the influence of aging on PF formation, we conducted a comprehensive and thorough study employing a natural aging mouse model. We found that dynamic alterations in the quantity and types of collagen fibers during aging-induced PF progression, especially in collagenous (Col) I, emerged as the predominant driver of PF. We then investigated the regulation of Col I synthesis during aging using primary alveolar type 2 (AT2) cells and A549 cells line through conditioned media and Transwell coculture, and found that secretions—particularly plasminogen activator inhibitor (PAI)-1—from aged AT2 cells promoted fibrosis and enhanced collagen type I alpha 1 (Col1al) production via the transforming growth factor (TGF)-β/small mother against decapentaplegic (Smad)2/3 pathway. Furthermore, scRNA-seq and a histological analysis of human lung tissue demonstrated a significant upregulation of SERPINE1 (the gene encoding PAI-1) and PAI-1 expression in both aging lung tissue and AT2 cells, which was consistent with our findings from animal experiments, providing additional evidence for the pivotal role of PAI-1 during aging and the development of PF. Our research demonstrates that PAI-1, a crucial factor secreted by aging AT2 cells, exerts a pivotal role in promoting the synthesis of Col1a1 in fibroblasts, subsequently leading to Col I deposition, and in driving the progression of PF by mediating the TGF-β/Smad2/3 pathway. Our findings offer critical evidence for the involvement of epithelial dysfunction in age-related PF and provides potential novel therapeutic targets for clinical intervention.

Graphical abstract

Keywords

Aging / Pulmonary fibrosis / Alveolar type 2 cells / PAI-1

Cite this article

Download citation ▾
Rui Quan, Chenhong Shi, Yanan Sun, Chengying Zhang, Ran Bi, Yiran Zhang, Xin Bi, Bin Liu, Ziheng Dong, Dekui Jin, Yixuan Li. PAI-1 Derived from Alveolar Type 2 Cells Drives Aging-Associated Pulmonary Fibrosis. Engineering, 2024, 42(11): 74‒87 https://doi.org/10.1016/j.eng.2024.08.014

References

[1]
T.M. Maher, E. Bendstrup, L. Dron, J. Langley, G. Smith, J.M. Khalid, et al. Global incidence and prevalence of idiopathic pulmonary fibrosis. Respir Res, 22 (1) (2021), p. 197
[2]
J.P. Hutchinson, T.M. McKeever, A.W. Fogarty, V. Navaratnam, R.B. Hubbard. Increasing global mortality from idiopathic pulmonary fibrosis in the twenty-first century. Ann Am Thorac Soc, 11 (8) (2014), pp. 1176-1185
[3]
T.E. King Jr, A. Pardo, M. Selman. Idiopathic pulmonary fibrosis. Lancet, 378 (9807) (2011), pp. 1949-1961
[4]
V.Z. Beachley, M.T. Wolf, K. Sadtler, S.S. Manda, H. Jacobs, M.R. Blatchley, et al. Tissue matrix arrays for high-throughput screening and systems analysis of cell function. Nat Methods, 12 (12) (2015), pp. 1197-1204
[5]
N.C. Henderson, F. Rieder, T.A. Wynn. Fibrosis: from mechanisms to medicines. Nature, 587 (7835) (2020), pp. 555-566
[6]
C. Onursal, E. Dick, I. Angelidis, H.B. Schiller, C.A. Staab-Weijnitz. Collagen biosynthesis, processing, and maturation in lung ageing. Frontiers in Medicine, 20 (8) (2021), Article 593874
[7]
M. Selman, A. Pardo. Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis an integral model. Am J Respir Crit Care Med, 189 (10) (2014), pp. 1161-1172
[8]
G. Raghu, S.Y. Chen, Q. Hou, W.S. Yeh, H.R. Collard. Incidence and prevalence of idiopathic pulmonary fibrosis in US adults 18-64 years old. Eur Respir J, 48 (1) (2016), pp. 179-186
[9]
C. Lopez-Otin, M.A. Blasco, L. Partridge, M. Serrano, G. Kroemer. The hallmarks of aging. Cell, 153 (6) (2013), pp. 1194-1217
[10]
S. Meiners, O. Eickelberg, M. Koenigshoff. Hallmarks of the ageing lung. Eur Respir J, 45 (3) (2015), pp. 807-827
[11]
W.I. Choi, S. Dauti, H.J. Kim, S.H. Park, J.S. Park, C.W. Lee. Risk factors for interstitial lung disease: a 9-year nationwide population-based study. BMC Pulm Med, 18 (1) (2018), p. 96
[12]
K. Shenderov, S.L. Collins, J.D. Powell, M.R. Horton. Immune dysregulation as a driver of idiopathic pulmonary fibrosis. J Clin Invest, 131 (2) (2021), Article e143226
[13]
P. Heukels, C.C. Moor, J.H. von der Thusen, M.S. Wijsenbeek, M. Kool. Inflammation and immunity in IPF pathogenesis and treatment. Respir Med, 147 (2019), pp. 14779-14791
[14]
G. Raghu, K.J. Anstrom, T.E. King Jr, J.A. Lasky, F.J. Martinez.Idiopathic pulm fibrosis C. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. Engl J Med, 366 (21) (2012), pp. 1968-1977
[15]
F.J. Martinez, H.R. Collard, A. Pardo, G. Raghu, L. Richeldi, M. Selman, et al. Idiopathic pulmonary fibrosis. Nat Rev Dis Primers, 20 (3) (2017), p. 17074
[16]
Y. Enomoto, T. Takemura, E. Hagiwara, T. Iwasawa, K. Okudela, N. Yanagawa, et al. Features of usual interstitial pneumonia in patients with primary Sjogren’s syndrome compared with idiopathic pulmonary fibrosis. Respir Investig, 52 (4) (2014), pp. 227-235
[17]
M.J. Schafer, T.A. White, K. Iijima, A.J. Haak, G. Ligresti, E.J. Atkinson, et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun, 23 (8) (2017), p. 14532
[18]
J.M. van Deursen. The role of senescent cells in ageing. Nature, 509 (7501) (2014), pp. 439-446
[19]
C. Yao, X. Guan, G. Carraro, T. Parimon, X. Liu, G. Huang, et al. Senescence of alveolar stem cells drives progressive pulmonary fibrosis. Am J Respir Crit Care Med, 203 (6) (2021), pp. 707-717
[20]
M. Selman, C. Lopez-Otin, A. Pardo. Age-driven developmental drift in the pathogenesis of idiopathic pulmonary fibrosis. Eur Respir J, 48 (2) (2016), pp. 538-552
[21]
R.P. Naikawadi, S. Disayabutr, B. Mallavia, M.L. Donne, G. Green, J.L. La, et al. Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis. JCI Insight, 1 (14) (2016), Article e86704
[22]
Y. Xu, T. Mizuno, A. Sridharan, Y. Du, M. Guo, J. Tang, et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight, 1 (20) (2016), Article e90558
[23]
J. Liang, Y. Zhang, T. Xie, N. Liu, H. Chen, Y. Geng, et al. Hyaluronan and TLR4 promote surfactant-protein-C-positive alveolar progenitor cell renewal and prevent severe pulmonary fibrosis in mice. Nat Med, 22 (11) (2016), pp. 1285-1293
[24]
D. Munoz-Espin, M. Serrano. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol, 15 (7) (2014), pp. 482-496
[25]
M. Selman, A. Pardo. The leading role of epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis. Cell Signal, 66 (2020), Article 109482
[26]
Y. Tian, H. Li, T. Qiu, J. Dai, Y. Zhang, J. Chen, et al. Loss of PTEN induces lung fibrosis via alveolar epithelial cell senescence depending on NF-κB activation. Aging Cell, 18 (1) (2019), p. e12858
[27]
T. Parimon, C. Yao, B.R. Stripp, P.W. Noble, P. Chen. Alveolar epithelial type II cells as drivers of lung fibrosis in idiopathic pulmonary fibrosis. Int J Mol Sci, 21 (7) (2020), p. 2269
[28]
Y. Enomoto, H. Katsura, T. Fujimura, A. Ogata, S. Baba, A. Yamaoka, et al. Autocrine TGF-β-positive feedback in profibrotic AT2-lineage cells plays a crucial role in non-inflammatory lung fibrogenesis. Nat Commun, 14 (1) (2023), p. 4956
[29]
M. Lehmann, M. Korfei, K. Mutze, S. Klee, W. Skronska-Wasek, H.N. Alsafadi, et al. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur Respir J, 50 (2) (2017), Article 1602367
[30]
C. Yao, X. Guan, G. Carraro, T. Parimon, X. Liu, G. Huang, et al. Senescence of alveolar type 2 cells drives progressive pulmonary fibrosis. Am J Respir Crit Care Med, 203 (6) (2021), pp. 707-717
[31]
J. Pan, D. Li, Y. Xu, J. Zhang, Y. Wang, M. Chen, et al.. Inhibition of Bcl-2/xl with ABT-263 selectively kills senescent type II pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice. Int J Radiat Oncol Biol Phys, 99 (2) (2017), pp. 353-361
[32]
B. Piersma, R.A. Bank, M. Boersema. Signaling in fibrosis: TGF-β WNT, and YAP/TAZ converge. Frontiers in medicine, 3 (2) (2015), p. 59
[33]
X.M. Meng, D.J. Nikolic-Paterson, H.Y. Lan. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol, 12 (6) (2016), pp. 325-338
[34]
R.L. Gieseck III, M.S. Wilson, T.A. Wynn. Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol, 18 (1) (2018), pp. 62-76
[35]
N. Schaum, B. Lehallier, O. Hahn, R. Pálovics, S. Hosseinzadeh, S.E. Lee, et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature, 583 (7817) (2020), pp. 596-602
[36]
J. Sun, X. Ding, S. Liu, X. Duan, H. Liang, T. Sun. Adipose-derived mesenchymal stem cells attenuate acute lung injury and improve the gut microbiota in septic rats. Stem Cell Res Ther, 11 (1) (2020), p. 384
[37]
C. Wang, J. Xie, L. Zhao, X. Fei, H. Zhang, Y. Tan, et al. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients. EBioMedicine, 57 (2020), Article 102833
[38]
R. Quan, C. Shi, B. Fang, Y. Sun, T. Qu, X. Wang, et al. Age-dependent inflammatory microenvironment mediates alveolar regeneration. Int J Mol Sci, 25 (6) (2024), p. 3476
[39]
F. Verrecchia, M.L. Chu, A. Mauviel. Identification of novel TGF-β/smad gene targets in dermal fibroblasts using a combined cdna microarray/promoter transactivation approach. J Biol Chem, 276 (20) (2001), pp. 17058-17062
[40]
Walton KL, Johnson KE, Harrison CA. Targeting TGF-β mediated smad signaling for the prevention of fibrosis. Front Pharmacol 2017; 8:461.
[41]
D. Peng, M. Fu, M. Wang, Y. Wei, X. Wei. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer, 21 (1) (2022), p. 104
[42]
G. Raghu, S.Y. Chen, W.S. Yeh, B. Maroni, Q. Li, Y.C. Lee, et al. Idiopathic pulmonary fibrosis in US medicare beneficiaries aged 65 years and older: incidence, prevalence, and survival, 2001-2011. Lancet Respir Med, 2 (7) (2014), pp. 566-572
[43]
T. Zhu, Z. Ying, X. Zhang, H. Wang, H. Liu. Piceatannol-mediated JAK2/STAT3 signaling pathway inhibition contributes to the alleviation of oxidative injury and collagen synthesis during pulmonary fibrosis. Int Immunopharmacol, 111 (2022), Article 109107
[44]
L. Bai, A. Li, C. Gong, X. Ning, Z. Wang. Protective effect of rutin against bleomycin induced lung fibrosis: involvement of TGF-β1/α-SMA/Col I and III pathway. Biofactors, 46 (4) (2020), pp. 637-644
[45]
J.J. Osterholzer, P.J. Christensen, V. Lama, J.C. Horowitz, N. Hattori, N. Subbotina, et al. PAI-1 promotes the accumulation of exudate macrophages and worsens pulmonary fibrosis following type II alveolar epithelial cell injury. J Pathol, 228 (2) (2012), pp. 170-180
[46]
P. Flevaris, D. Vaughan. The role of plasminogen activator inhibitor type-1 in fibrosis. Semin Thromb Hemost, 43 (2) (2017), pp. 169-177
[47]
K. Takeshita, K. Yamamoto, M. Ito, T. Kondo, T. Matsushita, M. Hirai, et al. Increased expression of plasminogen activator inhibitor-1 with fibrin deposition in a murine model of aging, “klotho” mouse. Semin Thromb Hemost, 28 (6) (2002), pp. 545-553
[48]
K. Yamamoto, K. Takeshita, H. Saito. Plasminogen activator inhibitor-1 in aging. Semin Thromb Hemost, 40 (6) (2014), pp. 652-659
[49]
A.K. Ghosh, D.E. Vaughan. PAI-1 in tissue fibrosis. J Cell Physiol, 227 (2) (2012), pp. 493-507
[50]
L. Zappa, R. Savady, G.N. Humphries, P.H. Sugarbaker. Interstitial pneumonitis following intrapleural chemotherapy. World J Surg Oncol, 12 (7) (2009), p. 17
[51]
A.S. Marudamuthu, S.K. Shetty, Y.P. Bhandary, S. Karandashova, M. Thompson, V. Sathish, et al. Plasminogen activator inhibitor-1 suppresses profibrotic responses in fibroblasts from fibrotic lungs. J Biol Chem, 290 (15) (2015), pp. 9428-9441
[52]
T.H. Sisson, M. Mendez, K. Choi, N. Subbotina, A. Courey, A. Cunningham, et al. Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am J Respir Crit Care Med, 181 (3) (2010), pp. 254-263
[53]
A.K. Min, M.K. Kim, H.Y. Seo, H.S. Kim, B.K. Jang, J.S. Hwang, et al. Alpha-lipoic acid inhibits hepatic PAI-1 expression and fibrosis by inhibiting the TGF-β signaling pathway. Biochem Biophys Res Commun, 393 (3) (2010), pp. 536-541
AI Summary AI Mindmap
PDF(6502 KB)

Accesses

Citations

Detail

Sections
Recommended

/