Intelligent Photonics: A Disruptive Technology to Shape the Present and Redefine the Future

Danlin Xu, Yuchen Ma, Guofan Jin, Liangcai Cao

Engineering ›› 2025, Vol. 46 ›› Issue (3) : 186-213.

PDF(8199 KB)
PDF(8199 KB)
Engineering ›› 2025, Vol. 46 ›› Issue (3) : 186-213. DOI: 10.1016/j.eng.2024.08.016
Research
Review

Intelligent Photonics: A Disruptive Technology to Shape the Present and Redefine the Future

Author information +
History +

Abstract

Artificial intelligence (AI) has taken breathtaking leaps forward in recent years, evolving into a strategic technology for pioneering the future. The growing demand for computing power—especially in demanding inference tasks, exemplified by generative AI models such as ChatGPT—poses challenges for conventional electronic computing systems. Advances in photonics technology have ignited interest in investigating photonic computing as a promising AI computing modality. Through the profound fusion of AI and photonics technologies, intelligent photonics is developing as an emerging interdisciplinary field with significant potential to revolutionize practical applications. Deep learning, as a subset of AI, presents efficient avenues for optimizing photonic design, developing intelligent optical systems, and performing optical data processing and analysis. Employing AI in photonics can empower applications such as smartphone cameras, biomedical microscopy, and virtual and augmented reality displays. Conversely, leveraging photonics-based devices and systems for the physical implementation of neural networks enables high speed and low energy consumption. Applying photonics technology in AI computing is expected to have a transformative impact on diverse fields, including optical communications, automatic driving, and astronomical observation. Here, recent advances in intelligent photonics are presented from the perspective of the synergy between deep learning and metaphotonics, holography, and quantum photonics. This review also spotlights relevant applications and offers insights into challenges and prospects.

Graphical abstract

Keywords

Artificial intelligence / Optical neural network / Deep learning / Metaphotonics / Holography / Quantum photonics

Cite this article

Download citation ▾
Danlin Xu, Yuchen Ma, Guofan Jin, Liangcai Cao. Intelligent Photonics: A Disruptive Technology to Shape the Present and Redefine the Future. Engineering, 2025, 46(3): 186‒213 https://doi.org/10.1016/j.eng.2024.08.016

References

[1]
Wang HC, Fu TF, Du YQ, Gao WH, Huang KX, Liu ZM, et al.Scientific discovery in the age of artificial intelligence.Nature 2023; 620(7972):47-60.
[2]
LeCun Y, Bengio Y, Hinton G.Deep learning.Nature 2015; 521(7553):436-444.
[3]
Krizhevsky A, Sutskever I, Hinton G.ImageNet classification with deep convolutional neural networks.Commun ACM 2017; 60(6):84-90.
[4]
Zuo C, Qian JM, Feng SJ, Yin W, Li YX, Fan PF, et al.Deep learning in optical metrology: a review.Light Sci Appl 2022; 11:39.
[5]
Ma W, Liu ZC, Kudyshev ZA, Boltasseva A, Cai WS, Liu YM.Deep learning for the design of photonic structures.Nat Photonics 2021; 15(2):77-90.
[6]
Wu YC, Han XF, Su YJ, Glidewell M, Daniels JS, Liu JM, et al.Multiview confocal super-resolution microscopy.Nature 2021; 600(7888):279-284.
[7]
Lundstrom M.Moore’s law forever?.Science 2003; 299(5604):210-211.
[8]
Li C, Zhang X, Li JW, Fang T, Dong XW.The challenges of modern computing and new opportunities for optics.PhotoniX 2021; 2:20.
[9]
AI and compute [Internet]. San Francisco: Open AI; 2018 May 16 [cited 2024 Jul 7]. Available from: https://openai.com/blog/ai-and-compute.
[10]
Dhar P.The carbon impact of artificial intelligence.Nat Mach Intell 2020; 2(8):423-425.
[11]
Akhoon MS, Suandi SA, Alshahrani A, Saad AMHY, Albogamy FR, Abdullah MZB, et al.High performance accelerators for deep neural networks: a review.Expert Syst 2022; 39:e12831.
[12]
Palmer C.Neuromorphic computing advances deep-learning applications.Engineering 2020; 6(8):854-856.
[13]
Hills G, Lau C, Wright A, Fuller S, Bishop MD, Srimani T, et al.Modern microprocessor built from complementary carbon nanotube transistors.Nature 2019; 572(7771):595-602.
[14]
Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O JL’Brien.Quantum computers.Nature 2010; 464(7285):45-53.
[15]
Zhang H, Zhang L, Lin A, Xu CC, Li ZY, Liu KB, et al.Algorithm for optimized mRNA design improves stability and immunogenicity.Nature 2023; 621(7978):396-403.
[16]
Wu JM, Lin X, Guo YC, Liu JW, Fang L, Jiao SM, et al.Analog optical computing for artificial intelligence.Engineering 2022; 10:133-145.
[17]
McMahon P.The physics of optical computing.Nat Rev Phys 2023; 5:717-734.
[18]
Xiang C, Jin W, Terra O, Dong BZ, Wang HM, Wu L, et al.3D integration enables ultralow-noise isolator-free lasers in silicon photonics.Nature 2023; 620(7972):78-85.
[19]
Shu HW, Chang L, Tao YS, Shen BT, Xie WQ, Jin M, et al.Microcomb-driven silicon photonic systems.Nature 2022; 605(7910):457-463.
[20]
Han CH, Zheng Z, Shu HW, Jin M, Qin J, Chen RX, et al.Slow-light silicon modulator with 110-GHz bandwidth.Science 2023; 9(42):eadi5339.
[21]
J AAørgensen, Kong D, Henriksen MR, Klejs F, Ye Z, Helgason OB, et al.Petabit-per-second data transmission using a chip-scale microcomb ring resonator source.Nat Photonics 2022; 16(11):798-802.
[22]
Wade M, Anderson E, Ardalan S, Bhargava P, Buchbinder S, Davenport ML, et al.TeraPHY: a chiplet technology for low-power, high-bandwidth in-package optical I/O.IEEE Micro 2020; 40:63-71.
[23]
Liu W, Li M, Guzzon RS, Norberg EJ, Parker JS, Lu MZ, et al.A fully reconfigurable photonic integrated signal processor.Nat Photonics 2016; 10(3):190-195.
[24]
Xu ZF, Tang BS, Zhang XY, Leong JF, Pan JM, Hooda S, et al.Reconfigurable nonlinear photonic activation function for photonic neural network based on non-volatile opto-resistive RAM switch.Light Sci Appl 2022; 11:288.
[25]
Sund PI, Lomonte E, Paesani S, Wang Y, Carolan J, Bart N, et al.High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter.Sci Adv 2023; 9(19):eadg7268.
[26]
Polar ID: enabling the next level of biometric security.Boston: Metalenz; [cited 2024 Jul 7].Available from: https://met al.enz.com/polareyes-polarization-imaging-system/polar-id/.
[27]
Willomitzer F, Rangarajan PV, Li FQ, Balaji MM, Christensen MP, Cossairt O.Fast non-line-of-sight imaging with high-resolution and wide field of view using synthetic wavelength holography.Nat Commun 2021; 12:6647.
[28]
Deng YH, Gu YC, Liu HL, Gong SQ, Su H, Zhang ZJ, et al.Gaussian boson sampling with pseudo-photon-number-resolving detectors and quantum computational advantage.Phys Rev Lett 2023; 131(15):150601.
[29]
Pan W, Zheng JY, Wang L, Luo Y.A future perspective on in-sensor computing.Engineering 2022; 14:19-21.
[30]
Cao JF, Yip HC, Chen YY, Scheppach M, Luo XB, Yang HZ, et al.Intelligent surgical workflow recognition for endoscopic submucosal dissection with real-time animal study.Nat Commun 2023; 14:6676.
[31]
Baker SB, Xiang W, Atkinson I.Internet of Things for smart healthcare: technologies, challenges, and opportunities.IEEE Access 2017; 5:26521-26544.
[32]
Sludds A, Bandyopadhyay S, Chen ZJ, Zhong ZZ, Cochrane J, Bernstein L, et al.Delocalized photonic deep learning on the internet’s edge.Science 2022; 378(6617):270-276.
[33]
Fu TZ, Zang YB, Huang YY, Du ZM, Huang HH, Hu CY, et al.Photonic machine learning with on-chip diffractive optics.Nat Commun 2023; 14:70.
[34]
Alagappan G, Ong JR, Yang ZF, Ang TYL, Zhao WJ, Jiang Y, et al.Leveraging AI in photonics and beyond.Photonics 2022; 9(2):75.
[35]
Rivenson Y, Zhang YB, Günayd Hın, Teng D, Ozcan A.Phase recovery and holographic image reconstruction using deep learning in neural networks.Light Sci Appl 2017; 7:17141.
[36]
Krenn M, Landgraf J, Foesel T, Marquardt F.Artificial intelligence and machine learning for quantum technologies.Phys Rev A 2023; 107(1):010101.
[37]
Kiarashinejad Y, Abdollahramezani S, Zandehshahvar M, Hemmatyar O, Adibi A.Deep learning reveals underlying physics of light–matter interactions in nanophotonic devices.Adv Theory Simul 2019; 2(9):1900088.
[38]
Barbastathis G, Ozcan A, Situ GH.On the use of deep learning for computational imaging.Optica 2019; 6(8):921-943.
[39]
Zhu XX, Tuia D, Mou L, Xia GS, Zhang LP, Xu F, et al.Deep learning in remote sensing: a comprehensive review and list of resources.IEEE Geosci Remote Sens Mag 2017; 5(4):8-36.
[40]
Ma Q, Liu C, Xiao Q, Gu Z, Gao XX, Li LL, et al.Information metasurfaces and intelligent metasurfaces.Photon Insights 2022; 1(1):R01.
[41]
Liu GX, Liu JF, Zhou WJ, Li LY, You CL, Qiu CW, et al.Inverse design in quantum nanophotonics: combining local-density-of-states and deep learning.Nanophotonics 2023; 12(11):1943-1955.
[42]
Brady DJ, Fang L, Ma Z.Deep learning for camera data acquisition, control, and image estimation.Adv Opt Photonics 2020; 12(4):787-846.
[43]
Wang D, Zhang M.Artificial intelligence in optical communications: from machine learning to deep learning.Front Comms Net 2021; 2:656786.
[44]
Mengu D, Sakib Rahman MS, Luo Y, Li JX, Kulce O, Ozcan A.At the intersection of optics and deep learning: statistical inference, computing, and inverse design.Adv Opt Photonics 2022; 14(2):209-290.
[45]
Wright LG, Onodera T, Stein MM, Wang TY, Schachter DT, Hu Z, et al.Deep physical neural networks trained with backpropagation.Nature 2022; 601(7894):549-555.
[46]
Momeni A, Rahmani B, Mall Méjac, del Hougne P, Fleury R.Backpropagation-free training of deep physical neural networks.Science 2023; 382(6676):1297-1303.
[47]
Caulfield HJ, Dolev S.Why future supercomputing requires optics.Nat Photonics 2010; 4(5):261-263.
[48]
Jiao SM, Liu JW, Zhang LW, Yu FH, Zuo GM, Zhang JM, et al.All-optical logic gate computing for high-speed parallel information processing.Opto Electron Sci 2022; 1(9):220010.
[49]
Wang J, Long Y.On-chip silicon photonic signaling and processing: a review.Sci Bull 2018; 63(19):1267-1310.
[50]
Lin X, Liu JP, Hao JY, Wang K, Zhang YY, Li H, et al.Collinear holographic data storage technologies.Opto Electron Adv 2020; 3(3):190004.
[51]
Ding XM, Zhao ZH, Xie P, Cai DY, Meng FY, Wang C, et al.Metasurface-based optical logic operators driven by diffractive neural networks.Adv Mater 2023; 36(9):2308993.
[52]
Solli DR, Jalali B.Analog optical computing.Nat Photonics 2015; 9(11):704-706.
[53]
Goodman JW, Dias AR, Woody LM.Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms.Opt Lett 1978; 2(1):1-3.
[54]
Chen YS.4f-Type optical system for matrix multiplication.Opt Eng 1993; 32(1):77-79.
[55]
Lee DD, Seung HS.Learning the parts of objects by non-negative matrix factorization.Nature 1999; 401(6755):788-791.
[56]
Shou YC, Wang Y, Miao LL, Chen SZ, Luo HL.Realization of all-optical higher-order spatial differentiators based on cascaded operations.Opt Lett 2022; 47(22):5981-5984.
[57]
Chen MK, Liu XY, Sun YN, Tsai DP.Artificial intelligence in meta-optics.Chem Rev 2022; 122(19):15356-15413.
[58]
Situ GH.Deep holography.Light Adv Manuf 2022; 3(2):278-300.
[59]
Zhong HS, Wang H, Deng YH, Chen MC, Peng LC, Luo YH, et al.Quantum computational advantage using photons.Science 2020; 370(6523):1460-1463.
[60]
Shen YC, Harris NC, Skirlo S, Prabhu M, Baehr-Jones T, Hochberg M, et al.Deep learning with coherent nanophotonic circuits.Nat Photonics 2017; 11(7):441-446.
[61]
Feldmann J, Youngblood N, Wright CD, Bhaskaran H, Pernice WHP.All-optical spiking neurosynaptic networks with self-learning capabilities.Nature 2019; 569(7755):208-214.
[62]
Wang JW, Sciarrino F, Laing A, Thompson MG.Integrated photonic quantum technologies.Nat Photonics 2020; 14(5):273-284.
[63]
Su YK, He Y, Guo XH, Xie WQ, Ji XC, Wang HW, et al.Scalability of large-scale photonic integrated circuits.ACS Photonics 2023; 10(7):2020-2030.
[64]
Blumenthal DJ.Photonic integration for UV to IR applications.APL Photonics 2020; 5(2):020903.
[65]
Kaur P, Boes A, Ren G, Nguyen TG, Roelkens G, Mitchell A.Hybrid and heterogeneous photonic integration.APL Photonics 2021; 6(6):061102.
[66]
Yi XG, Zeng HY, Gao S, Qiu CY.Design of an ultra-compact low-crosstalk sinusoidal silicon waveguide array for optical phased array.Opt Express 2020; 28(25):37505-37513.
[67]
He MB, Xu MY, Ren YX, Jian J, Ruan ZL, Xu YS, et al.High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit·s−1 and beyond.Nat Photonics 2019; 13(5):359-364.
[68]
Lin X, Rivenson Y, Yardimci NT, Veli M, Luo Y, Jarrahi M, et al.All-optical machine learning using diffractive deep neural networks.Science 2018; 361(6406):1004-1008.
[69]
Zhou TK, Lin X, Wu JM, Chen YT, Xie H, Li YP, et al.Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit.Nat Photonics 2021; 15(5):367-373.
[70]
Qian C, Lin X, Lin XB, Xu J, Sun Y, Li EP, et al.Performing optical logic operations by a diffractive neural network.Light Sci Appl 2020; 9:59.
[71]
PACE: photonic arithmetic computing engine [Internet]. Boston: Lightelligence Co., Ltd; [cited 2024 Jul 7]. Available: https://www.lightelligence.ai/index.php/product/index/2.html.
[72]
Feldmann J, Youngblood N, Karpov M, Gehring H, Li X, Stappers M, et al.Parallel convolutional processing using an integrated photonic tensor core.Nature 2021; 589(7840):52-58.
[73]
Meng XY, Zhang GJ, Shi NN, Li GY, Azana J, Capmany J, et al.Compact optical convolution processing unit based on multimode interference.Nat Commun 2023; 14:3000.
[74]
Cheng JW, Xie YZ, Liu Y, Song JJ, Liu XY, He ZM, et al.Human emotion recognition with a microcomb-enabled integrated optical neural network.Nanophotonics 2023; 12(20):3883-3894.
[75]
Xu XY, Tan MX, Corcoran B, Wu JY, Boes A, Nguyen TG, et al.11 Tops photonic convolutional accelerator for optical neural networks.Nature 2021; 589(7840):44-51.
[76]
Chen YT, Nazhamaiti M, Xu H, Meng Y, Zhou TK, Li GP, et al.All-analog photoelectronic chip for high-speed vision tasks.Nature 2023; 623(7985):48-57.
[77]
Bouvier M, Valentian A, Mesquida T, Rummens F, Reyboz M, Vianello E, et al.Spiking neural networks hardware implementations and challenges: a survey.ACM J Emerg Technol Comput Syst 2019; 15(2):1-35.
[78]
Jouppi NP, Young C, Patil N, Patterson D, Agrawal G, Bajwa R, et al.In-datacenter performance analysis of a tensor processing unit.In: Proceedings of the 44th Annual International Symposium on Computer Architecture; 2017 Jun 24–28; Toronto, ON, Canada. New York City: IEEE; 2017. p. 1–12
[79]
NVIDIA A100 tensor core GPU [Internet]. Santa Clara: NVIDIA Corporation; [cited 2024 Jul 7]. Available from: https://www.nvidia.com/en-us/data-center/a100/.
[80]
Shrestha A, Mahmood A.Review of deep learning algorithms and architectures.IEEE Access 2019; 7:53040-53065.
[81]
Hinton GE, Salakhutdinov RR.Reducing the dimensionality of data with neural networks.Science 2006; 313(5786):504-507.
[82]
De Lima TF, Shastri BJ, Tait AN, Nahmias MA, Prucnal PR.Progress in neuromorphic photonics.Nanophotonics 2017; 6(3):577-599.
[83]
Pellizzari CJ, Bate TJ, Donnelly KP, Buzzard GT, Bouman CA, Spencer MF.Coherent plug-and-play artifact removal: physics-based deep learning for imaging through aberrations.Opt Lasers Eng 2023; 164:107496.
[84]
Vishniakou I, Seelig JD.Wavefront correction for adaptive optics with reflected light and deep neural networks.Opt Express 2020; 28(10):15459-15471.
[85]
Rivenson Y, Gorocs Z, Gunaydin H, Zhang YB, Wang HD, Ozcan A.Deep learning microscopy.Optica 2017; 4(11):1437-1443.
[86]
Qiao C, Li D, Guo YT, Liu C, Jiang T, Dai QH, et al.Evaluation and development of deep neural networks for image super-resolution in optical microscopy.Nat Methods 2021; 18(2):194-202.
[87]
Li S, Deng M, Lee J, Sinha A, Barbastathis G.Imaging through glass diffusers using densely connected convolutional networks.Optica 2018; 5(7):803-813.
[88]
Li YZ, Xue YJ, Tian L.Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media.Optica 2018; 5(10):1181-1190.
[89]
Wang KQ, Song L, Wang CT, Ren ZB, Zhao GY, Dou JZ, et al.On the use of deep learning for phase recovery.Light Sci Appl 2024; 13:4.
[90]
Sinha A, Lee J, Li S, Barbastathis G.Lensless computational imaging through deep learning.Optica 2017; 4(9):1117-1125.
[91]
Wu JC, Cao LC, Barbastathis G.DNN-FZA camera: a deep learning approach toward broadband FZA lensless imaging.Opt Lett 2021; 46(1):130-133.
[92]
Wang CH, Ma J, Feng YD, Xu XY, Zhang TY, Cheng K, et al.Error-free long-lifespan optical storage enhanced by deep learning.Laser Photonics Rev 2024; 18(6):2301042.
[93]
Wiecha PR, Lecestre A, Mallet N, Larrieu G.Pushing the limits of optical information storage using deep learning.Nat Nanotechnol 2019; 14(3):237-244.
[94]
So S, Badloe T, Noh J, Rho J, Bravo-Abad J, Rho J.Deep learning enabled inverse design in nanophotonics.Nanophotonics 2020; 9(5):1041-1057.
[95]
Karanov B, Chagnon M, Thouin F, Eriksson TA, Bülow H, Lavery D, et al.End-to-end deep learning of optical fiber communications.J Lit Technol 2018; 36(20):4843-4855.
[96]
Ballard Z, Brown C, Madni AM, Ozcan A.Machine learning and computation-enabled intelligent sensor design.Nat Mach Intell 2021; 3(7):556-565.
[97]
Jing LL, Tian YL.Self-supervised visual feature learning with deep neural networks: a survey.IEEE Trans Pattern Anal Mach Intell 2021; 43(11):4037-4058.
[98]
Jiang XT, Wang DS, Fan QR, Zhang M, Chao L, Lau APT.Physics-informed neural network for nonlinear dynamics in fiber optics.Laser Photonics Rev 2022; 16(9):2100483.
[99]
Pan SJ, Yang Q.A survey on transfer learning.IEEE Trans Knowl Data Eng 2010; 22(10):1345-1359.
[100]
Baker B, Gupta O, Naik N, Raskar R.Designing neural network architectures using reinforcement learning.2016. arXiv:1611.02167v3.
[101]
Zhou HL, Dong JJ, Cheng JW, Dong WC, Huang CR, Shen YC, et al.Photonic matrix multiplication lights up photonic accelerator and beyond.Light Sci Appl 2022; 11:30.
[102]
Farhat NH, Psaltis D, Prata A, Paek E.Optical implementation of the Hopfield model.Appl Opt 1985; 24:1469.
[103]
Liu J, Wu QH, Sui XB, Chen Q, Gu GH, Wang LP, et al.Research progress in optical neural networks: theory, applications and developments.PhotoniX 2021; 2:5.
[104]
Shastri BJ, Tait AN, Ferreira de Lima T, Pernice WHP, Bhaskaran H, Wright CD, et al.Photonics for artificial intelligence and neuromorphic computing.Nat Photonics 2021; 15(2):102-114.
[105]
Wetzstein G, Ozcan A, Gigan S, Fan SH, Englund D, Soljacic M, et al.Inference in artificial intelligence with deep optics and photonics.Nature 2020; 588(7836):39-47.
[106]
Bogaerts W, Perez D, Capmany J, Miller DAB, Poon J, Englund D, et al.Programmable photonic circuits.Nature 2020; 586(7828):207-216.
[107]
Wilkes CM, Qiang X, Wang J, Santagati R, Paesani S, Zhou X, et al.60 dB high-extinction auto-configured Mach–Zehnder interferometer.Opt Lett 2016; 41(22):5318-5321.
[108]
Mourgias-Alexandris G, Moralis-Pegios M, Tsakyridis A, Simos S, Dabos G, Totovic A, et al.Noise-resilient and high-speed deep learning with coherent silicon photonics.Nat Commun 2022; 13:5572.
[109]
Kirtas M, Oikonomou A, Passalis N, Mourgias-Alexandris G, Moralis-Pegios M, Pleros N, et al.Quantization-aware training for low precision photonic neural networks.Neural Netw 2022; 155:561-573.
[110]
Giamougiannis G, Tsakyridis A, Moralis-Pegios M, Pappas C, Kirtas M, Passalis N, et al.Analog nanophotonic computing going practical: silicon photonic deep learning engines for tiled optical matrix multiplication with dynamic precision.Nanophotonics 2023; 12(5):963-973.
[111]
Zhu HH, Zou J, Zhang H, Shi YZ, Luo SB, Wang N, et al.Space-efficient optical computing with an integrated chip diffractive neural network.Nat Commun 2022; 13:1044.
[112]
Tait AN, De Lima TF, Zhou E, Wu AX, Nahmias MA, Shastri BJ, et al.Neuromorphic photonic networks using silicon photonic weight banks.Sci Rep 2017; 7:7430.
[113]
Tait AN, Nahmias MA, Shastri BJ, Prucnal PR.Broadcast and weight: an integrated network for scalable photonic spike processing.J Lit Technol 2014; 32(21):4029-4041.
[114]
Bai BW, Yang QP, Shu HW, Chang L, Yang FH, Shen BT, et al.Microcomb-based integrated photonic processing unit.Nat Commun 2023; 14:66.
[115]
Wang XY, Qiu XK, Liu ML, Liu F, Li MM, Xue LP, et al.Flat soliton microcomb source.Opto Electron Sci 2023; 2(12):230024.
[116]
Kulce O, Mengu D, Rivenson Y, Ozcan A.All-optical information-processing capacity of diffractive surfaces.Light Sci Appl 2021; 10:25.
[117]
Mengu D, Zhao YF, Yardimci NT, Rivenson Y, Jarrahi M, Ozcan A.Misalignment resilient diffractive optical networks.Nanophotonics 2020; 9(13):4207-4219.
[118]
Zheng MJ, Shi L, Zi J.Optimize performance of a diffractive neural network by controlling the Fresnel number.Photonics Res 2022; 10:2667-2676.
[119]
Chen H, Feng JA, Jiang MW, Wang YQ, Lin J, Tan JB, et al.Diffractive deep neural networks at visible wavelengths.Engineering 2021; 7(10):1483-1491.
[120]
Luo Y, Mengu D, Yardimci NT, Rivenson Y, Veli M, Jarrahi M, et al.Design of task-specific optical systems using broadband diffractive neural networks.Light Sci Appl 2019; 8:112.
[121]
Li JX, Gan TY, Bai BJ, Luo Y, Jarrahi M, Ozcan A.Massively parallel universal linear transformations using a wavelength-multiplexed diffractive optical network.Adv Photonics 2023; 5(1):016003.
[122]
Duan ZY, Chen H, Lin X.Optical multi-task learning using multi-wavelength diffractive deep neural networks.Nanophotonics 2023; 12(5):893-903.
[123]
Yan T, Wu JM, Zhou TK, Xie H, Xu F, Fan JT, et al.Fourier-space diffractive deep neural network.Phys Rev Lett 2019; 123(2):023901.
[124]
Hu ZB, Li SR, Schwartz RLT, Solyanik-Gorgone M, Miscuglio M, Gupta P, et al.High-throughput multichannel parallelized diffraction convolutional neural network accelerator.Laser Photonics Rev 2022; 16(12):2200213.
[125]
Zhou TK, Fang L, Yan T, Wu JM, Li YP, Fan JT, et al.In situ optical backpropagation training of diffractive optical neural networks.Photon Res 2020; 8(6):940-953.
[126]
Xu ZH, Yuan XY, Zhou TK, Fang L.A multichannel optical computing architecture for advanced machine vision.Light Sci Appl 2022; 11:255.
[127]
Yan T, Yang R, Zheng ZY, Lin X, Xiong HK, Dai QH.All-optical graph representation learning using integrated diffractive photonic computing units.Sci Adv 2022; 8(24):eabn7630.
[128]
Qu YR, Zhu HZ, Shen YC, Zhang J, Tao CN, Ghosh PT, et al.Inverse design of an integrated-nanophotonics optical neural network.Sci Bull 2020; 65(14):1177-1183.
[129]
Khoram E, Chen A, Liu DJ, Ying L, Wang QQ, Yuan M, et al.Nanophotonic media for artificial neural inference.Photon Res 2019; 7(8):823-827.
[130]
Muminov B, Vuong LT.Fourier optical preprocessing in lieu of deep learning.Optica 2020; 7(9):1079-1088.
[131]
Muminov B, Perry A, Hyder R, Asif MS, Vuong LT.Toward simple, generalizable neural networks with universal training for low-SWaP hybrid vision.Photon Res 2021; 9(7):B253-B261.
[132]
Chang J, Sitzmann V, Dun X, Heidrich W, Wetzstein G.Hybrid optical–electronic convolutional neural networks with optimized diffractive optics for image classification.Sci Rep 2018; 8:12324.
[133]
Martel JNP, Mueller LK, Carey SJ, Dudek P, Wetzstein G.Neural sensors: learning pixel exposures for HDR imaging and video compressive sensing with programmable sensors.IEEE Trans Pattern Anal Mach Intell 2020; 42:1642-1653.
[134]
Li JX, Mengu D, Yardimci NT, Luo Y, Li XR, Veli M, et al.Spectrally encoded single-pixel machine vision using diffractive networks.Sci Adv 2021; 7(13):eabd7690.
[135]
Shi WX, Huang Z, Huang HH, Hu CY, Chen MH, Yang SG, et al.LOEN: lensless opto-electronic neural network empowered machine vision.Light Sci Appl 2022; 11:121.
[136]
Wang H, Zhan ZY, Hu FT, Meng Y, Liu ZQ, Fu X, et al.Intelligent optoelectronic processor for orbital angular momentum spectrum measurement.PhotoniX 2023; 4:9.
[137]
Shen YW, Li RQ, Liu GT, Yu JY, He XM, Yi LL, et al.Deep photonic reservoir computing recurrent network.Optica 2023; 10(12):1745-1751.
[138]
Xiang SY, Shi YC, Guo XX, Zhang YH, Wang HJ, Zheng DZ, et al.Hardware-algorithm collaborative computing with photonic spiking neuron chip based on an integrated Fabry–Perot laser with a saturable absorber.Optica 2023; 10(2):162-171.
[139]
Liu ZY, Wang DY, Gao H, Li MX, Zhou HX, Zhang C.Metasurface-enabled augmented reality display: a review.Adv Photonics 2023; 5(3):034001.
[140]
Neshev DN, Miroshnichenko AE.Enabling smart vision with metasurfaces.Nat Photonics 2023; 17(1):26-35.
[141]
Ou K, Wan HY, Wang GF, Zhu JY, Dong SY, He T, et al.Advances in meta-optics and metasurfaces: fundamentals and applications.Nanomaterials 2023; 13(7):1235.
[142]
Jiang Q, Jin GF, Cao LC.When metasurface meets hologram: principle and advances.Adv Opt Photonics 2019; 11(3):518-576.
[143]
Dorrah AH, Capasso F.Tunable structured light with flat optics.Science 2022; 376(6591):eabi6860.
[144]
Kim I, Martins RJ, Jang J, Badloe T, Khadir S, Jung HY, et al.Nanophotonics for light detection and ranging technology.Nat Nanotechnol 2021; 16(5):508-524.
[145]
Zhao RZ, Huang LL, Wang YT.Recent advances in multi-dimensional metasurfaces holographic technologies.PhotoniX 2020; 1:20.
[146]
Fan KB, Suen JY, Liu XY, Padilla WJ.All-dielectric metasurface absorbers for uncooled terahertz imaging.Optica 2017; 4(6):601-604.
[147]
Nie S, Akyildiz IF.Metasurfaces for multiplexed communication.Nat Electron 2021; 4(3):177-178.
[148]
Zhao XG, Sun ZC, Zhang LY, Wang ZL, Xie RB, Zhao JH, et al.Review on metasurfaces: an alternative approach to advanced devices and instruments.Adv Devices Instrum 2022; 2022:9765089.
[149]
Yang F, Shalaginov MY, Lin HI, An SS, Agarwal A, Zhang HL, et al.Wide field-of-view metalens: a tutorial.Adv Photonics 2023; 5(3):033001.
[150]
Wesemann L, Rickett J, Song JC, Lou JQ, Hinde E, Davis TJ, et al.Nanophotonics enhanced coverslip for phase imaging in biology.Light Sci Appl 2021; 10:98.
[151]
Altug H, Oh SH, Maier SA, Homola J.Advances and applications of nanophotonic biosensors.Nat Nanotechnol 2022; 17(1):5-16.
[152]
Cheng JP, Sha XB, Zhang H, Chen QM, Qu GY, Song QH, et al.Ultracompact orbital angular momentum sorter on a CMOS chip.Nano Lett 2022; 22(10):3993-3999.
[153]
Krasikov S, Tranter A, Bogdanov A, Kivshar Y.Intelligent metaphotonics empowered by machine learning.Opto Electron Adv 2022; 5(3):210147.
[154]
Veselago VG.Electrodynamics of substances with simultaneously negative and values of ε and μ.Sov Phys Usp 1968; 10(4):509-514.
[155]
Pendry JB, Holden AJ, Stewart WJ, Youngs I.Extremely low frequency plasmons in metallic mesostructures.Phys Rev Lett 1996; 76(25):4773-4776.
[156]
Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, et al.Light propagation with phase discontinuities: generalized laws of reflection and refraction.Science 2011; 334(6054):333-337.
[157]
Cui TJ, Qi MQ, Wan X, Zhao J, Cheng Q.Coding metamaterials, digital metamaterials and programmable metamaterials.Light Sci Appl 2014; 3(10):e218.
[158]
McCulloch W, Pitts W.A logical calculus of the ideas immanent in nervous activity.Bull Math Biol 1943; 5(4):115-133.
[159]
Hinton GE, Osindero S, Teh YW.A fast learning algorithm for deep belief nets.Neural Comput 2006; 18(7):1527-1554.
[160]
Li LL, Ruan HX, Liu C, Li Y, Shuang Y, Alu A, et al.Machine-learning reprogrammable metasurface imager.Nat Commun 2019; 10:1082.
[161]
Liu C, Ma Q, Luo ZJ, Hong QR, Xiao Q, Zhang HC, et al.A programmable diffractive deep neural network based on a digital-coding metasurface array.Nat Electron 2022; 5(2):113-122.
[162]
Huang LL, Muhlenbernd H, Li XW, Song X, Bai BF, Wang YT, et al.Broadband hybrid holographic multiplexing with geometric metasurfaces.Adv Mater 2015; 27(41):6444-6449.
[163]
Arbabi A, Horie Y, Bagheri M, Faraon A.Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission.Nat Nanotechnol 2015; 10(11):937-943.
[164]
Zhao RZ, Sain B, Wei QS, Tang CC, Li XW, Weiss T, et al.Multichannel vectorial holographic display and encryption.Light Sci Appl 2018; 7:95.
[165]
Cheng H, Wei XY, Yu P, Li ZC, Liu Z, Li JJ, et al.Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces.Appl Phys Lett 2017; 110(17):171903.
[166]
Chu CH, Tseng ML, Chen J, Wu PC, Chen YH, Wang HC, et al.Active dielectric metasurface based on phase-change medium.Laser Photonics Rev 2016; 10(6):986-994.
[167]
Della Giovampaola C, Engheta N.Digital metamaterials.Nat Mater 2014; 13(12):1115-1121.
[168]
Wu HT, Liu S, Wan X, Zhang L, Wang D, Li LL, et al.Controlling energy radiations of electromagnetic waves via frequency coding metamaterials.Adv Sci 2017; 4(9):1700098.
[169]
Zhang L, Chen XQ, Liu S, Zhang Q, Zhao J, Dai JY, et al.Space–time-coding digital metasurfaces.Nat Commun 2018; 9:4334.
[170]
Liu S, Zhang HC, Zhang L, Yang QL, Xu Q, Gu JQ, et al.Full-state controls of terahertz waves using tensor coding metasurfaces.ACS Appl Mater Interfaces 2017; 9(25):21503-21514.
[171]
Ma Q, Shi CB, Bai GD, Chen TY, Noor A, Cui TJ.Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit.Adv Opt Mater 2017; 5(23):1700548.
[172]
Chen L, Ma Q, Nie QF, Hong QR, Cui HY, Ruan Y, et al.Dual-polarization programmable metasurface modulator for near-field information encoding and transmission.Photon Res 2021; 9(2):116-124.
[173]
Zhang L, Chen MZ, Tang WK, Dai JY, Miao L, Zhou XY, et al.A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces.Nat Electron 2021; 4(3):218-227.
[174]
Jafar-Zanjani S, Inampudi S, Mosallaei H.Adaptive genetic algorithm for optical metasurfaces design.Sci Rep 2018; 8:11040.
[175]
Peurifoy J, Shen YC, Jing L, Yang Y, Cano-Renteria F, DeLacy BG, et al.Nanophotonic particle simulation and inverse design using artificial neural networks.Sci Adv 2018; 4(6):eaar4206.
[176]
An SS, Fowler C, Zheng BW, Shalaginov MY, Tang H, Li H, et al.A deep learning approach for objective-driven all-dielectric metasurface design.ACS Photonics 2019; 6(12):3196-3207.
[177]
Zhang Q, Wan X, Liu S, Yin JY, Zhang L, Cui TJ.Shaping electromagnetic waves using software-automatically-designed metasurfaces.Sci Rep 2017; 7:3588.
[178]
Liu C, Yu WM, Ma Q, Li LL, Cui TJ.Intelligent coding metasurface holograms by physics-assisted unsupervised generative adversarial network.Photon Res 2021; 9(4):B159-B167.
[179]
Tseng E, Colburn S, Whitehead J, Huang LC, Baek SH, Majumdar A, et al.Neural nano-optics for high-quality thin lens imaging.Nat Commun 2021; 12:6493.
[180]
Ghosh A, Roth DJ, Nicholls LH, Wardley WP, Zayats AV, Podolskiy VA.Machine learning-based diffractive image analysis with subwavelength resolution.ACS Photonics 2021; 8(5):1448-1456.
[181]
Amenabar I, Poly S, Nuansing W, Hubrich EH, Govyadinov AA, Huth F, et al.Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy.Nat Commun 2013; 4:2890.
[182]
Yao HM, Li M, Jiang LJ.Applying deep learning approach to the far-field subwavelength imaging based on near-field resonant metalens at microwave frequencies.IEEE Access 2019; 7:63801-63808.
[183]
Li LL, Shuang Y, Ma Q, Li HY, Zhao HT, Wei ML, et al.Intelligent metasurface imager and recognizer.Light Sci Appl 2019; 8:97.
[184]
Li WH, Ma Q, Liu C, Zhang YF, Wu XN, Wang JW, et al.Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision.Nat Commun 2023; 14:989.
[185]
Wesemann L, Davis TJ, Roberts A.Meta-optical and thin film devices for all-optical information processing.Appl Phys Rev 2021; 8(3):031309.
[186]
Silva A, Monticone F, Castaldi G, Galdi V, Alu A, Engheta N.Performing mathematical operations with metamaterials.Science 2014; 343(6167):160-163.
[187]
Badloe T, Lee S, Rho J.Computation at the speed of light: metamaterials for all-optical calculations and neural networks.Adv Photonics 2022; 4(6):064002.
[188]
Wen J, Chen L, Yu BB, Nieder JB, Zhuang SL, Zhang DW, et al.All-dielectric synthetic-phase metasurfaces generating practical airy beams.ACS Nano 2021; 15(1):1030-1038.
[189]
Semmlinger M, Zhang M, Tseng ML, Huang TT, Yang J, Tsai DP, et al.Generating third harmonic vacuum ultraviolet light with a TiO2 metasurface.Nano Lett 2019; 19(12):8972-8978.
[190]
Huo PC, Zhang C, Zhu WQ, Liu MZ, Zhang S, Zhang S, et al.Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging.Nano Lett 2020; 20(4):2791-2798.
[191]
Wu ZC, Zhou M, Khoram E, Liu BY, Yu ZF.Neuromorphic metasurface.Photonics Res 2020; 8:46-50.
[192]
Luo XH, Hu YQ, Ou XN, Li X, Lai JJ, Liu N, et al.Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible.Light Sci Appl 2022; 11:158.
[193]
Colburn S, Chu Y, Shilzerman E, Majumdar A.Optical frontend for a convolutions neural network.Appl Opt 2019; 58(12):3179-3186.
[194]
Del Hougne P, Imani MF, Diebold AV, Horstmeyer R, Smith DR.Learned integrated sensing pipeline: reconfigurable metasurface transceivers as trainable physical layer in an artificial neural network.Adv Sci 2020; 7(3):1901913.
[195]
Qu GY, Cai GY, Sha XB, Chen QM, Cheng JP, Zhang Y, et al.All-dielectric metasurface empowered optical–electronic hybrid neural networks.Laser Photonics Rev 2022; 16(10):2100732.
[196]
Hu JT, Mengu D, Tzarouchis DC, Edwards B, Engheta N, Ozcan A.Diffractive optical computing in free space.Nat Commun 2024; 15:1525.
[197]
Gabor D.A new microscopic principle.Nature 1948; 161(4098):777-778.
[198]
Leith EN, Upatnieks J.Reconstructed wavefronts and communication theory.J Opt Soc Am 1962; 52:1123-1130.
[199]
Denisyuk YN.On the reflection of optical properties of an object in a wave field of light scattered by it.Dokl Akad Nauk SSSR 1962; 144:1275-1278.
[200]
Zhang WH, Cao LC, Brady DJ, Zhang H, Cang J, Zhang H, et al.Twin-image-free holography: a compressive sensing approach.Phys Rev Lett 2018; 121(9):093902.
[201]
Zhao Y, Cao LC, Zhang H, Kong DZ, Jin GF.Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method.Opt Express 2015; 23(20):25440-25449.
[202]
Zheng HD, Zhou CJ, Shui XH, Yu YJ.Computer-generated full-color phase-only hologram using a multiplane iterative algorithm with dynamic compensation.Appl Opt 2022; 61(5):B262-B270.
[203]
Wang Z, Miccio L, Coppola S, Bianco V, Memmolo P, Tkachenko V, et al.Digital holography as metrology tool at micro–nanoscale for soft matter.Light Adv Manuf 2022; 3:10.
[204]
Li JH, Cao LC, Gu HR, Tan XD, He QS, Jin GF.Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage.Opt Lett 2012; 37(5):936-938.
[205]
Schnars U, Jüptner W.Digital holography: digital hologram recording, numerical reconstruction, and related techniques. Springer-Verlag, Berlin (2005)
[206]
Schnars U, Jüptner WPO.Digital recording and numerical reconstruction of holograms.Meas Sci Technol 2002; 13(9):R85-R.
[207]
Huang ZZ, Memmolo P, Ferraro P, Cao LC.Dual-plane coupled phase retrieval for non-prior holographic imaging.PhotoniX 2022; 3:3.
[208]
Park JH.Recent progress in computer-generated holography for three-dimensional scenes.J Inf Disp 2017; 18(1):1-12.
[209]
Gerhberg R, Saxton W.A practical algorithm for the determination of phase from image and diffraction plane picture.Optik 1972; 35:237-246.
[210]
Zhang JZ, P Négard, Zhong JS, Adesnik H, Waller L.3D computer-generated holography by non-convex optimization.Optica 2017; 4(10):1306-1313.
[211]
Song J, Swisher CL, Im H, Jeong S, Pathania D, Iwamoto Y, et al.Sparsity-based pixel super resolution for lens-free digital in-line holography.Sci Rep 2016; 6:24681.
[212]
Rivenson Y, Wu YC, Ozcan A.Deep learning in holography and coherent imaging.Light Sci Appl 2019; 8:85.
[213]
Liu KX, Wu JC, He ZH, Cao LC.4K-DMDNet: diffraction model-driven network for 4K computer-generated holography.Opto Electron Adv 2023; 6(5):220135.
[214]
Zhu RC, Wang JF, Fu XM, Liu XS, Liu TH, Chu ZT, et al.Deep-learning-empowered holographic metasurface with simultaneously customized phase and amplitude.ACS Appl Mater Interfaces 2022; 14(42):48303-48310.
[215]
Pitkäaho T, Manninen A, Naughton TJ.Focus prediction in digital holographic microscopy using deep convolutional neural networks.Appl Opt 2019; 58(5):A202-A208.
[216]
Liu TR, de Haan K, Rivenson Y, Wei ZS, Zeng X, Zhang YB, et al.Deep learning-based super-resolution in coherent imaging systems.Sci Rep 2019; 9:3926.
[217]
Yin D, Gu ZZ, Zhang YR, Gu FY, Nie SP, Feng ST, et al.Speckle noise reduction incoherent imaging based on deep learning without clean data.Opt Lasers Eng 2020; 133:106151.
[218]
Wang KQ, Kemao Q, Di JL, Zhao JL.Deep learning spatial phase unwrapping: a comparative review.Adv Photon Nexus 2022; 1:014001.
[219]
O T’Connor, Anand A, Andemariam B, Javidi B.Deep learning-based cell identification and disease diagnosis using spatio–temporal cellular dynamics in compact digital holographic microscopy.Biomed Opt Express 2020; 11(8):4491-4508.
[220]
Horisaki R, Takagi R, Tanida J.Deep-learning-generated holography.Appl Opt 2018; 57(14):3859-3863.
[221]
Zheng H, Hu JB, Zhou CJ, Wang XX.Computing 3D phase-type holograms based on deep learning method.Photonics 2021; 8(7):280.
[222]
Hossein Eybposh M, Caira NW, Atisa M, Chakravarthula P, P NCégard.DeepCGH: 3D computer-generated holography using deep learning.Opt Express 2020; 28(18):26636-26650.
[223]
Peng YF, Choi S, Padmanaban N, Wetzstein G.Neural holography with camera-in-the-loop training.ACM Trans Graph 2020; 39(6):185.
[224]
Peng YF, Choi S, Kim J, Wetzstein G.Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration.Sci Adv 2021; 7(46):eabg5040.
[225]
Wu JC, Liu KX, Sui XM, Cao LC.High-speed computer-generated holography using an autoencoder-based deep neural network.Opt Lett 2021; 46(12):2908-2911.
[226]
Shi L, Li BC, Kim C, Kellnhofer P, Matusik W.Towards real-time photorealistic 3D holography with deep neural networks.Nature 2021; 591(7849):234-239.
[227]
Gao H, Fan XH, Xiong W, Hong MH.Recent advances in optical dynamic meta-holography.Opto Electron Adv 2021; 4(11):210030.
[228]
Hu YQ, Luo XH, Chen YQ, Liu Q, Li X, Wang YS, et al.3D-integrated metasurfaces for full-colour holography.Light Sci Appl 2019; 8:86.
[229]
Zou YJ, Zhu RR, Shen L, Zheng B.Reconfigurable metasurface hologram of dynamic distance via deep learning.Front Mater 2022; 9:907672.
[230]
Kaikhah K, Loochan F.Computer generated holograms for optical neural networks.Appl Intell 2001; 14:145-160.
[231]
Keller PE, Gmitro AF.Design and analysis of fixed planar holographic interconnects for optical neural networks.Appl Opt 1992; 31(26):5517-5526.
[232]
Li HYS, Qiao Y, Psaltis D.Optical network for real-time face recognition.Appl Opt 1993; 32:5026-5035.
[233]
Goi E, Schoenhardt S, Gu M.Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networks.Nat Commun 2022; 13:7531.
[234]
Mengu D, Ozcan A.All-optical phase recovery: diffractive computing for quantitative phase imaging.Adv Opt Mater 2022; 10(15):2200281.
[235]
Bai B, Luo Y, Gan T, Hu J, Li Y, Zhao Y, et al.To image, or not to image: class-specific diffractive cameras with all-optical erasure of undesired objects.eLight 2022; 2:14.
[236]
Huang ZB, He YL, Wang PP, Xiong WJ, Wu HS, Liu JM, et al.Orbital angular momentum deep multiplexing holography via an optical diffractive neural network.Opt Express 2022; 30(4):5569-5584.
[237]
Wang TY, Sohoni MM, Wright LG, Stein MM, Ma SY, Onodera T, et al.Image sensing with multilayer nonlinear optical neural networks.Nat Photonics 2023; 17(5):408-415.
[238]
Miscuglio M, Hu ZB, Li SR, George JK, Capanna R, Dalir H, et al.Massively parallel amplitude-only Fourier neural network.Optica 2020; 7(12):1812-1819.
[239]
O JL’Brien.Optical quantum computing.Science 2007; 318(5856):1567-1570.
[240]
Knill E, Laflamme R, Milburn GJ.A scheme for efficient quantum computation with linear optics.Nature 2001; 409(6816):46-52.
[241]
Scala F, Nigro D, Gerace D.Deterministic entangling gates with nonlinear quantum photonic interferometers.2023. arXiv: 2306.05072.
[242]
Kok P, Munro WJ, Nemoto K, Ralph TC, Dowling JP, Milburn GJ.Linear optical quantum computing with photonic qubits.Rev Mod Phys 2007; 79(1):135-174.
[243]
Zhong HS, Deng YH, Qin J, Wang H, Chen MC, Peng LC, et al.Phase-programmable Gaussian boson sampling using stimulated squeezed light.Phys Rev Lett 2021; 127(18):180502.
[244]
Madsen LS, Laudenbach F, Askarani MF, Rortais F, Vincent T, Bulmer JFF, et al.Quantum computational advantage with a programmable photonic processor.Nature 2022; 606(7912):75-81.
[245]
Deng YH, Gong SQ, Gu YC, Zhang ZJ, Liu HL, Su H, et al.Solving graph problems using gaussian boson sampling.Phys Rev Lett 2023; 130(19):190601.
[246]
Palmieri AM, Kovlakov E, Bianchi F, Yudin D, Straupe S, Biamonte JD, et al.Experimental neural network enhanced quantum tomography.NPJ Quantum Inf 2020; 6:20.
[247]
Bhusal N, Hong MY, Miller A, Quiroz-Juarez MA, Leon-Montiel RD, You CL, et al.Smart quantum statistical imaging beyond the Abbe–Rayleigh criterion.NPJ Quantum Inf 2022; 8:83.
[248]
Krenn M, Malik M, Fickler R, Lapkiewicz R, Zeilinger A.Automated search for new quantum experiments.Phys Rev Lett 2016; 116(9):090405.
[249]
Killoran N, Bromley TR, Arrazola JM, Schuld M, Quesada N, Lloyd S.Continuous-variable quantum neural networks.Phys Rev Res 2019; 1(3):033063.
[250]
Steinbrecher GR, Olson JP, Englund D, Carolan J.Quantum optical neural networks.NPJ Quantum Inf 2019; 5(1):60.
[251]
Parthasarathy R, Bhowmik RT.Quantum optical convolutional neural network: a novel image recognition framework for quantum computing.IEEE Access 2021; 9:103337-103346.
[252]
Zuo Y, Cao CF, Cao NP, Lai XY, Zeng B, Du SW.Optical neural network quantum state tomography.Adv Photonics 2022; 4(2):026004.
[253]
Ewaniuk J, Carolan J, Shastri BJ, Rotenberg N.Imperfect quantum photonic neural networks.Adv Quantum Technol. 2023; 6(3):2200125.
[254]
Rebentrost P, Mohseni M, Lloyd S.Quantum support vector machine for big data classification.Phys Rev Lett 2014; 113(13):130503.
[255]
Benedetti M, Lloyd E, Sack S, Fiorentini M.Parameterized quantum circuits as machine learning models.Quantum Sci Technol 2019; 4(4):043001.
[256]
Schuld M, Killoran N.Is quantum advantage the right goal for quantum machine learning?.PRX Quantum 2022; 3(3):030101.
[257]
Wright LG, McMahon PL.The capacity of quantum neural networks.In: Proceedings of the 2020 Conference on Lasers and Electro-Optics (CLEO); 2020 May 10–15; online. Washington, DC: Optica Publishing Group; 2020. p. JM4G.5.
[258]
Wang JW, Paesani S, Ding YH, Santagati R, Skrzypczyk P, Salavrakos A, et al.Multidimensional quantum entanglement with large-scale integrated optics.Science 2018; 360(6386):285-291.
[259]
Politi A, Cryan MJ, Rarity JG, Yu SY, O JL’Brien.Silica-on-silicon waveguide quantum circuits.Science 2008; 320(5876):646-649.
[260]
Arrazola JM, Bergholm V, Brádler K, Bromley TR, Collins MJ, Dhand I, et al.Quantum circuits with many photons on a programmable nanophotonic chip.Nature 2021; 591(7848):54-60.
[261]
Bao JM, Fu ZR, Pramanik T, Mao J, Chi YL, Cao YK, et al.Very-large-scale integrated quantum graph photonics.Nat Photonics 2023; 17(7):573-581.
[262]
Elshaari AW, Pernice W, Srinivasan K, Benson O, Zwiller V.Hybrid integrated quantum photonic circuits.Nat Photonics 2020; 14(5):285-298.
[263]
Wang JW, Paesani S, Santagati R, Knauer S, Gentile AA, Wiebe N, et al.Experimental quantum Hamiltonian learning.Nat Phys 2017; 13(6):551-555.
[264]
Ren HR, Shao W, Li Y, Salim F, Gu M.Three-dimensional vectorial holography based on machine learning inverse design.Sci Adv 2020; 6(16):eaaz4261.
[265]
Wang D, Li ZS, Zheng Y, Zhao YR, Liu C, Xu JB, et al.Liquid lens based holographic camera for real 3D scene hologram acquisition using end-to-end physical model-driven network.Light Sci Appl 2024; 13:62.
[266]
I Cşıl, Mengu D, Zhao YF, Tabassum A, Li JX, Luo Y, et al.Super-resolution image display using diffractive decoders.Sci Adv 2022; 8(48):eadd3433.
[267]
Sakib Rahman MS, Ozcan A.Computer-free, all-optical reconstruction of holograms using diffractive networks.ACS Photonics 2021; 8(11):3375-3384.
[268]
Rivenson Y, Wang HD, Wei ZS, de Haan K, Zhang YB, Wu YC, et al.Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning.Nat Biomed Eng 2019; 3(6):466-477.
[269]
Mahecic D, Stepp WL, Zhang C, Griffie J, Weigert M, Manley S.Event-driven acquisition for content-enriched microscopy.Nat Methods 2022; 19(10):1262-1267.
[270]
Yuan SF, Ma C, Fetaya E, Mueller T, Naveh D, Zhang F, et al.Geometric deep optical sensing.Science 2023; 379(6637):eade1220.
[271]
Ashtiani F, Geers AJ, Aflatouni F.An on-chip photonic deep neural network for image classification.Nature 2022; 606(7914):501-506.
[272]
Zhang QH, Gamekkanda JC, Pandit A, Tang WL, Papageorgiou C, Mitchell C, et al.Extracting particle size distribution from laser speckle with a physics-enhanced autocorrelation-based estimator (PEACE).Nat Commun 2023; 14:1159.
[273]
Yan QQ, Deng QH, Zhang J, Zhu Y, Yin K, Li T, et al.Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers.Photon Res 2021; 9(8):1493-1501.
[274]
Pan XS, Zuo H, Bai H, Wu ZX, Cui XQ.Real-time wavefront correction using diffractive optical networks.Opt Express 2023; 31(2):1067-1078.
[275]
Pai S, Sun ZH, Hughes TW, Park T, Bartlett B, Williamson IAD, et al.Experimentally realized in situ backpropagation for deep learning in photonic neural networks.Science 2023; 380(6643):398-404.
[276]
Passalis N, Mourgias-Alexandris G, Pleros N, Tefas A.Adaptive initialization for recurrent photonic networks using sigmoidal activations.In: Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS); 2020 Oct 12–14; Seville, Spain. New York City: IEEE; 2020. p. 1–5.
[277]
Passalis N, Mourgias-Alexandris G, Tsakyridis A, Pleros N, Tefas A.Variance preserving initialization for training deep neuromorphic photonic networks with sinusoidal activations.In: Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2019 May 12–17; Brighton, UK. New York City: IEEE; 2019. p. 1483–7.
[278]
George J, Amin R, Mehrabian A, Khurgin J, El-Ghazawi T, Prucnal PR, et al.Electrooptic nonlinear activation functions for vector matrix multiplications in optical neural networks.In: Proceedings of the Advanced Photonics 2018; 2018 Jul 2–5; Zurich, Switzerland. Washington, DC: Optica Publishing Group; 2018. p. SpW4G.3.
[279]
Xu DY, Xu WH, Yang Q, Zhang WS, Wen SC, Luo HL.All-optical object identification and three-dimensional reconstruction based on optical computing metasurface.Opto Electron Adv 2023; 6(12):230120.
[280]
Yang YQ, Forbes A, Cao LC.A review of liquid crystal spatial light modulators: devices and applications.Opto-Electron Sci 2023; 2(8):230026.
[281]
Liao K, Chen Y, Yu ZC, Hu XY, Wang XY, Lu CC, et al.All-optical computing based on convolutional neural networks.Opto Electron Adv 2021; 4(11):200060.
AI Summary AI Mindmap
PDF(8199 KB)

Accesses

Citations

Detail

Sections
Recommended

/