
Radial Wellbore Cross-Layer Fracturing in Multi-Lithologic Superimposed Shale Oil Reservoirs: A Laboratory Study
Xiaoguang Wu, Zhongwei Huang, Tengda Long, Gensheng Li, Shouceng Tian, Haizhu Wang, Ruiyue Yang, Kun Li, Zikang Wang
Engineering ›› 2025, Vol. 45 ›› Issue (2) : 188-211.
Radial Wellbore Cross-Layer Fracturing in Multi-Lithologic Superimposed Shale Oil Reservoirs: A Laboratory Study
Medium-high maturity continental shale oil is one of the hydrocarbon resources with the most potential for successful development in China. Nevertheless, the unique geological conditions of a multi-lithologic superposition shield the vertical propagation of hydraulic fractures and limit the longitudinal reconstruction in reservoirs, posing a great challenge for large-scale volumetric fracturing. Radial wellbore cross-layer fracturing, which transforms the interaction between the hydraulic fractures and lithologic interface into longitudinal multilayer competitive initiation, could provide a potential solution for this engineering challenge. To determine the longitudinal propagation behaviors of fractures guided by radial wellbores, true triaxial fracturing experiments were performed on multilayer shale–sandstone samples, with a focus on the injection pressure response, fracture morphology, and cross-layer pattern. The effects of the radial borehole length L, vertical stress difference Kv, injection rate Q, and viscosity ν of the fracturing fluid were analyzed. The results indicate that radial wellbores can greatly facilitate fracture initiation and cross-layer propagation. Unlike conventional hydraulic fracturing, there are two distinct fracture propagation patterns in radial wellbore fracturing: cross-layering and skip-layering. The fracture height guided by a radial wellbore is positively correlated with Kv, Q, and ν. Increasing these parameters causes a shift in the fracture initiation from a single root to an asynchronous root/toe end and can improve the cross-layer propagation capacity. Critical parameter thresholds exist for fracture propagation through and across interlayers under the guidance of radial boreholes. A parameter combination of critical cross-layering/skip-layering or alternating displacement/viscosity is recommended to simultaneously improve the fracture height and degree of lateral activation. The degree of correlation of different parameters with the vertical fracture height can be written as L > Q/ν > Kv. Increasing the radial wellbore length can effectively facilitate fracture cross-/skip-layer propagation and reduce the critical threshold of injection parameters, which is conducive to maximizing the stimulated reservoir volume.
Hydraulic fracturing / Continental shale oil / Multi-lithologic superimposed reservoir / Radial wellbore fracturing / Cross-layer
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
/
〈 |
|
〉 |