
Nanofluidic Manipulation of Single Nanometric Objects: Current Progress, Challenges, and Future Opportunities
Nattapong Chantipmanee, Yan Xu
Engineering ›› 2024, Vol. 43 ›› Issue (12) : 54-71.
Nanofluidic Manipulation of Single Nanometric Objects: Current Progress, Challenges, and Future Opportunities
The manipulation of nanometric objects, encompassing both non-biological and biological objects, offers a transformative avenue for breakthroughs in diverse fields, such as chemistry, biology, chemical and biomedical engineering, materials and mechanical engineering, and various industrial applications. However, achieving accuracy, precision, and high throughput in the manipulation of nanometric objects, whether on the scale of a single nanometric entity or molecule, is a formidable challenge because of the extremely small dimensions involved. Nanofluidics has already demonstrated unique capabilities for transporting the mass of ions and small molecules at the nanoscale. We posit that chip-based nanofluidic devices provide potent strategies for the precise, accurate, and high-throughput manipulation of single nanometric entities and molecules, benefiting from their dimensions, which are comparable to those of nanometric objects. This article offers an overview of the current progress in nanofluidic manipulation of single nanometric objects. It also discusses the challenges in the development of nanofluidic manipulation technologies. Furthermore, the article explores future opportunities in the field, highlighting possible solutions to the challenges, and aims to contribute to the ongoing discourse on nanofluidic manipulation, thus propelling the field to overcome its current limitations.
Nanochannels / Microfluidics / Single entities / Nanoparticles / DNA / Proteins / Vesicles / Viruses
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
|
[105] |
|
[106] |
|
[107] |
|
[108] |
|
[109] |
|
[110] |
|
[111] |
|
[112] |
|
[113] |
|
[114] |
|
[115] |
|
[116] |
|
[117] |
D. Li. Electroosmotic flow and electrophoresis in nanochannels. Fluid Mech Its Appl, 133 (2023), pp. 107-147.
|
[118] |
|
[119] |
|
[120] |
|
[121] |
|
[122] |
|
[123] |
|
[124] |
|
[125] |
|
[126] |
|
[127] |
|
[128] |
|
[129] |
|
[130] |
|
[131] |
|
[132] |
|
[133] |
|
[134] |
|
[135] |
|
[136] |
|
[137] |
|
[138] |
|
[139] |
|
[140] |
|
[141] |
|
[142] |
|
[143] |
|
[144] |
|
[145] |
|
[146] |
|
[147] |
|
[148] |
|
[149] |
|
[150] |
|
[151] |
|
[152] |
|
[153] |
|
[154] |
|
[155] |
|
[156] |
|
[157] |
|
[158] |
|
[159] |
|
[160] |
|
[161] |
|
[162] |
|
[163] |
|
[164] |
|
[165] |
|
[166] |
|
[167] |
|
[168] |
|
[169] |
|
[170] |
|
[171] |
|
[172] |
|
[173] |
|
[174] |
|
[175] |
|
[176] |
|
[177] |
|
[178] |
|
[179] |
|
[180] |
|
[181] |
|
[182] |
|
[183] |
|
[184] |
|
[185] |
|
[186] |
|
[187] |
|
[188] |
|
[189] |
|
[190] |
|
[191] |
|
[192] |
|
[193] |
|
[194] |
|
[195] |
|
[196] |
|
[197] |
|
[198] |
|
[199] |
|
[200] |
|
[201] |
|
[202] |
|
[203] |
|
[204] |
|
[205] |
|
[206] |
|
[207] |
|
[208] |
|
[209] |
|
[210] |
|
[211] |
|
[212] |
|
[213] |
|
[214] |
|
[215] |
|
[216] |
|
[217] |
|
[218] |
|
[219] |
|
[220] |
|
[221] |
|
[222] |
|
[223] |
|
[224] |
|
[225] |
|
[226] |
|
/
〈 |
|
〉 |