New Orientation of Interdisciplinarity in Medicine: Engineering Medicine

Jinhui Wu, Ning Gu

Engineering ›› 2025, Vol. 45 ›› Issue (2) : 252-261.

PDF(2728 KB)
PDF(2728 KB)
Engineering ›› 2025, Vol. 45 ›› Issue (2) : 252-261. DOI: 10.1016/j.eng.2024.09.009
Research
Review

New Orientation of Interdisciplinarity in Medicine: Engineering Medicine

Author information +
History +

Abstract

The trajectory of human history is characterized by a persistent battle against disease. Over time, the field of medicine has transitioned from enigmatic witch doctors and herbal remedies to a sophisticated realm of contemporary medicine that includes fundamental medical and health sciences, clinical medicine, and public health. Nevertheless, the present phase of medical advancement encounters significant challenges, particularly in effectively translating basic research findings into practical applications in clinical and public health settings. Scientists increasingly collaborate with clinical experts to overcome these obstacles and address specific clinical issues by delving deeper into fundamental mechanisms. This collaborative effort has created a new interdisciplinary field: engineering medicine (EngMed), which focuses on addressing clinical and public health needs by integrating various scientific disciplines. This article discusses the definition, key tasks, significance, educational implications, and future trends in EngMed.

Graphical abstract

Keywords

Engineering medicine / Life sciences / Interdisciplinary medicine / Medical theranostics

Cite this article

Download citation ▾
Jinhui Wu, Ning Gu. New Orientation of Interdisciplinarity in Medicine: Engineering Medicine. Engineering, 2025, 45(2): 252‒261 https://doi.org/10.1016/j.eng.2024.09.009

References

[1]
Moradali MF, Rehm BHA.Bacterial biopolymers: from pathogenesis to advanced materials.Nat Rev Microbiol 2020; 18(4):195-210.
[2]
Liu F, Peng J, Feng Y, Ma Y, Ren Y, Sun P, et al.An ethnobotanical study on the medicinal herb practices of the gelao ethnic minority in north Guizhou, China: an exploration of traditional knowledge.Front Pharmacol 2023; 14:1217599.
[3]
Karim AS, Brown DM, Archuleta CM, Grannan S, Aristilde L, Goyal Y, et al.Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists.Nat Commun 2024; 15(1):5425.
[4]
Bischof J, Fletcher G, Verkade P, Kuntner C, Fernandez-Rodriguez J, Chaabane L, et al.Multimodal bioimaging across disciplines and scales: challenges, opportunities and breaking down barriers. npj.Imaging 2024; 2:5.
[5]
Li S, Su K, Li P, Sun Y, Pan Y, Wang W, et al.Public availability of information from officially accredited medical schools in China.BMC Med Educ 2022; 22:414.
[6]
Wang W.Medical education in china: progress in the past 70 years and a vision for the future.BMC Med Educ 2021; 21(1):453.
[7]
Pecchia L, Pallikarakis N, Magjarevic R, Iadanza E.Health technology assessment and biomedical engineering: global trends, gaps and opportunities.Med Eng Phys 2019; 72:19-26.
[8]
Chao HT, Liu L, Bellen HJ.Building dialogues between clinical and biomedical research through cross-species collaborations.Semin Cell Dev Biol 2017; 70:49-57.
[9]
Cram N, Groves J, Foster L.Technology assessment—a survey of the clinical engineer’s role within the hospital.J Clin Eng 1997; 22(6):373-382.
[10]
Weininger S, Jaffe MB, Rausch T, Goldman JM.Capturing essential information to achieve safe interoperability.Anesth Analg 2017; 124(1):83-94.
[11]
Hallak JE, Crippa JA, Quevedo J, Roesler R, Schröder N, Nardi AE, et al.National science and technology institute for translational medicine (INCT-TM): advancing the field of translational medicine and mental health.Braz J Psychiatry 2010; 32(1):83-90.
[12]
Gu N.Engineering medicine. J Nanjing Univ, Nat Sci 2023; 59(6):915-918.
[13]
Baturalp TB, Bozkurt S, Baldock C.The future of biomedical engineering education is transdisciplinary.Phys Eng Sci Med 2024;47:779–82.
[14]
Kettenbach J, Wong T, Kacher D, Hata N, Schwartz RB, et al.Computer-based imaging and interventional MRI: applications for neurosurgery.Comput Med Imaging Graphics 1999; 23(5):245-258.
[15]
Huy TQ, Tue HH, Long TT, Duc-Tan T.Deterministic compressive sampling for high-quality image reconstruction of ultrasound tomography.BMC Med Imaging 2017; 17(1):34.
[16]
Martin E, Jeanmonod D, Morel A, Zadicario E, Werner B.High-intensity focused ultrasound for noninvasive functional neurosurgery.Ann Neurol 2009; 66(6):858-861.
[17]
Huang Y, Jiang L, Li R.Development and new trends of medical ultrasound imaging technology.Mod Instrum Med Treat 2021; 027(003):83-88.
[18]
Lazebnik RS, Desser TS.Clinical 3D ultrasound imaging: beyond obstetrical applications. Diagn Imaging, San Francisco (2007)
[19]
Unsg Gård, Solheim O, Lindseth F, Selbekk T.Intra-operative imaging with 3D ultrasound in neurosurgery.Acta Neurochir 2011; 109:181-186.
[20]
Benoit B, Hafner T, Kurjak A, Kupesi Sć, Bekavac I, Bozek T.Three-dimensional sonoembryology.J Perinat Med 2002; 30(1):63-73.
[21]
Li Y, Cui J, Li C, Zhou H, Chang J, Aras O, et al.19F MRI nanotheranostics for cancer management: progress and prospects.ChemMedChem 2022; 17(4):e202100701.
[22]
Bloch KM, Kording F, Töger J.Doppler ultrasound cardiac gating of intracranial flow at 7T.BMC Med Imaging 2020; 20(1):128.
[23]
Cui Y, Zhang C, Qiao K, Wang L, Yan B, Tong L.Study on representation invariances of CNNs and human visual information processing based on data augmentation.Brain Sci 2020; 10(9):602.
[24]
Ahn H, Song GJ, Jang SH, Lee HJ, Lee MS, Lee JH, et al.Relationship of FDG PET/CT textural features with the tumor microenvironment and recurrence risks in patients with advanced gastric cancers.Cancers 2022; 14(16):3936.
[25]
Yang Y, Qiu L.Research progress on the pathogenesis, diagnosis, and drug therapy of Alzheimer’s disease.Brain Sci 2024; 14(6):590.
[26]
D MP’Acquisto, Krause D, Klaassen-Mielke R, Trampisch M, Trampisch HJ, Trampisch U, et al.Does residential exposure to air pollutants influence mortality and cardiovascular morbidity of older people from primary care?.BMC Public Health 2023; 23:1281.
[27]
Xu Y, Meng L.Deconstruction of risk prediction of ischemic cardiovascular and cerebrovascular diseases based on deep learning.Contrast Media Mol Imaging 2022; 2022(1):8478835.
[28]
Writing Comm Report Cardiovasc Hlt.Report on cardiovascular health and diseases in China 2019: an updated summary.Biomed Environ Sci 2022;35(7):573–603.
[29]
Zuo Y, Chen S, Tian X, Wang P, Wu S, Wang A.Association of vascular aging with cardiovascular disease in middle-aged Chinese people: a prospective cohort study.JACC: Asia 2023; 3(6):895-904.
[30]
D RB’Agostino, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al.General cardiovascular risk profile for use in primary care: the framingham heart study.Circulation 2008; 117(6):743-753.
[31]
Deng L, Yan Y.Research status and progress of biomaterials for bone repair and reconstruction.Chinese J Repar Reconstr Surg 2018; 32(7):815-820.
[32]
Wang H, Cheng H, Tang X, Chen J, Zhang J, Wang W, et al.The synergistic effect of bone forming peptide-1 and endothelial progenitor cells to promote vascularization of tissue engineered bone.J Biomed Mater Res A 2018; 106(4):1008-1021.
[33]
Chae S, Cho DW.Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering.Acta Biomater 2023; 156:4-20.
[34]
Dimitriou R, Jones E, McGonagle D, Giannoudis PV.Bone regeneration: current concepts and future directions.BMC Med 2011; 9:66.
[35]
Xue J, Qiu J, Yang S, Pang B, Xia N, Jia M, et al.Clinical application of digital three-dimensional reconstruction combined with 3D printing in precise reconstruction of mandibular defects with vascularized fibula transplantation.J Precis Med 2018; 33(1):45-50.
[36]
Wang L, Yang Q, Huo M, Lu D, Gao Y, Chen Y, et al.Engineering single-atomic iron-catalyst-integrated 3D-printed bioscaffolds for osteosarcoma destruction with antibacterial and bone defect regeneration bioactivity.Adv Mater 2021; 33(31):2100150.
[37]
Bao X, Mao Y, Si G, Kang L, Xu B, Gu N.Iron oxide nanoparticles: a promising approach for diagnosis and treatment of cardiovascular diseases.Nano Res 2023; 16(11):12453-12470.
[38]
Hu T, Kumar AR, Luo Y, Tay A.Automating CAR-T transfection with micro and nano-technologies.Small Methods 2023; 8(8):2301300.
[39]
Eshhar Z, Waks T, Gross G, Schindler DG.Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors.Proc Natl Acad Sci USA 1993; 90(2):720-724.
[40]
Brentjens RJ, Santos E, Nikhamin Y, Yeh R, Matsushita M, La Perle K, et al.Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts.Clin Cancer Res 2007; 13(18):5426-5435.
[41]
Darowski D, Kobold S, Jost C, Klein C.Combining the best of two worlds: highly flexible chimeric antigen receptor adaptor molecules (CAR-adaptors) for the recruitment of chimeric antigen receptor T cells.MAbs 2019; 11(4):621-631.
[42]
Kim Y, Jeong J, Choi D.Small-molecule-mediated reprogramming: a silver lining for regenerative medicine.Exp Mol Med 2020; 52(2):213-226.
[43]
Wang Y, Yang J, Han X, Hu S, Yin W, Lei W.Stem cells lead the biomedical revolution.Chin J Nat 2020; 42(2):7.
[44]
Xu H, Xiong S, Chen Y, Ye Q, Guan N, Hu Y, et al.Flagella of tumor-targeting bacteria trigger local hemorrhage to reprogram tumor-associated macrophages for improved antitumor therapy.Adv Mater 2023; 35(38):e2303357.
[45]
Wang W, Xu H, Ye Q, Tao F, Wheeldon I, Yuan A, et al.Systemic immune responses to irradiated tumours via the transport of antigens to the tumour periphery by injected flagellate bacteria.Nat Biomed Eng 2022; 6(1):44-53.
[46]
Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, et al.Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma.J Clin Oncol 2002; 20(1):142-152.
[47]
Low KB, Ittensohn M, Le T, Platt J, Sodi S, Amoss M, et al.Lipid A mutant Salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo.Nat Biotechnol 1999; 17(1):37-41.
[48]
Cooper RM, Wright JA, Ng JQ, Goyne JM, Suzuki N, Lee YK, et al.Engineered bacteria detect tumor DNA.Science 2023; 381(6658):682-686.
[49]
Puurunen MK, Vockley J, Searle SL, Sacharow SJ, Phillips III JA, Denney WS, et al.Safety and pharmacodynamics of an engineered E. coli Nissle for the treatment of phenylketonuria: a first-in-human phase 1/2a study.Nat Metab 2021; 3(8):1125-1132.
[50]
Vockley J, Sondheimer N, Puurunen M, Diaz GA, Ginevic I, Grange DK, et al.Efficacy and safety of a synthetic biotic for treatment of phenylketonuria: a phase 2 clinical trial.Nat Metab 2023; 5(10):1685-1690.
[51]
Yang Z, Ren K, Chen Y, Quanji X, Cai C, Yin J.Oxyge-generating hydrogels as oxygenation therapy for accelerated chronic wound healing.Adv Healthc Mater 2024; 13(3):2302391.
[52]
Chen H, Cheng Y, Tian J, Yang P, Zhang X, Chen Y, et al.Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes.Sci Adv 2020; 6(20):eaba4311.
[53]
Chen H, Guo Y, Zhang Z, Mao W, Shen C, Xiong W, et al.Symbiotic algae-bacteria dressing for producing hydrogen to accelerate diabetic wound healing.Nano Lett 2022; 22(1):229-237.
[54]
Xu Y, Meng L.Deconstruction of risk prediction of ischemic cardiovascular and cerebrovascular diseases based on deep learning.Contrast Media Mol Imaging 2022;2022(1):8478835. Retraction of: Xu Y, Meng L. Contrast Media Mol Imaging 2023;2023(1):9841945.
[55]
Wang P, Zhang Z, Lin R, Lin J, Liu J, Zhou X, et al.Machine learning links different gene patterns of viral infection to immunosuppression and immune-related biomarkers in severe burns.Front Immunol 2022; 13:1054407.
[56]
Syrjala KL.Opportunities for improving oncology care.Lancet Oncol 2018; 19(4):449.
[57]
Liu L, Zeng L.Intelligent medicine: data and model—driven medicine and engineering integration.J Med Inform 2023; 44(7):1-8.
[58]
Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al.PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals.Circulation 2000; 101(23):E215-E220.
[59]
Daly MC, Paquette IM.Surveillance, epidemiology, and end results (SEER) and SEER-Medicare databases: use in clinical research for improving colorectal cancer outcomes.Clin Colon Rectal Surg 2019; 32(1):61-68.
[60]
Sanchez-Pinto LN, Luo Y, Churpek MM.Big data and data science in critical care.Chest 2018; 154(5):1239-1248.
[61]
Horng S, Liao R, Wang X, Dalal S, Golland P, Berkowitz SJ.Deep learning to quantify pulmonary edema in chest radiographs.Radiol Artif Intell 2021; 3(2):e190228.
[62]
Moor M, Banerjee O, Abad ZSH, Krumholz HM, Leskovec J, Topol EJ, et al.Foundation models for generalist medical artificial intelligence.Nature 2023; 616(7956):259-265.
[63]
Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, et al.Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram.Nat Med 2019; 25(1):70-74.
[64]
Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, et al.Improved protein structure prediction using potentials from deep learning.Nature 2020; 577(7792):706-710.
[65]
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al.Highly accurate protein structure prediction with AlphaFold.Nature 2021; 596(7873):583-589.
[66]
Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P, et al.Radiomics: extracting more information from medical images using advanced feature analysis.Eur J Cancer 2012; 48(4):441-446.
[67]
Tomaszewski MR, Gillies RJ.The biological meaning of radiomic features.Radiology 2021; 298(3):505-516.
[68]
Suzuki K.Overview of deep learning in medical imaging.Radiological Phys Technol 2017; 10(3):257-273.
[69]
Tsuneki M.Deep learning models in medical image analysis.J Oral Biosci 2022; 64(3):312-320.
[70]
Zhang H, Li L, Liu X, Jiao J, Ng CT, Yi J, et al.Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1 magnetic resonance imaging contrast agent.ACS Nano 2017; 11(4):3614-3631.
[71]
Li M, Liu Y, Chen J, Liu T, Gu Z, Zhang J, et al.Platelet bio-nanobubbles as microvascular recanalization nanoformulation for acute ischemic stroke lesion theranostics.Theranostics 2018; 8(18):4870-4883.
[72]
Guo G, Ma Y, Guo Y, Zhang C, Guo X, Tu J, et al.Enhanced porosity and permeability of three-dimensional alginate scaffolds via acoustic microstreaming induced by low-intensity pulsed ultrasound.Ultrason Sonochem 2017; 37:279-285.
[73]
Zhang L, Qin Z, Sun H, Chen X, Dong J, Shen S, et al.Nanoenzyme engineered neutrophil-derived exosomes attenuate joint injury in advanced rheumatoid arthritis via regulating inflammatory environment.Bioact Mater 2022; 18:1-14.
[74]
Fu L, Li L, Bian Q, Xue B, Jin J, Li J, et al.Cartilage-like protein hydrogels engineered via entanglement.Nature 2023; 618(7966):740-747.
[75]
Zhang A, Xiao Z, Liu Q, Li P, Xu F, Liu J, et al.CaCO3-encapuslated microspheres for enhanced transhepatic arterial embolization treatment of hepatocellular carcinoma.Adv Healthc Mater 2021; 10(19):e2100748.
[76]
Zhou J, Li M, Chen Q, Li X, Chen L, Dong Z, et al.Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery.Nat Commun 2022; 13(1):3432.
AI Summary AI Mindmap
PDF(2728 KB)

Accesses

Citations

Detail

Sections
Recommended

/