Pro-Aging Metabolic Reprogramming: A Unified Theory of Aging

Zhiguo Wang, Baofeng Yang

Engineering ›› 2025, Vol. 44 ›› Issue (1) : 37-43.

PDF(708 KB)
PDF(708 KB)
Engineering ›› 2025, Vol. 44 ›› Issue (1) : 37-43. DOI: 10.1016/j.eng.2024.09.010
Research
Perspective

Pro-Aging Metabolic Reprogramming: A Unified Theory of Aging

Author information +
History +

Abstract

Despite recent advances in understanding the biology of aging, the field remains fragmented due to the lack of a central organizing hypothesis. Although there are ongoing debates on whether the aging process is programmed or stochastic, it is now evident that neither perspective alone can fully explain the complexity of aging. Here, we propose the pro-aging metabolic reprogramming (PAMRP) theory, which integrates and unifies the genetic-program and stochastic hypotheses. This theory posits that aging is driven by degenerative metabolic reprogramming (MRP) over time, requiring the emergence of pro-aging substrates and triggers (PASs and PATs) to predispose cells to cellular and genetic reprogramming (CRP and GRP).

Graphical abstract

Keywords

Aging / Aging theory / Metabolism / Metabolic reprogramming / Pro-aging substrate / Pro-aging trigger

Cite this article

Download citation ▾
Zhiguo Wang, Baofeng Yang. Pro-Aging Metabolic Reprogramming: A Unified Theory of Aging. Engineering, 2025, 44(1): 37‒43 https://doi.org/10.1016/j.eng.2024.09.010

References

[1]
Wang Z. The entropy perspective of human illness and aging. Engineering 2022; 9:22-26.
[2]
Wang Z. Anti-aging polypharmacology. Cambridge Scholars Publishing, Cambridge (2024).
[3]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6):1194-1217.
[4]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell 2023; 186(2):243-278.
[5]
Hayflick L. Entropy explains aging, genetic determinism explains longevity, and undefined terminology explains misunderstanding both. PLoS Genet 2007; 3(12):e220.
[6]
Barja G. Towards a unified mechanistic theory of aging. Exp Gerontol 2019; 124:110627.
[7]
Lema JFître, Moorad J, Gaillard JM, Maklakov AA, Nussey DH. A unified framework for evolutionary genetic and physiological theories of aging. PLoS Biol 2024; 22(2):e3002513.
[8]
Kelly DP. Cell biology: ageing theories unified. Nature 2011; 470(7334):342-343.
[9]
Sohal RS, Allen RG. Relationship between metabolic rate, free radicals, differentiation and aging: a unified theory. Basic Life Sci 1985; 35:75-104.
[10]
Papaconstantinou J. Unifying model of the programmed (intrinsic) and stochastic (extrinsic) theories of aging. The stress response genes, signal transduction-redox pathways and aging. Ann N Y Acad Sci 1994; 719(1):195-211.
[11]
Wand AJ, Sharp KA. Measuring entropy in molecular recognition by proteins. Annu Rev Biophys 2018; 47:41-61.
[12]
Feng Z, Hanson RW, Berger NA, Trubitsyn A. Reprogramming of energy metabolism as a driver of aging. Oncotarget 2016; 7(13):15410-15420.
[13]
Williams GC. Pleiotropy, natural selection, and the evolution of senescence. Evolution 1957; 11(4):398-411.
[14]
Kirkwood TB. Evolution of ageing. Nature 1977; 270(5635):301-304.
[15]
Pace NR. The universal nature of biochemistry. Proc Natl Acad Sci USA 2001; 98(3):805-808.
[16]
Smith E, Morowitz HJ. Universality in intermediary metabolism. Proc Natl Acad Sci USA 2004; 101(36):13168-13173.
[17]
Wiley CD, Campisi J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat Metab 2021; 3(10):1290-1301.
[18]
Waziry R, Ryan CP, Corcoran DL, Huffman KM, Kobor MS, Kothari M, et al. Effect of long-term caloric restriction on DNA methylation measures of biological aging in healthy adults from the CALERIE trial. Nat Aging 2023; 3(3):248-257.
[19]
Fontana L, Partridge L, Longo VD. Extending healthy life span—from yeast to humans. Science 2010; 328(5976):321-326.
[20]
Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009; 325(5937):201-204.
[21]
Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: an update. Ageing Res Rev 2017; 39:36-45.
[22]
Yuan Y, Hakimi P, Kao C, Kao A, Liu R, Janocha A, et al. Reciprocal changes in phosphoenolpyruvate carboxykinase and pyruvate kinase with age are a determinant of aging in caenorhabditis elegans. J Biol Chem 2016; 291(3):1307-1319.
[23]
Burgess SC, He T, Yan Z, Lindner J, Sherry AD, Malloy CR, et al. Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab 2007; 5(4):313-320.
[24]
Schaum N, Lehallier B, Hahn O, Pálovics R, Hosseinzadeh S, Lee SE, et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 2020; 583(7817):596-602.
[25]
Frenk S, Houseley J. Gene expression hallmarks of cellular ageing. Biogerontology 2018; 19(6):547-566.
[26]
López-Otín C, Galluzzi L, Freije JMP, Madeo F, Kroemer G. Metabolic control of longevity. Cell 2016; 166(4):802-821.
[27]
Hertel J, Friedrich N, Wittfeld K, Pietzner M, Budde K, Van S der Auwera, et al. Measuring biological age via metabonomics: the metabolic age score. J Proteome Res 2016; 15(2):400-410.
[28]
Menni C, Kastenmüller G, Petersen AK, Bell JT, Psatha M, Tsai PC, et al. Metabolomic markers reveal novel pathways of ageing and early development in human populations. Int J Epidemiol 2013; 42(4):1111-1119.
[29]
Yu Z, Zhai G, Singmann P, He Y, Xu T, Prehn C, et al. Human serum metabolic profiles are age dependent. Aging Cell 2012; 11(6):960-967.
[30]
Wang Z, Yang B. Polypharmacology: principles and methodologies. Springer Nature (Switzerland AG), Gewerbesrasse (2022).
AI Summary AI Mindmap
PDF(708 KB)

Accesses

Citations

Detail

Sections
Recommended

/