Orbit–Orbit Interaction in Spatiotemporal Optical Vortex

Jian Chen, Jie Zhao, Xi Shen, Dewei Mo, Cheng-Wei Qiu, Qiwen Zhan

Engineering ›› 2025, Vol. 45 ›› Issue (2) : 44-51.

PDF(2771 KB)
PDF(2771 KB)
Engineering ›› 2025, Vol. 45 ›› Issue (2) : 44-51. DOI: 10.1016/j.eng.2024.09.015
Research
Article

Orbit–Orbit Interaction in Spatiotemporal Optical Vortex

Author information +
History +

Abstract

While spin–orbit interaction has been extensively studied, few investigations have reported on the interaction between orbital angular momenta (OAMs). In this work, we study a new type of orbit–orbit coupling between the longitudinal OAM and the transverse OAM carried by a three-dimensional (3D) spatiotemporal optical vortex (STOV) in the process of tight focusing. The 3D STOV possesses orthogonal OAMs in the xy, tx, and yt planes, and is preconditioned to overcome the spatiotemporal astigmatism effect. x, y, and t are the axes in the spatiotemporal domain. The corresponding focused wavepacket is calculated by employing the Debye diffraction theory, showing that a phase singularity ring is generated by the interactions among the transverse and longitudinal vortices in the highly confined STOV. The Fourier-transform decomposition of the Debye integral is employed to analyze the mechanism of the orbit–orbit interaction. This is the first revelation of coupling between the longitudinal OAM and the transverse OAM, paving the way for potential applications in optical trapping, laser machining, nonlinear light–matter interactions, and more.

Graphical abstract

Keywords

Spatiotemporal optical vortex / Orbital angular momentum / Momentum interaction / Highly confined wavepacket / Diffraction

Cite this article

Download citation ▾
Jian Chen, Jie Zhao, Xi Shen, Dewei Mo, Cheng-Wei Qiu, Qiwen Zhan. Orbit–Orbit Interaction in Spatiotemporal Optical Vortex. Engineering, 2025, 45(2): 44‒51 https://doi.org/10.1016/j.eng.2024.09.015

References

[1]
Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP.Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes.Phys Rev A 1992; 45(11):8185-8189.
[2]
Yao AM, Padgett MJ.Orbital angular momentum: origins, behavior and applications.Adv Opt Photonics 2011; 3(2):161-204.
[3]
Lavery MPJ, Speirits FC, Barnett SM, Padgett MJ.Detection of a spinning object using light’s orbital angular momentum.Science 2013; 341(6145):537-540.
[4]
Erhard M, Fickler R, Krenn M, Zeilinger A.Twisted photons: new quantum perspectives in high dimensions.Light Sci Appl 2018; 7(3):17146.
[5]
Molina-Terriza G, Torres JP, Torner L.Twisted photons.Nat Phys 2007; 3(5):305-310.
[6]
Padgett M, Bowman R.Tweezers with a twist.Nat Photonics 2011; 5(6):343-348.
[7]
Chen J, Wan C, Zhan Q.Engineering photonic angular momentum with structrured light: a review.Adv Photonics 2021; 3(6):064001.
[8]
Paterson L, MacDonald MP, Arlt J, Sibbett W, Bryant PE, Dholakia K.Controlled rotation of optically trapped microscopic particles.Science 2001; 292(5518):912-914.
[9]
Shen Y, Martínez EC, Rosales-Guzmán C.Generation of optical skyrmions with tunable topological textures.ACS Photonics 2022; 9(1):296-303.
[10]
Gao S, Speirits FC, Castellucci F, Franke-Arnold S, Barnett SM, Götte JB.Paraxial skyrmionic beams.Phys Rev A 2020; 102(5):053513.
[11]
Lin W, Ota Y, Arakawa Y, Iwamoto S.Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers.Phys Rev Res 2021; 3(2):023055.
[12]
Sugic D, Droop R, Otte E, Ehrmanntraut D, Nori F, Ruostekoski J, et al.Particle-like topologies in light.Nat Commun 2021; 12:6785.
[13]
Yan L, Gregg P, Karimi E, Rubano A, Marrucci L, Boyd R, et al.Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy.Optica 2015; 2(10):900-903.
[14]
Belmonte A, Rosales-Guzmán C, Torres JP.Measurement of flow vorticity with helical beams of light.Optica 2015; 2(11):1002-1005.
[15]
Wang J, Yang J, Fazal IM, Ahmed N, Yan Y, Huang H, et al.Terabit free-space data transmission employing orbital angular momentum multiplexing.Nat Photonics 2012; 6(7):488-496.
[16]
Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, et al.Terabit-scale orbital angular momentum mode division multiplexing in fibers.Science 2013; 340(6140):1545-1548.
[17]
Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, et al.Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities.Light Sci Appl 2019; 8:90.
[18]
Bliokh KY, Nori F.Spatiotemporal vortex beams and angular momentum.Phys Rev A 2012; 86(3):033824.
[19]
Jhajj N, Larkin I, Rosenthal EW, Zahedpour S, Wahlstrand JK, Milchberg HM.Spatiotemporal optical vortices.Phys Rev X 2016; 6(3):031037.
[20]
Chong A, Wan C, Chen J, Zhan Q.Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum.Nat Photonics 2020; 14(6):350-354.
[21]
Chen J, Lu K, Cao Q, Wan C, Hu H, Zhan Q.Automated close loop system for three-dimensional characterization of spatiotemporal optical vortex.Front Phys 2021; 9:633922.
[22]
Hancock SW, Zahedpour S, Goffin A, Milchberg HM.Free-space propagation of spatiotemporal optical vortices.Optica 2019; 6(12):1547-1553.
[23]
Che Z, Liu W, Ye J, Shi L, Chan CT, Zi J.Generation of spatiotemporal vortex pulses by resonant diffractive grating.Phys Rev Lett 2024; 132(4):044001.
[24]
Liu W, Wang J, Tang Y, Wang X, Zhao X, Shi L, et al.Exploiting topological darkness in photonic crystal slabs for spatiotemporal vortex generation.Nano Lett 2024; 24(3):943-949.
[25]
Zhou J, Pu H, Yan J.Spatiotemporal diffractive deep neural networks.Opt Express 2024; 32(2):1864-1877.
[26]
Wang S, Bai Y, Li N, Liu P.Generation of terahertz spatiotemporal optical vortices with frequency-dependent orbital angular momentum.Opt Express 2023; 31(10):16267-16280.
[27]
Ding C, Liang C, Horoshko D, Korotkova O, Pan L, Liu Z.Method for generating spatiotemporal coherency vortices and spatiotemporal dislocation curves.Opt Express 2024; 32(1):609-624.
[28]
Liu S, Zhang X, Chen H, Xie H, Yang S, Zhu S, et al.Generation of spatiotemporal vortices in nonlinear photonic crystals.Opt Lett 2023; 48(22):5951-5954.
[29]
Gui G, Brooks NJ, Kapteyn HC, Murnane MM, Liao C.Second-harmonic generation and the conservation of spatiotemporal orbital angular momentum of light.Nat Photonics 2021; 15(8):608-613.
[30]
Hancock SW, Zahedpour S, Milchberg HM.Second-harmonic generation of spatiotemporal optical vortices and conservation of orbital angular momentum.Optica 2021; 8(5):594-597.
[31]
Wang H, Chen YY, Zhang X, Shen B.Generation and periodic evolution of third harmonics carrying transverse orbital angular momentum in air-plasma filaments.Opt Express 2023; 31(22):36810-36823.
[32]
Fang Y, Lu S, Liu Y.Controlling photon transverse orbital angular momentum in high harmonic generation.Phys Rev Lett 2021; 127(27):273901.
[33]
Gui G, Brooks NJ, Wang B, Kapteyn HC, Murnane MM, Liao CT.Single-frame characterization of ultrafast pulses with spatiotemporal orbital angular momentum.ACS Photonics 2022; 9(8):2802-2808.
[34]
Zhou Y, Zhan J, Xu Z, Shao Y, Wang Y, Dang Y, et al.Electromagnetic spatiotemporal differentiation meta-devices.Laser Photonics Rev 2023; 17(11):2300182.
[35]
Porras MA.Propagation of higher-order spatiotemporal vortices.Opt Lett 2023; 48(2):367-370.
[36]
Huang S, Wang P, Shen X, Liu J, Li R.Diffraction properties of light with transverse orbital angular momentum.Optica 2022; 9(5):469-472.
[37]
Huang S, Wang P, Shen X, Liu J.Properties of the generation and propagation of spatiotemporal optical vortices.Opt Express 2021; 29(17):26995-27003.
[38]
Hyde IV MW, Porras MA.Propagation of spatiotemporal optical vortex beams in linear, second-order dispersive media.Phys Rev A 2023; 108(1):013519.
[39]
Hancock SW, Zahedpour S, Milchberg HM.Mode structure and orbital angular momentum of spatiotemporal optical vortex pulses.Phys Rev Lett 2021; 127(19):193901.
[40]
Wang H, Guo C, Jin W, Song AY, Fan S.Engineering arbitrarily oriented spatiotemporal optical vortices using transmission nodal lines.Optica 2021; 8(7):966-971.
[41]
Chen Y, Zhou Y, Li M, Liu K, Ciappina MF, Lu P.Atomic photoionization by spatiotemporal optical vortex pulses.Phys Rev A 2023; 107(3):033112.
[42]
Bliokh KY.Spatiotemporal vortex pulses: angular momenta and spin–orbit interaction.Phys Rev Lett 2021; 126(24):243601.
[43]
Chen J, Yu L, Wan C, Zhan Q.Spin–orbit coupling within tightly focused circularly polarized spatiotemporal vortex wavepacket.ACS Photonics 2022; 9(3):793-799.
[44]
Rui G, Yang B, Ying X, Gu B, Cui Y, Zhan Q.Numerical modeling for the characteristics study of a focusing ultrashort spatiotemporal optical vortex.Opt Express 2022; 30(21):37314-37322.
[45]
Leutenegger M, Rao R, Leitgeb RA, Lasser T.Fast focus field calculations.Opt Express 2006; 14(23):11277-11291.
[46]
Wan C, Cao Q, Chen J, Chong A, Zhan Q.Toroidal vortices of light.Nat Photonics 2022; 16(7):519-522.
AI Summary AI Mindmap
PDF(2771 KB)

Accesses

Citations

Detail

Sections
Recommended

/