ZEB1-AS1 as a TRPML1 Inhibitor to Cause Lysosome Dysfunction and Cardiac Damage in Aged Mice

Heng Liu, Haiying Zhang, Han Lou, Jennifer Wang, Shengxin Hao, Hui Chen, Chen Chen, Lei Wang, Huimin Li, Ziyu Meng, Wenjie Zhao, Tong Zhao, Yuan Lin, Zhimin Du, Xin Liu, Baofeng Yang, Yong Zhang

Engineering ›› 2024, Vol. 43 ›› Issue (12) : 183-200.

PDF(7088 KB)
PDF(7088 KB)
Engineering ›› 2024, Vol. 43 ›› Issue (12) : 183-200. DOI: 10.1016/j.eng.2024.09.020
Research
Article

ZEB1-AS1 as a TRPML1 Inhibitor to Cause Lysosome Dysfunction and Cardiac Damage in Aged Mice

Author information +
History +

Abstract

The prevalence of cardiovascular diseases (CVDs) has increased markedly as the world population has aged. Long non-coding RNAs (lncRNAs) have been reported as novel regulators in diverse pathophysiological conditions. Here, we performed RNA sequencing (RNA-seq) and observed that the lncRNA Zeb1os1 (zinc finger E-box binding homeobox 1, opposite strand 1), which is known as ZEB1-AS1 (zinc finger E-box binding homeobox 1 antisense 1) in humans, was upregulated in the aged mice hearts, senescent cardiomyocytes, and human blood from elderly individuals. The human blood ZEB1-AS1 level was positively relevant to human age but negatively relevant to peak E to peak A (E/A). Silencing Zeb1os1 ameliorated diastolic dysfunction and cardiac senescence in aged mice. On the other hand, Zeb1os1 overexpression triggered cardiac dysfunction resembling that observed in aged mice. Mechanistically, we provide compelling evidence that Zeb1os1 interacts with the transient receptor potential mucolipin 1 (TRPML1) for ubiquitination (UB)-mediated degradation. This process inhibits lysosomal Ca2+ efflux, impairing lysosome function. In addition, the functional domain of Zeb1os1, which contains the key nucleotides responsible for the pro-senescence property of full-length Zeb1os1 in cardiomyocytes. Together, these data suggest that Zeb1os1 is a potential target for ameliorating lysosomal dysfunction and aging-related cardiac impairment.

Graphical abstract

Keywords

Heart aging / Cardiomyocytes senescence / ZEB1-AS1 / TRPML1 / Lysosome

Cite this article

Download citation ▾
Heng Liu, Haiying Zhang, Han Lou, Jennifer Wang, Shengxin Hao, Hui Chen, Chen Chen, Lei Wang, Huimin Li, Ziyu Meng, Wenjie Zhao, Tong Zhao, Yuan Lin, Zhimin Du, Xin Liu, Baofeng Yang, Yong Zhang. ZEB1-AS1 as a TRPML1 Inhibitor to Cause Lysosome Dysfunction and Cardiac Damage in Aged Mice. Engineering, 2024, 43(12): 183‒200 https://doi.org/10.1016/j.eng.2024.09.020

References

[1]
P. Martinez-Amezcua, W. Haque, R. Khera, A.M. Kanaya, N. Sattar, C.S.P. Lam, et al. The upcoming epidemic of heart failure in South Asia. Circ Heart Fail, 13 (10) (2020), Article e007218.
[2]
M.M. Redfield, S.J. Jacobsen, J.C. Burnett, D.W. Mahoney, K.R. Bailey, R.J. Rodeheffer. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA, 289 (2) (2003), pp. 194-202.
[3]
B.A. Borlaug. The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol, 11 (9) (2014), pp. 507-515.
[4]
M.S. Chen, R.T. Lee, J.C. Garbern. Senescence mechanisms and targets in the heart. Cardiovasc Res, 118 (5) (2022), pp. 1173-1187.
[5]
X. Liu, Z. Liu, Z. Wu, J. Ren, Y. Fan, L. Sun, et al. Resurrection of endogenous retroviruses during aging reinforces senescence. Cell, 186 (2) (2023), pp. 287-304.e26.
[6]
P. Saftig, A. Haas. Turn up the lysosome. Nat Cell Biol, 18 (10) (2016), pp. 1025-1027.
[7]
S.H. Kuo, I. Tasset, M.M. Cheng, A. Diaz, M.K. Pan, O.J. Lieberman, et al. Mutant glucocerebrosidase impairs α-synuclein degradation by blockade of chaperone-mediated autophagy. Sci Adv, 8 (6) (2022), Article eabm6393.
[8]
A. Ballabio, J.S. Bonifacino. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol, 21 (2) (2020), pp. 101-118.
[9]
F. Bao, L. Zhou, R. Zhou, Q. Huang, J. Chen, S. Zeng, et al. Mitolysosome exocytosis, a mitophagy-independent mitochondrial quality control in flunarizine-induced parkinsonism-like symptoms. Sci Adv, 8 (15) (2022), Article eabk2376.
[10]
H. Liu, Z. Huang, H. Jiang, K. Su, Z. Si, W. Wu, et al. Dihydroartemisinin attenuates ischemia/reperfusion-induced renal tubular senescence by activating autophagy. Chin J Nat Med, 21 (9) (2023), pp. 682-693.
[11]
Q. Chen, J. She, W. Zeng, J. Guo, H. Xu, X. Bai, et al. Structure of mammalian endolysosomal TRPML 1 channel in nanodiscs. Nature, 550 (7676) (2017), pp. 415-418.
[12]
X. Zhang, X. Cheng, L. Yu, J. Yang, R. Calvo, S. Patnaik, et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun, 7 (2016), p. 12109.
[13]
W. Cui, A. Sathyanarayan, M. Lopresti, M. Aghajan, C. Chen, D.G. Mashek. Lipophagy-derived fatty acids undergo extracellular efflux via lysosomal exocytosis. Autophagy, 17 (3) (2021), pp. 690-705.
[14]
D.L. Medina, S. Di Paola, I. Peluso, A. Armani, D. De Stefani, R. Venditti, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol, 17 (3) (2015), pp. 288-299.
[15]
C. Lang, C. Yin, K. Lin, Y. Li, Q. Yang, Z. Wu, et al. m6 A modification of lncRNA PCAT 6 promotes bone metastasis in prostate cancer through IGF2BP2-mediated IGF1R mRNA stabilization. Clin Transl Med, 11 (6) (2021), p. e426.
[16]
R. Wang, L. Cao, R.F. Thorne, X. Zhang, J. Li, F. Shao, et al. LncRNA GIRGL drives CAPRIN1-mediated phase separation to suppress glutaminase-1 translation under glutamine deprivation. Sci Adv, 7 (13) (2021), Article eabe5708.
[17]
F. Ding, L. Lu, C. Wu, X. Pan, B. Liu, Y. Zhang, et al. circHIPK3 prevents cardiac senescence by acting as a scaffold to recruit ubiquitin ligase to degrade HuR. Theranostics, 12 (17) (2022), pp. 7550-7566.
[18]
Y. Zhang, L. Jiao, L. Sun, Y. Li, Y. Gao, C. Xu, et al. LncRNA ZFAS 1 as a SERCA2a inhibitor to cause intracellular Ca2+ overload and contractile dysfunction in a mouse model of myocardial infarction. Circ Res, 122 (10) (2018), pp. 1354-1368.
[19]
Y. Zhang, X. Liu, X. Bai, Y. Lin, Z. Li, J. Fu, et al. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J Pineal Res, 64 (2) (2018), Article e12449.
[20]
R.L. Neppl, C.L. Wu, K. Walsh. lncRNA Chronos is an aging-induced inhibitor of muscle hypertrophy. J Cell Biol, 216 (11) (2017), pp. 3497-3507.
[21]
B.B. de Jesus, S.P. Marinho, S. Barros, A. Sousa-Franco, C. Alves-Vale, T. Carvalho, et al. Silencing of the lncRNA Zeb2-NAT facilitates reprogramming of aged fibroblasts and safeguards stem cell pluripotency. Nat Commun, 9 (1) (2018), p. 94.
[22]
Y. Jin, Z. Zhang, Q. Yu, Z. Zeng, H. Song, X. Huang, et al. Positive reciprocal feedback of lncRNA ZEB1-AS1 and HIF-1α contributes to hypoxia-promoted tumorigenesis and metastasis of pancreatic cancer. Front Oncol, 11 (2021), Article 761979.
[23]
X. Wang, Y. Guo, C. Wang, Q. Wang, G. Yan. Long Noncoding RNA ZEB1-AS1 downregulates miR-23a, promotes tumor progression, and predicts the survival of oral squamous cell carcinoma patients. OncoTargets Ther, 14 (2021), pp. 2699-2710.
[24]
H. Gong, H. Wen, X. Zhu, Y. Lian, X. Yang, Z. Qian, et al. High expression of long non-coding RNA ZEB1-AS1 promotes colorectal cancer cell proliferation partially by suppressing p15 expression. Tumour Biol, 39 (6) (2017), Article 1010428317705336.
[25]
Z.J. Ma, Y. Wang, H. Li, M. Liu, F. Bi, L. Ma, et al. LncZEB1-AS 1 regulates hepatocellular carcinoma bone metastasis via regulation of the miR-302b-EGFR-PI3K-AKT axis. J Cancer, 11 (17) (2020), pp. 5118-5128.
[26]
J. Wu, R. Lyu, S. Chen, X. Wang. Long non-coding ribonucleic acid zinc finger E-box binding homeobox 1 antisense RNA 1 regulates myocardial fibrosis in diabetes through the Hippo-Yes-associated protein signaling pathway. J Diabetes Investig, 14 (8) (2023), pp. 940-952.
[27]
L. Jiao, M. Gong, X. Yang, M. Li, Y. Shao, Y. Wang, et al. NAD+ attenuates cardiac injury after myocardial infarction in diabetic mice through regulating alternative splicing of VEGF in macrophages. Vascul Pharmacol, 147 (2022), Article 107126.
[28]
R.E. Pachon, B.A. Scharf, D.E. Vatner, S.F. Vatner. Best anesthetics for assessing left ventricular systolic function by echocardiography in mice. Am J Physiol Heart Circ Physiol, 308 (12) (2015), pp. H1525-H1529.
[29]
C. de Lucia, L.A. Grisanti, G. Borghetti, M. Piedepalumbo, J. Ibetti, A.M. Lucchese, et al. G protein-coupled receptor kinase 5 (GRK5) contributes to impaired cardiac function and immune cell recruitment in post-ischemic heart failure. Cardiovasc Res, 118 (1) (2022), pp. 169-183.
[30]
K.S. McCommis, A. Kovacs, C.J. Weinheimer, T.M. Shew, T.R. Koves, O.R. Ilkayeva, et al. Nutritional modulation of heart failure in mitochondrial pyruvate carrier-deficient mice. Nat Metab, 2 (11) (2020), pp. 1232-1247.
[31]
M.D. Robinson, D.J. McCarthy, G.K. Smyth. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26 (1) (2010), pp. 139-140.
[32]
K.F. Azman, R. Zakaria. D-Galactose-induced accelerated aging model: an overview. Biogerontology, 20 (6) (2019), pp. 763-782.
[33]
T.A. McDonagh, M. Metra, M. Adamo, R.S. Gardner, A. Baumbach, M. Böhm, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J, 42 (36) (2021), pp. 3599-3726.
[34]
D.E. Selby, B.M. Palmer, M.M. LeWinter, M. Meyer. Tachycardia-induced diastolic dysfunction and resting tone in myocardium from patients with a normal ejection fraction. J Am Coll Cardiol, 58 (2) (2011), pp. 147-154.
[35]
Y. Haraoka, Y. Akieda, Y. Nagai, C. Mogi, T. Ishitani. Zebrafish imaging reveals TP53 mutation switching oncogene-induced senescence from suppressor to driver in primary tumorigenesis. Nat Commun, 13 (1) (2022), p. 1417.
[36]
S. Glück, B. Guey, M.F. Gulen, K. Wolter, T.W. Kang, N.A. Schmacke, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol, 19 (9) (2017), pp. 1061-1070.
[37]
M. Zohar-Fux, A. Ben-Hamo-Arad, T. Arad, M. Volin, B. Shklyar, K. Hakim-Mishnaevski, et al. The phagocytic cyst cells in Drosophila testis eliminate germ cell progenitors via phagoptosis. Sci Adv, 8 (24) (2022), Article eabm4937.
[38]
H. Yamamoto-Imoto, S. Minami, T. Shioda, Y. Yamashita, S. Sakai, S. Maeda, et al. Age-associated decline of MondoA drives cellular senescence through impaired autophagy and mitochondrial homeostasis. Cell Rep, 38 (9) (2022), Article 110444.
[39]
X. Cheng, X. Zhang, Q. Gao, M. Ali Samie, M. Azar, W.L. Tsang, et al. The intracellular Ca2+ channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy. Nat Med, 20 (10) (2014), pp. 1187-1192.
[40]
A.B. Herman, D. Tsitsipatis, M. Gorospe. Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell, 82 (12) (2022), pp. 2252-2266.
[41]
Y. Chen, J. Liu, X. Zhang, H. Zhu, Y. Wang, Z. Li, et al. lncRNA-GM targets Foxo 1 to promote T cell-mediated autoimmunity. Sci Adv, 8 (31) (2022), Article eabn9181.
[42]
H.K. Kim, G.H. Lee, K.R. Bhattarai, M.S. Lee, S.H. Back, H.R. Kim, et al. TMBIM6 (transmembrane BAX inhibitor motif containing 6) enhances autophagy through regulation of lysosomal calcium. Autophagy, 17 (3) (2021), pp. 761-778.
[43]
C. Settembre, R.M. Perera. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat Rev Mol Cell Biol, 25 (3) (2024), pp. 223-245.
[44]
D. Lu, T. Thum. RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nat Rev Cardiol, 16 (11) (2019), pp. 661-674.
[45]
B. Zhu, L. Zhang, C. Liang, B. Liu, X. Pan, Y. Wang, et al. Stem cell-derived exosomes prevent aging-induced cardiac dysfunction through a novel exosome/lncRNA MALAT1/NF-κB/TNF-α signaling pathway. Oxid Med Cell Longev, 2019 (2019), Article 9739258.
[46]
X. Yang, D. Zhao, W.B. Lau, K. Liu, J. Tian, Z. Cheng, et al. lncRNA ENSMUST 00000134285 increases MAPK11 activity, regulating aging-related myocardial apoptosis. J Gerontol A Biol Sci Med Sci, 73 (8) (2018), pp. 1010-1017.
[47]
J. Li, H. Xue, N. Xu, L. Gong, M. Li, S. Li, et al. CPAL, as a new mediator of cardiomyocyte metabolic alterations and pyroptosis, regulates myocardial infarction injury in mice. Engineering, 20 (2023), pp. 49-62.
[48]
L. Zhao, P. Tang, Y. Lin, M. Du, H. Li, L. Jiang, et al. MiR-203 improves cardiac dysfunction by targeting PARP1-NAD+ axis in aging murine. Aging Cell, 23 (3) (2024), Article e14063.
[49]
Z. Wu, Z. Guo, Y. Zheng, Y. Wang, H. Zhang, H. Pan, et al. IgG N-glycosylation cardiovascular age tracks cardiovascular risk beyond calendar age. Engineering, 26 (2023), pp. 99-107.
[50]
L.F. Buckley, B.L. Claggett, K. Matsushita, G.M. McMahon, H. Skali, J. Coresh, et al. Chronic kidney disease, heart failure, and adverse cardiac remodeling in older adults: the ARIC study. JACC Heart Fail, 11 (5) (2023), pp. 523-537.
[51]
Y. Ye, K. Yang, H. Liu, Y. Yu, M. Song, D. Huang, et al. SIRT 2 counteracts primate cardiac aging via deacetylation of STAT3 that silences CDKN2B. Nature Aging, 3 (10) (2023), pp. 1269-1287.
[52]
Y. Zhang, Y. Zheng, S. Wang, Y. Fan, Y. Ye, Y. Jing, et al. Single-nucleus transcriptomics reveals a gatekeeper role for FOXP 1 in primate cardiac aging. Protein Cell, 14 (4) (2023), pp. 279-293.
[53]
M. Abdellatif, V. Trummer-Herbst, A.M. Heberle, A. Humnig, T. Pendl, S. Durand, et al. Fine-tuning cardiac insulin-like growth factor 1 receptor signaling to promote health and longevity. Circulation, 145 (25) (2022), pp. 1853-1866.
[54]
X. Liu, X. Bai, H. Liu, Y. Hong, H. Cui, L. Wang, et al. LncRNA LOC 105378097 inhibits cardiac mitophagy in natural ageing mice. Clin Transl Med, 12 (6) (2022), p. e908.
[55]
C. López-Otín, M.A. Blasco, L. Partridge, M. Serrano, G. Kroemer. Hallmarks of aging: an expanding universe. Cell, 186 (2) (2023), pp. 243-278.
[56]
W. Li, H. Wang, Y. Tan, Y. Wang, S. Yu, Z. Li. Reducing lipofuscin accumulation and cardiomyocytic senescence of aging heart by enhancing autophagy. Exp Cell Res, 403 (1) (2021), Article 112585.
[57]
L. Zhang, Y. Sun, M. Fei, C. Tan, J. Wu, J. Zheng, et al. Disruption of chaperone-mediated autophagy-dependent degradation of MEF2A by oxidative stress-induced lysosome destabilization. Autophagy, 10 (6) (2014), pp. 1015-1035.
[58]
S. Di Paola, A. Scotto-Rosato, D.L. Medina. TRPML1: The Ca2+ retaker of the lysosome. Cell Calcium, 69 (2018), pp. 112-121.
[59]
W. Peng, Y.C. Wong, D. Krainc. Mitochondria-lysosome contacts regulate mitochondrial Ca2+ dynamics via lysosomal TRPML1. Proc Natl Acad Sci USA, 117 (32) (2020), pp. 19266-19275.
[60]
B. Pan, J. Li, N. Parajuli, Z. Tian, P. Wu, M.T. Lewno, et al. The calcineurin-TFEB-p 62 pathway mediates the activation of cardiac macroautophagy by proteasomal malfunction. Circ Res, 127 (4) (2020), pp. 502-518.
[61]
S. Nakamura, S. Shigeyama, S. Minami, T. Shima, S. Akayama, T. Matsuda, et al. LC 3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury. Nat Cell Biol, 22 (10) (2020), pp. 1252-1263.
[62]
P.P.Y. Lie, L. Yoo, C.N. Goulbourne, M.J. Berg, P. Stavrides, C. Huo, et al. Axonal transport of late endosomes and amphisomes is selectively modulated by local Ca2+ efflux and disrupted by PSEN1 loss of function. Sci Adv, 8 (17) (2022), Article eabj5716.
[63]
J. Sun, Y. Liu, X. Hao, W. Lin, W. Su, E. Chiang, et al. LAMTOR1 inhibition of TRPML1-dependent lysosomal calcium release regulates dendritic lysosome trafficking and hippocampal neuronal function. EMBO J, 41 (5) (2022), Article e108119.
[64]
J. Qi, Y. Xing, Y. Liu, M. Wang, X. Wei, Z. Sui, et al. MCOLN1/TRPML 1 finely controls oncogenic autophagy in cancer by mediating zinc influx. Autophagy, 17 (12) (2021), pp. 4401-4422.
[65]
Y. Xing, Z. Sui, Y. Liu, M. Wang, X. Wei, Q. Lu, et al. Blunting TRPML1 channels protects myocardial ischemia/reperfusion injury by restoring impaired cardiomyocyte autophagy. Basic Res Cardiol, 117 (1) (2022), p. 20.
[66]
L. Statello, C. Guo, L. Chen, M. Huarte. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol, 22 (2) (2021), pp. 96-118.
[67]
H. Xiao, M. Zhang, H. Wu, J. Wu, X. Hu, X. Pei, et al. CIRKIL exacerbates cardiac ischemia/reperfusion injury by interacting with Ku70. Circ Res, 130 (5) (2022), pp. e3-e17.
[68]
S.Y. Lv, T.D. Shan, X.T. Pan, Z.B. Tian, X.S. Liu, F.G. Liu, et al. The lncRNA ZEB1-AS 1 sponges miR-181a-5p to promote colorectal cancer cell proliferation by regulating Wnt/β-catenin signaling. Cell Cycle, 17 (10) (2018), pp. 1245-1254.
[69]
G. Wu, M. Xue, Y. Zhao, Y. Han, C. Li, S. Zhang, et al. Long noncoding RNA ZEB1-AS 1 acts as a sponge of miR-141-3p to inhibit cell proliferation in colorectal cancer. Int J Med Sci, 17 (11) (2020), pp. 1589-1597.
[70]
B. Mu, C. Lv, Q. Liu, H. Yang. Long non-coding RNA ZEB1-AS1 promotes proliferation and metastasis of hepatocellular carcinoma cells by targeting miR-299-3p/E2F1 axis. J Biochem, 170 (1) (2021), pp. 41-50.
[71]
W. Su, M. Xu, X. Chen, N. Chen, J. Gong, L. Nie, et al. Long noncoding RNA ZEB1-AS1 epigenetically regulates the expressions of ZEB1 and downstream molecules in prostate cancer. Mol Cancer, 16 (1) (2017), p. 142.
AI Summary AI Mindmap
PDF(7088 KB)

Accesses

Citations

Detail

Sections
Recommended

/