Current Advances of Artificial Ligaments for Anterior Cruciate Ligament Reconstruction: From Biocompatibility to Bioactivity

Haozhi Zhang, Xin Chen, Michael Tim-Yun Ong, Lei Lei, Lizhen Zheng, Bingyang Dai, Wenxue Tong, Bruma Sai-Chuen Fu, Jiankun Xu, Patrick Shu-Hang Yung, Ling Qin

Engineering ›› 2025, Vol. 46 ›› Issue (3) : 47-59.

PDF(1554 KB)
PDF(1554 KB)
Engineering ›› 2025, Vol. 46 ›› Issue (3) : 47-59. DOI: 10.1016/j.eng.2024.10.018
Research
Review

Current Advances of Artificial Ligaments for Anterior Cruciate Ligament Reconstruction: From Biocompatibility to Bioactivity

Author information +
History +

Abstract

Anterior cruciate ligament (ACL) injuries are frequently caused by sports injuries and trauma. In cases involving complete tears, ACL reconstruction (ACLR) surgery is the only way to restore the ligament’s integrity. When selecting a graft, both the potential complications and the mechanical properties and healing efficacies should be considered. Artificial ligaments have been widely applied in clinical ACLR, and most have exhibited satisfactory biocompatibility and short-term follow-up results. Compared with autografts and allografts, however, the lack of bioactivity of currently available artificial ligaments is a major disadvantage. In addition, some long-term follow-up results have revealed other drawbacks of artificial ligaments, such as graft failure and other complications. Here, we summarize attempts to enhance the bioactive performance of artificial ligaments, as such modifications may have good potential for clinical translation and could improve the long-term outcomes of existing products.

Graphical abstract

Keywords

Anterior cruciate ligament reconstruction / Artificial ligament / Biomaterials / Graft–bone integration / Intra-articular tissue remodeling

Cite this article

Download citation ▾
Haozhi Zhang, Xin Chen, Michael Tim-Yun Ong, Lei Lei, Lizhen Zheng, Bingyang Dai, Wenxue Tong, Bruma Sai-Chuen Fu, Jiankun Xu, Patrick Shu-Hang Yung, Ling Qin. Current Advances of Artificial Ligaments for Anterior Cruciate Ligament Reconstruction: From Biocompatibility to Bioactivity. Engineering, 2025, 46(3): 47‒59 https://doi.org/10.1016/j.eng.2024.10.018

References

[1]
Satora W, Królikowska A, Czamara A, Reichert P.Synthetic grafts in the treatment of ruptured anterior cruciate ligament of the knee joint.Polim Med 2017; 47(1):55-59.
[2]
Song B, Li W, Chen Z, Fu G, Li C, Liu W, et al.Biomechanical comparison of pure magnesium interference screw and polylactic acid polymer interference screw in anterior cruciate ligament reconstruction—a cadaveric experimental study.J Orthop Translat 2017; 8:32-39.
[3]
Huang W, Ong TY, Fu SC, Yung SH.Prevalence of patellofemoral joint osteoarthritis after anterior cruciate ligament injury and associated risk factors: a systematic review.J Orthop Translat 2020; 22:14-25.
[4]
Xu Y, Cai H, Yang W, Li W, Song B, Jiang C, et al.Effect of personality traits on rehabilitation effect after anterior cruciate ligament reconstruction: an observational study.Ann Phys Rehabil Med 2021; 65(4):101570.
[5]
Rayan F, Nanjayan SK, Quah C, Ramoutar D, Konan S, Haddad FS.Review of evolution of tunnel position in anterior cruciate ligament reconstruction.World J Orthop 2015; 6(2):252-262.
[6]
Ardern CL, Taylor NF, Feller JA, Webster KE.Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors.Br J Sports Med 2014; 48(21):1543-1552.
[7]
Swart NM, van K Oudenaarde, Bierma-Zeinstra SMA, Bloem JL, Bindels PJE, Algra PR, et al.Predicting no return to sports after three months in patients with traumatic knee complaints in general practice by combining patient characteristics, trauma characteristics and knee complaints.Eur J Gen Pract 2019; 25(4):205-213.
[8]
Yu H, Fu F, Yao S, Luo H, Xu T, Jin H, et al.Biomechanical, histologic, and molecular characteristics of graft-tunnel healing in a murine modified ACL reconstruction model.J Orthop Translat 2020; 24:103-111.
[9]
Yao SY, Cao MD, He X, Fu BSC, Yung PSH.Biological modulations to facilitate graft healing in anterior cruciate ligament reconstruction (ACLR), when and where to apply?.A systematic review. J Orthop Translat 2021; 30:51-60.
[10]
Bach BR Jr.ACL reconstruction: revisited, revised, reviewed.J Knee Surg 2004; 17(3):125-126.
[11]
Carson EW, Anisko EM, Restrepo C, Panariello RA, O SJ’Brien, Warren RF.Revision anterior cruciate ligament reconstruction: etiology of failures and clinical results.J Knee Surg 2004; 17(3):127-132.
[12]
Samitier G, Marcano AI, Alentorn-Geli E, Cugat R, Farmer KW, Moser MW.Failure of anterior cruciate ligament reconstruction.Arch Bone Jt Surg 2015; 3(4):220-240.
[13]
van DT Yperen, Reijman M, van EM Es, Bierma-Zeinstra SMA, Meuffels DE.Twenty-year follow-up study comparing operative versus nonoperative treatment of anterior cruciate ligament ruptures in high-level athletes.Am J Sports Med 2018; 46(5):1129-1136.
[14]
Legnani C, Ventura A, Terzaghi C, Borgo E, Albisetti W.Anterior cruciate ligament reconstruction with synthetic grafts.A review of literature. Int Orthop 2010; 34(4):465-471.
[15]
Batty LM, Norsworthy CJ, Lash NJ, Wasiak J, Richmond AK, Feller JA.Synthetic devices for reconstructive surgery of the cruciate ligaments: a systematic review.Arthroscopy 2015; 31(5):957-968.
[16]
Legnani C, Ventura A.Synthetic grafts for anterior cruciate ligament reconstructive surgery.Med Eng Phys 2023; 117:103992.
[17]
Williams DF.On the mechanisms of biocompatibility.Biomaterials 2008; 29(20):2941-2953.
[18]
Williams DF.Biocompatibility pathways and mechanisms for bioactive materials: the bioactivity zone.Bioact Mater 2022; 10:306-322.
[19]
Gabler CM, Jacobs CA, Howard JS, Mattacola CG, Johnson DL.Comparison of graft failure rate between autografts placed via an anatomic anterior cruciate ligament reconstruction technique: a systematic review, meta-analysis, and meta-regression.Am J Sports Med 2016; 44(4):1069-1079.
[20]
Hurley ET, Mojica ES, Kanakamedala AC, Meislin RJ, Strauss EJ, Campbell KA, et al.Quadriceps tendon has a lower re-rupture rate than hamstring tendon autograft for anterior cruciate ligament reconstruction—a meta-analysis.J ISAKOS 2022; 7(2):87-93.
[21]
Fan D, Ma J, Zhang L.Patellar tendon versus artificial grafts in anterior cruciate ligament reconstruction: a systematic review and meta-analysis.J Orthop Surg Res 2021; 16(1):478.
[22]
Thaunat M, Fayard JM, Sonnery-Cottet B.Hamstring tendons or bone–patellar tendon–bone graft for anterior cruciate ligament reconstruction?.Orthop Traumatol Surg Res 2019; 105(1 Suppl):S89-S94.
[23]
Bergeron JJ, Sercia QP, Drager J, Pelet S, Belzile EL.Return to baseline physical activity after bone–patellar tendon–bone versus hamstring tendon autografts for anterior cruciate ligament reconstruction: a systematic review and meta-analysis of randomized controlled trials.Am J Sports Med 2021; 50(8):2292-2303.
[24]
Dai W, Leng X, Wang J, Cheng J, Hu X, Ao Y.Quadriceps tendon autograft versus bone–patellar tendon–bone and hamstring tendon autografts for anterior cruciate ligament reconstruction: a systematic review and meta-analysis.Am J Sports Med 2021; 50(12):3425-3439.
[25]
Hurvitz AP, Prentice HA, Funahashi TT, Maletis GB.Screw and sheath tibial fixation associated with a higher likelihood of deep infection after hamstring graft anterior cruciate ligament reconstruction.Am J Sports Med 2020; 48(4):806-811.
[26]
Hagemans FJA, Jonkers FJ, van MJJ Dam, von AL Gerhardt, van JP der List.Clinical and radiographic outcomes of anterior cruciate ligament reconstruction with hamstring tendon graft and femoral cortical button fixation at minimum 20-year follow-up.Am J Sports Med 2020; 48(12):2962-2969.
[27]
Runer A, Csapo R, Hepperger C, Herbort M, Hoser C, Fink C.Anterior cruciate ligament reconstructions with quadriceps tendon autograft result in lower graft rupture rates but similar patient-reported outcomes as compared with hamstring tendon autograft: a comparison of 875 patients.Am J Sports Med 2020; 48(9):2195-2204.
[28]
Slone HS, Romine SE, Premkumar A, Xerogeanes JW.Quadriceps tendon autograft for anterior cruciate ligament reconstruction: a comprehensive review of current literature and systematic review of clinical results.Arthroscopy 2015; 31(3):541-554.
[29]
Shani RH, Umpierez E, Nasert M, Hiza EA, Xerogeanes J.Biomechanical comparison of quadriceps and patellar tendon grafts in anterior cruciate ligament reconstruction.Arthroscopy 2016; 32(1):71-75.
[30]
Deng N, Zhang L, Sun J, Ma J, Zhang S, Liu X, et al.Tibialis anterior allograft versus hamstring tendon autograft for anterior cruciate ligament reconstruction: long-term clinical outcomes.China Orthop Traumatol 2021; 34(3):269-274.
[31]
Wang S, Zhang C, Cai Y, Lin X.Autograft or allograft? Irradiated or not? A contrast between autograft and allograft in anterior cruciate ligament reconstruction: a meta-analysis.Arthroscopy 2018; 34(12):3258-3265.
[32]
Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, Hewett TE, Flanigan DC, et al.Change in anterior cruciate ligament graft choice and outcomes over time.Arthroscopy 2017; 33(11):2007-2014.
[33]
Lansdown DA, Riff AJ, Meadows M, Yanke AB, Bach BR Jr.What factors influence the biomechanical properties of allograft tissue for ACL reconstruction? A systematic review.Clin Orthop Relat Res 2017; 475(10):2412-2426.
[34]
Swank KR, Behn AW, Dragoo JL.The effect of donor age on structural and mechanical properties of allograft tendons.Am J Sports Med 2015; 43(2):453-459.
[35]
Gorschewsky O, Klakow A, Riechert K, Pitzl M, Becker R.Clinical comparison of the Tutoplast allograft and autologous patellar tendon (bone–patellar tendon–bone) for the reconstruction of the anterior cruciate ligament: 2- and 6-year results.Am J Sports Med 2005; 33(8):1202-1209.
[36]
Tian S, Wang B, Liu L, Wang Y, Ha C, Li Q, et al.Irradiated hamstring tendon allograft versus autograft for anatomic double-bundle anterior cruciate ligament reconstruction.Am J Sports Med 2016; 44(10):2579-2588.
[37]
Poehling GG, Curl WW, Lee CA, Ginn TA, Rushing JT, Naughton MJ, et al.Analysis of outcomes of anterior cruciate ligament repair with 5-year follow-up: allograft versus autograft. Arthroscopy 2005; 21(7):774.e1–85.
[38]
Kraeutler MJ, Bravman JT, McCarty EC.Bone–patellar tendon–bone autograft versus allograft in outcomes of anterior cruciate ligament reconstruction: a meta-analysis of 5182 patients.Am J Sports Med 2013; 41(10):2439-2448.
[39]
Conte EJ, Hyatt AE, Gatt CJ Jr, Dhawan A.Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure.Arthroscopy 2014; 30(7):882-890.
[40]
Mariscalco MW, Flanigan DC, Mitchell J, Pedroza AD, Jones MH, Andrish JT, et al.The influence of hamstring autograft size on patient-reported outcomes and risk of revision after anterior cruciate ligament reconstruction: a multicenter orthopaedic outcomes network (MOON) cohort study.Arthroscopy 2013; 29(12):1948-1953.
[41]
Yu A, Prentice HA, Burfeind WE, Funahashi T, Maletis GB.Risk of infection after allograft anterior cruciate ligament reconstruction: Are nonprocessed allografts more likely to get infected? A cohort study of over 10000 allografts.Am J Sports Med 2018; 46(4):846-851.
[42]
Chen T, Chen S.Artificial ligaments applied in anterior cruciate ligament repair and reconstruction: current products and experience.Chin J Repar Reconstr Surg 2020; 34(1):1-9.
[43]
Zhi Y, Jiang J, Zhang P, Chen S.Silk enhances the ligamentization of the polyethylene terephthalate artificial ligament in a canine anterior cruciate ligament reconstruction model.Artif Organs 2019; 43(6):e94-e108.
[44]
Yao S, Fu BS, Yung PS.Graft healing after anterior cruciate ligament reconstruction (ACLR).Asia Pac J Sports Med Arthrosc Rehabil Technol 2021; 25:8-15.
[45]
Yao S, Yung PSH, Lui PPY.Tackling the challenges of graft healing after anterior cruciate ligament reconstruction-thinking from the endpoint.Front Bioeng Biotechnol 2021; 9:756930.
[46]
Amiel D, Kleiner JB, Akeson WH.The natural history of the anterior cruciate ligament autograft of patellar tendon origin.Am J Sports Med 1986; 14(6):449-462.
[47]
Giordano M, Falciglia F, Poggiaroni A, Aulisa AG, Savignoni P, Guzzanti V.Histological changes of semitendinosus autograft after anterior cruciate ligament reconstruction in an immature rabbit model.J Exp Orthop 2015; 2(1):17.
[48]
Kawamura S, Ying L, Kim HJ, Dynybil C, Rodeo SA.Macrophages accumulate in the early phase of tendon–bone healing.J Orthop Res 2005; 23(6):1425-1432.
[49]
Scheffler SU, Unterhauser FN, Weiler A.Graft remodeling and ligamentization after cruciate ligament reconstruction.Knee Surg Sports Traumatol Arthrosc 2008; 16(9):834-842.
[50]
Inoue M, Muneta T, Ojima M, Nakamura K, Koga H, Sekiya I, et al.Inflammatory cytokine levels in synovial fluid 3, 4 days postoperatively and its correlation with early-phase functional recovery after anterior cruciate ligament reconstruction: a cohort study.J Exp Orthop 2016; 3(1):30.
[51]
Zysk SP, Fraunberger P, Veihelmann A, Dörger M, Kalteis T, Maier M, et al.Tunnel enlargement and changes in synovial fluid cytokine profile following anterior cruciate ligament reconstruction with patellar tendon and hamstring tendon autografts.Knee Surg Sports Traumatol Arthrosc 2004; 12(2):98-103.
[52]
Yung PSH, Lee YW, Fu SC, Chen CH, Rolf CG, Chan KM.Differential MMP 1 and MMP 13 expression in proliferation and ligamentization phases of graft remodeling in anterior cruciate ligament reconstruction.Connect Tissue Res 2021; 62(6):681-688.
[53]
Li H, Chen S, Tao H, Li H, Chen S.Correlation analysis of potential factors influencing graft maturity after anterior cruciate ligament reconstruction.Orthop J Sports Med 2014; 2(10):2325967114553552.
[54]
Chu CR, Williams AA.Quantitative MRI UTE-T2* and T2* show progressive and continued graft maturation over 2 years in human patients after anterior cruciate ligament reconstruction.Orthop J Sports Med 2019; 7(8):2325967119863056.
[55]
Lui PPY, Ho G, Shum WT, Lee YW, Ho PY, Lo WN, et al.Inferior tendon graft to bone tunnel healing at the tibia compared to that at the femur after anterior cruciate ligament reconstruction.J Orthop Sci 2010; 15(3):389-401.
[56]
Sun Y, Chen W, Hao Y, Gu X, Liu X, Cai J, et al.Stem cell-conditioned medium promotes graft remodeling of midsubstance and intratunnel incorporation after anterior cruciate ligament reconstruction in a rat model.Am J Sports Med 2019; 47(10):2327-2337.
[57]
Zhang M, Zhen J, Zhang X, Yang Z, Zhang L, Hao D, et al.Effect of autologous platelet-rich plasma and gelatin sponge for tendon-to-bone healing after rabbit anterior cruciate ligament reconstruction.Arthroscopy 2019; 35(5):1486-1497.
[58]
Zhao X, Zhou Y, Li J, Zhang C, Wang J.Opportunities and challenges of hydrogel microspheres for tendon–bone healing after anterior cruciate ligament reconstruction.J Biomed Mater Res B Appl Biomater 2022; 110(2):289-301.
[59]
Wang J, Xu J, Wang X, Sheng L, Zheng L, Song B, et al.Magnesium-pretreated periosteum for promoting bone–tendon healing after anterior cruciate ligament reconstruction.Biomaterials 2021; 268:120576.
[60]
Yang R, Zhang Z, Song B, Wang P, Wang L, Li W, et al.Ratio of T helper to regulatory T cells in synovial fluid and postoperative joint laxity after allograft anterior cruciate ligament reconstruction.Transplantation 2012; 94(11):1160-1166.
[61]
Chen CH.Strategies to enhance tendon graft–bone healing in anterior cruciate ligament reconstruction.Chang Gung Med J 2009; 32(5):483-493.
[62]
Tei MM, Placella G, Sbaraglia M, Tiribuzi R, Georgoulis A, Cerulli G.Does manual drilling improve the healing of bone-hamstring tendon grafts in anterior cruciate ligament reconstruction? A histological and biomechanical study in a rabbit model.Orthop J Sports Med 2020; 8(4):2325967120911600.
[63]
Lid Mén, Movin T, Papadogiannakis N, Rostg Lård-Christensen, Kartus J.Histological evaluation of regenerated semitendinosus tendon a minimum of 6 years after harvest for anterior cruciate ligament reconstruction.Orthop J Sports Med 2014; 2(9):2325967114550274.
[64]
Spalazzi JP, Boskey AL, Pleshko N, Lu HH.Quantitative mapping of matrix content and distribution across the ligament-to-bone insertion.PLoS One 2013; 8(9):e74349.
[65]
Zelzer E, Blitz E, Killian ML, Thomopoulos S.Tendon-to-bone attachment: from development to maturity.Birth Defects Res C Embryo Today 2014; 102(1):101-112.
[66]
Patel S, Caldwell JM, Doty SB, Levine WN, Rodeo S, Soslowsky LJ, et al.Integrating soft and hard tissues via interface tissue engineering.J Orthop Res 2018; 36(4):1069-1077.
[67]
Ekdahl M, Wang JH, Ronga M, Fu FH.Graft healing in anterior cruciate ligament reconstruction.Knee Surg Sports Traumatol Arthrosc 2008; 16(10):935-947.
[68]
Lu D, Yang C, Zhang Z, Xiao M.Enhanced tendon–bone healing with acidic fibroblast growth factor delivered in collagen in a rabbit anterior cruciate ligament reconstruction model.J Orthop Surg Res 2018; 13:301.
[69]
Takigami J, Hashimoto Y, Yamasaki S, Terai S, Nakamura H.Direct bone-to-bone integration between recombinant human bone morphogenetic protein-2-injected tendon graft and tunnel wall in an anterior cruciate ligament reconstruction model.Int Orthop 2015; 39(7):1441-1447.
[70]
Berg EE, Pollard ME, Kang Q.Interarticular bone tunnel healing.Arthroscopy 2001; 17(2):189-195.
[71]
Rougraff BT, Shelbourne KD.Early histologic appearance of human patellar tendon autografts used for anterior cruciate ligament reconstruction.Knee Surg Sports Traumatol Arthrosc 1999; 7(1):9-14.
[72]
Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF.Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog.J Bone Joint Surg Am 1993; 75(12):1795-1803.
[73]
Goradia VK, Rochat MC, Kida M, Grana WA.Natural history of a hamstring tendon autograft used for anterior cruciate ligament reconstruction in a sheep model.Am J Sports Med 2000; 28(1):40-46.
[74]
Scheffler S, Dustmann M, Gangey I, Schulz T, Unterhauser F, Weiler A.The biological healing and restoration of the mechanical properties of free soft-tissue allografts lag behind autologous ACL reconstruction in the sheep model.Trans Orthop Res 2005; 51:0236.
[75]
Bosch U, Kasperczyk WJ, Oestern HJ, Tscherne H.The patellar tendon graft for PCL reconstruction. Morphological aspects in a sheep model.Acta Orthop Belg 1994; 60(Suppl 1):57-61.
[76]
Weiler A, Unterhauser FN, Bail HJ, Hüning M, Haas NP.Alpha-smooth muscle actin is expressed by fibroblastic cells of the ovine anterior cruciate ligament and its free tendon graft during remodeling.J Orthop Res 2002; 20(2):310-317.
[77]
Janssen RP, Scheffler SU.Graft remodeling and ligamentization after anterior cruciate ligament reconstruction.C.C. Prodromos (Ed.), The anterior cruciate ligament: reconstruction and basic science, Elsevier, Berlin 2018; 341-347.
[78]
Janssen RP, Scheffler SU.Intra-articular remodelling of hamstring tendon grafts after anterior cruciate ligament reconstruction.Knee Surg Sports Traumatol Arthrosc 2014; 22(9):2102-2108.
[79]
Cai J, Xu J, Kang Y, Li Y, Wang L, Yan X, et al.Acceleration of ligamentization and osseointegration processes after anterior cruciate ligament reconstruction with autologous tissue-engineered polyethylene terephthalate graft.Ann Transl Med 2021; 9(9):770.
[80]
Cai J, Wan F, Dong Q, Jiang J, Ai C, Sheng D, et al.Silk fibroin and hydroxyapatite segmented coating enhances graft ligamentization and osseointegration processes of the polyethylene terephthalate artificial ligament in vitro and in vivo.J Mater Chem B Mater Biol Med 2018; 6(36):5738-5749.
[81]
O FJ’Brien.Biomaterials & scaffolds for tissue engineering.Mater Today 2011; 14(3):88-95.
[82]
Li H, Li J, Jiang J, Lv F, Chang J, Chen S, et al.An osteogenesis/angiogenesis-stimulation artificial ligament for anterior cruciate ligament reconstruction.Acta Biomater 2017; 54:399-410.
[83]
Bashaireh KM, Audat Z, Radaideh AM, Aleshawi AJ.The effectiveness of autograft used in anterior cruciate ligament reconstruction of the knee: surgical records for the new generations of orthopedic surgeons and synthetic graft revisit.Orthop Res Rev 2020; 12:61-67.
[84]
Indelicato PA, Pascale MS, Huegel MO.Early experience with the GORE-TEX polytetrafluoroethylene anterior cruciate ligament prosthesis.Am J Sports Med 1989; 17(1):55-62.
[85]
Woods GA, Indelicato PA, Prevot TJ.The Gore-Tex anterior cruciate ligament prosthesis.Am J Sports Med 1991; 19(1):48-55.
[86]
Muren O, Dahlstedt L, Brosjö E, Dahlborn M, Dalén N.Gross osteolytic tibia tunnel widening with the use of Gore-Tex anterior cruciate ligament prosthesis.Acta Orthop 2005; 76(2):270-274.
[87]
Mody BS, Howard L, Harding ML, Parmar HV, Learmonth DJ.The ABC carbon and polyester prosthetic ligament for ACL-deficient knees. Early results in 31 cases.J Bone Joint Surg Br, 1993; 75-B(5):818-821.
[88]
Campbell AC, Rae PS.Anterior cruciate reconstruction with the ABC carbon and polyester prosthetic ligament.Ann R Coll Surg Engl 1995; 77(5):349-350.
[89]
Petrou G, Chardouvelis C, Kouzoupis A, Dermon A, Petrou H, Tilkeridis C, et al.Reconstruction of the anterior cruciate ligament using the polyester ABC ligament scaffold.J Bone Joint Surg Br, 2006; 88-B(7):893-899.
[90]
Jonsson H, Elmqvist LG, Kärrholm J, Fugl-Meyer A.Lengthening of anterior cruciate ligament graft.Acta Orthop Scand 1992; 63(6):587-592.
[91]
Barrett GR, Field LD.Comparison of patella tendon versus patella tendon/Kennedy ligament augmentation device for anterior cruciate ligament reconstruction: study of results, morbidity, and complications.Arthroscopy 1993; 9(6):624-632.
[92]
Muren O, Dahlstedt L, Dal Nén.Reconstruction of acute anterior cruciate ligament injuries: a prospective, randomised study of 40 patients with 7-year follow-up.Arch Orthop Trauma Surg 2003; 123(4):144-147.
[93]
Gr Tøntvedt, Engebretsen L.Comparison between two techniques for surgical repair of the acutely torn anterior cruciate ligament.Scand J Med Sci Sports 1995; 5(6):358-363.
[94]
Winnisch M, Tiefenboeck TM, Steiger M, Komjati M, Hofbauer M, Kdolsky R.Long-term results after primary augmented repair of proximal tears of the anterior cruciate ligament with the Kennedy-LAD—Does it work?.Knee 2018; 25(6):1115-1121.
[95]
Elveos MM, Drogset JO, Engebretsen L, Br Rønn, Lundemo TO, Gifstad T.Anterior cruciate ligament reconstruction using a bone–patellar tendon–bone graft with and without a ligament augmentation device: a 25-year follow-up of a prospective randomized controlled trial.Orthop J Sports Med 2018; 6(11):1-8.
[96]
Thuresson P, Sandberg R, Johansson O, Balkfors B, Westlin N.Anterior cruciate ligament reconstruction with the patellar tendon—augmentation or not?.Scand J Med Sci Sports 1996; 6(4):247-254.
[97]
Ghalayini SR, Helm AT, Bonshahi AY, Lavender A, Johnson DS, Smith RB.Arthroscopic anterior cruciate ligament surgery: results of autogenous patellar tendon graft versus the Leeds–Keio synthetic graft five year follow-up of a prospective randomised controlled trial.Knee 2010; 17(5):334-339.
[98]
Murray AW, Macnicol MF.10–16 year results of Leeds-Keio anterior cruciate ligament reconstruction.Knee 2004; 11(1):9-14.
[99]
Rading J, Peterson L.Clinical experience with the Leeds-Keio artificial ligament in anterior cruciate ligament reconstruction. A prospective two-year follow-up study.Am J Sports Med 1995; 23(3):316-319.
[100]
Pan X, Wen H, Wang L, Ge T.Bone–patellar tendon–bone autograft versus LARS artificial ligament for anterior cruciate ligament reconstruction.Eur J Orthop Surg Traumatol 2013; 23(7):819-823.
[101]
Tiefenboeck TM, Thurmaier E, Tiefenboeck MM, Ostermann RC, Joestl J, Winnisch M, et al.Clinical and functional outcome after anterior cruciate ligament reconstruction using the LAR system at a minimum follow-up of 10 years.Knee 2015; 22(6):565-568.
[102]
Iliadis DP, Bourlos DN, Mastrokalos DS, Chronopoulos E, Babis GC.LARS artificial ligament versus abc purely polyester ligament for anterior cruciate ligament reconstruction.Orthop J Sports Med 2016; 4(6):967116653359.
[103]
Jia Z, Xue C, Wang W, Liu T, Huang X, Xu W.Clinical outcomes of anterior cruciate ligament reconstruction using LARS artificial graft with an at least 7-year follow-up.Medicine 2017; 96(14):e6568.
[104]
Bugelli G, Dell G’Osso, Ascione F, Gori E, Bottai V, Giannotti S.LARS™ in ACL reconstruction: evaluation of 60 cases with 5-year minimum follow-up.Musculoskelet Surg 2018; 102(1):57-62.
[105]
Bianchi N, Sacchetti F, Bottai V, Gesi M, Carlisi A, Facchini A, et al.LARS versus hamstring tendon autograft in anterior cruciate ligament reconstruction: a single-centre, single surgeon retrospective study with 8 years of follow-up.Eur J Orthop Surg Traumatol 2019; 29(2):447-453.
[106]
Su M, Jia X, Zhang Z, Jin Z, Li Y, Dong Q, et al.Medium-term (least 5 years) comparative outcomes in anterior cruciate ligament reconstruction using 4SHG, allograft, and LARS ligament.Clin J Sport Med 2021; 31(2):e101-e110.
[107]
Smolle MA, Fischerauer SF, Zötsch S, Kiegerl AV, Sadoghi P, Gruber G, et al.Long-term outcomes of surgery using the ligament advanced reinforcement system as treatment for anterior cruciate ligament tears.Bone Joint J, 2022; 104B(2):242-248.
[108]
Fujikawa K, Iseki F, Seedhom BB.Arthroscopy after anterior cruciate reconstruction with the Leeds–Keio ligament.J Bone Joint Surg Br, 1989; 71-B(4):566-570.
[109]
Kaeding C, Farr J, Kavanaugh T, Pedroza A.A prospective randomized comparison of bioabsorbable and titanium anterior cruciate ligament interference screws.Arthroscopy 2005; 21(2):147-151.
[110]
Myers P, Logan M, Stokes A, Boyd K, Watts M.Bioabsorbable versus titanium interference screws with hamstring autograft in anterior cruciate ligament reconstruction: a prospective randomized trial with 2-year follow-up.Arthroscopy 2008; 24(7):817-823.
[111]
Kotani A, Ishii Y.Reconstruction of the anterior cruciate ligament using poly-L-lactide interference screws or titanium screws: a comparative study.Knee 2001; 8(4):311-315.
[112]
Drogset JO, Straume LG, Bj Iørkmo, Myhr G.A prospective randomized study of ACL-reconstructions using bone–patellar tendon–bone grafts fixed with bioabsorbable or metal interference screws.Knee Surg Sports Traumatol Arthrosc 2011; 19(5):753-759.
[113]
Benedetto KP, Fellinger M, Lim TE, Passler JM, Schoen JL, Willems WJ.A new bioabsorbable interference screw: preliminary results of a prospective, multicenter, randomized clinical trial.Arthroscopy 2000; 16(1):41-48.
[114]
Mousavi H, Maleki A, Nobakht A.Comparative study after hamstring anterior cruciate ligament reconstruction with endobutton and rigidfix: a clinical trial study.Adv Biomed Res 2017; 6:136.
[115]
Ono Y, Sato Y, Mukai H, Enomoto T, Kimura S, Nakagawa R, et al.Randomized comparative study of suspension femoral fixation device in graft position maintenance in anterior cruciate ligament reconstruction: EndoButton CL vs TightRope RT.Asia Pac J Sports Med Arthrosc Rehabil Technol 2021; 25:42-46.
[116]
Moon HS, Choi CH, Yoo JH, Jung M, Lee TH, Choi KH, et al.The graft insertion length in the femoral tunnel during anterior cruciate ligament reconstruction with suspensory fixation and tibialis anterior allograft does not affect surgical outcomes but is negatively correlated with tunnel widening.Arthroscopy 2021; 37(9):2903-2914.e1.
[117]
Shumborski S, Heath E, Salmon LJ, Roe JP, Linklater JP, Facek M, et al.A randomized controlled trial of PEEK versus titanium interference screws for anterior cruciate ligament reconstruction with 2-year follow-up.Am J Sports Med 2019; 47(10):2386-2393.
[118]
Carulli C, Matassi F, Soderi S, Sirleo L, Munz G, Innocenti M.Resorbable screw and sheath versus resorbable interference screw and staples for ACL reconstruction: a comparison of two tibial fixation methods.Knee Surg Sports Traumatol Arthrosc 2017; 25(4):1264-1271.
[119]
Sundaraj K, Salmon LJ, Heath EL, Winalski CS, Colak C, Vasanji A, et al.Bioabsorbable versus titanium screws in anterior cruciate ligament reconstruction using hamstring autograft: a prospective, randomized controlled trial with 13-year follow-up.Am J Sports Med 2020; 48(6):1316-1326.
[120]
Barber FA, Hrnack SA.Poly L–lactide co-glycolide/β-tricalcium phosphate interference screw fixation for bone-patellar tendon bone anterior cruciate ligament reconstruction.J Knee Surg 2013; 26(06):423-428.
[121]
Chiang ER, Chen KH, Chih-Chang A Lin, Wang ST, Wu HT, Ma HL, et al.Comparison of tunnel enlargement and clinical outcome between bioabsorbable interference screws and cortical button-post fixation in arthroscopic double-bundle anterior cruciate ligament reconstruction: a prospective, randomized study with a minimum follow-up of 2 years.Arthroscopy 2019; 35(2):544-551.
[122]
Bourke HE, Salmon LJ, Waller A, Winalski CS, Williams HA, Linklater JM, et al.Randomized controlled trial of osteoconductive fixation screws for anterior cruciate ligament reconstruction: a comparison of the Calaxo and Milagro screws.Arthroscopy 2013; 29(1):74-82.
[123]
Arama Y, Salmon LJ, Sri-Ram K, Linklater J, Roe JP, Pinczewski LA.Bioabsorbable versus titanium screws in anterior cruciate ligament reconstruction using hamstring autograft: a prospective, blinded, randomized controlled trial with 5-year follow-up.Am J Sports Med 2015; 43(8):1893-1901.
[124]
Wang JH, Lee ES, Lee BH.Paradoxical tunnel enlargement after ACL reconstruction with hamstring autografts when using β-TCP containing interference screws for tibial aperture fixation—prospectively comparative study.BMC Musculoskelet Disord 2017; 18(1):398.
[125]
Frosch S, Rittstieg A, Balcarek P, Walde TA, Schüttrumpf JP, Wachowski MM, et al.Bioabsorbable interference screw versus bioabsorbable cross pins: influence of femoral graft fixation on the clinical outcome after ACL reconstruction.Knee Surg Sports Traumatol Arthrosc 2012; 20(11):2251-2256.
[126]
Li H, Chen C, Zhang S, Jiang J, Tao H, Xu J, et al.The use of layer by layer self-assembled coatings of hyaluronic acid and cationized gelatin to improve the biocompatibility of poly(ethylene terephthalate) artificial ligaments for reconstruction of the anterior cruciate ligament.Acta Biomater 2012; 8(11):4007-4019.
[127]
Huang J, Chen F, Jian G, Ye Z, Wang Z, Liu H, et al.Effect of culture complex of BMSCs and sodium hydroxide- and GRGDSPC-treated PET on the reconstruction of injured anterior cruciate ligament in a rabbit model.Int J Clin Exp Med 2015; 8(5):6902-6913.
[128]
Zhang P, Han F, Li Y, Chen J, Chen T, Zhi Y, et al.Local delivery of controlled-release simvastatin to improve the biocompatibility of polyethylene terephthalate artificial ligaments for reconstruction of the anterior cruciate ligament.Int J Nanomedicine 2016; 11:465-478.
[129]
Zhang P, Han F, Chen T, Wu Z, Chen S.“Swiss roll”-like bioactive hybrid scaffolds for promoting bone tissue ingrowth and tendon–bone healing after anterior cruciate ligament reconstruction.Biomater Sci 2020; 8(3):871-883.
[130]
Shi S, Fan W, Tao R, Xu H, Lu Y, Han F, et al.Natural biomineralization-inspired magnesium silicate composite coating upregulates osteogenesis, enabling strong anterior cruciate ligament graft-bone healing in vivo.ACS Biomater Sci Eng 2021; 7(1):133-143.
[131]
Kimura Y, Hokugo A, Takamoto T, Tabata Y, Kurosawa H.Regeneration of anterior cruciate ligament by biodegradable scaffold combined with local controlled release of basic fibroblast growth factor and collagen wrapping.Tissue Eng Part C Methods 2008; 14(1):47-57.
[132]
Li X, He J, Bian W, Li Z, Zhang W, Li D, et al.A novel silk-based artificial ligament and tricalcium phosphate/polyether ether ketone anchor for anterior cruciate ligament reconstruction—safety and efficacy in a porcine model.Acta Biomater 2014; 10(8):3696-3704.
[133]
Li H, Jiang F, Ge Y, Wan F, Li H, Chen S.Differences in artificial ligament graft osseointegration of the anterior cruciate ligament in a sheep model: a comparison between interference screw and cortical suspensory fixation.Ann Transl Med 2021; 9(17):1370.
[134]
Weiler A, Hoffmann RF, Bail HJ, Rehm O, Südkamp NP.Tendon healing in a bone tunnel. Part II: histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep.Arthroscopy 2002; 18(2):124-135.
[135]
Weiler A, Peine R, Pashmineh-Azar A, Abel C, Südkamp NP, Hoffmann RF.Tendon healing in a bone tunnel. Part I: biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep.Arthroscopy 2002; 18(2):113-123.
[136]
Hunt JA, Callaghan JT.Polymer-hydroxyapatite composite versus polymer interference screws in anterior cruciate ligament reconstruction in a large animal model.Knee Surg Sports Traumatol Arthrosc 2008; 16(7):655-660.
[137]
Cheng P, Han P, Zhao C, Zhang S, Wu H, Ni J, et al.High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF.Biomaterials 2016; 81:14-26.
[138]
Cheng P, Han P, Zhao C, Zhang S, Zhang X, Chai Y.Magnesium inference screw supports early graft incorporation with inhibition of graft degradation in anterior cruciate ligament reconstruction.Sci Rep 2016; 6:26434.
[139]
Wang J, Xu J, Song B, Chow DH, Yung PSH, Qin L.Magnesium (Mg) based interference screws developed for promoting tendon graft incorporation in bone tunnel in rabbits.Acta Biomater 2017; 63:393-410.
[140]
Diekmann J, Bauer S, Weizbauer A, Willbold E, Windhagen H, Helmecke P, et al.Examination of a biodegradable magnesium screw for the reconstruction of the anterior cruciate ligament: a pilot in vivo study in rabbits.Mater Sci Eng C 2016; 59:1100-1109.
[141]
Wang J, Wu Y, Li H, Liu Y, Bai X, Chau W, et al.Magnesium alloy based interference screw developed for ACL reconstruction attenuates peri-tunnel bone loss in rabbits.Biomaterials 2018; 157:86-97.
[142]
Chen N, Jin W, Gao H, Hong J, Sun L, Yao J, et al.Sequential intervention of anti-inflammatory and osteogenesis with silk fibroin coated polyethylene terephthalate artificial ligaments for anterior cruciate ligament reconstruction.J Mater Chem B Mater Biol Med 2023; 11(34):8281-8290.
[143]
Wang L, Wan F, Xu Y, Xie S, Zhao T, Zhang F, et al.Hierarchical helical carbon nanotube fibre as a bone-integrating anterior cruciate ligament replacement.Nat Nanotechnol 2023; 18(9):1085-1093.
[144]
Wang J, Xu J, Fu W, Cheng W, Chan K, Yung PS, et al.Biodegradable magnesium screws accelerate fibrous tissue mineralization at the tendon–bone insertion in anterior cruciate ligament reconstruction model of rabbit.Sci Rep 2017; 7(8):1902443.
[145]
He X, Li Y, Miao H, Xu J, Ong MTY, Wang C, et al.High formability Mg–Zn–Gd wire facilitates ACL reconstruction via its swift degradation to accelerate intra-tunnel endochondral ossification.Journal of Magnesium and Alloys 2024; 12(1):295-315.
[146]
Kusumbe AP, Ramasamy SK, Adams RH.Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone.Nature 2014; 507(7492):323-328.
[147]
Wang JL, Xu JK, Hopkins C, Chow DH, Qin L.Biodegradable magnesium-based implants in orthopedics—a general review and perspectives.Adv Sci 2020; 7(8):1902443.
[148]
Zhang Y, Xu J, Ruan YC, Yu MK, O M’Laughlin, Wise H, et al.Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats.Nat Med 2016; 22(10):1160-1169.
[149]
Li J, Wu G, Xu C, Cai Z, Ji J, Yu Z, et al.Slit guidance ligand 3 (SLIT3) loaded in hydrogel microparticles enhances the tendon–bone healing through promotion of type-H vessel formation: an experimental study in mice.Int J Mol Sci 2023; 24(17):13638.
[150]
Peng Y, Wu S, Li Y, Crane JL.Type H blood vessels in bone modeling and remodeling.Theranostics 2020; 10(1):426-436.
[151]
He X, Li Y, Guo J, Xu J, Zu H, Huang L, et al.Biomaterials developed for facilitating healing outcome after anterior cruciate ligament reconstruction: efficacy, surgical protocols, and assessments using preclinical animal models.Biomaterials 2021; 269:120625.
[152]
Urbanek O, Moczulska-Heljak M, Wróbel M, Mioduszewski A, Ko Dłbuk.Advanced graft development approaches for ACL reconstruction or regeneration.Biomedicines 2023; 11(2):507.
[153]
Li H, Ge Y, Wu Y, Jiang J, Gao K, Zhang P, et al.Hydroxyapatite coating enhances polyethylene terephthalate artificial ligament graft osseointegration in the bone tunnel.Int Orthop 2011; 35(10):1561-1567.
[154]
Shalumon K, Liao HT, Li WH, Darshan T, Mini P, Chen JP.Braided suture-reinforced fibrous yarn bundles as a scaffold for tendon tissue engineering in extensor digitorum tendon repair.Chem Eng J 2023; 454:140366.
[155]
Lui H, Bindra R, Baldwin J, Ivanovski S, Vaquette C.Additively manufactured multiphasic bone–ligament–bone scaffold for scapholunate interosseous ligament reconstruction.Adv Healthc Mater 2019; 8(14):1900133.
[156]
Kiseleva AP, Kiselev GO, Nikolaeva VO, Seisenbaeva G, Kessler V, Krivoshapkin PV, et al.Hybrid spider silk with inorganic nanomaterials.Nanomaterials 2020; 10(9):1853.
[157]
Kornfeld T, Nessler J, Helmer C, Hannemann R, Waldmann KH, Peck CT, et al.Spider silk nerve graft promotes axonal regeneration on long distance nerve defect in a sheep model.Biomaterials 2021; 271:120692.
[158]
Salehi S, Koeck K, Scheibel T.Spider silk for tissue engineering applications.Molecules 2020; 25(3):737.
[159]
Dinjaski N, Plowright R, Zhou S, Belton DJ, Perry CC, Kaplan DL.Osteoinductive recombinant silk fusion proteins for bone regeneration.Acta Biomater 2017; 49:127-139.
[160]
Martín-Moldes Z, López D Barreiro, Buehler MJ, Kaplan DL.Effect of the silica nanoparticle size on the osteoinduction of biomineralized silk-silica nanocomposites.Acta Biomater 2021; 120:203-212.
[161]
Li C, Hotz B, Ling S, Guo J, Haas DS, Marelli B, et al.Regenerated silk materials for functionalized silk orthopedic devices by mimicking natural processing.Biomaterials 2016; 110:24-33.
AI Summary AI Mindmap
PDF(1554 KB)

Accesses

Citations

Detail

Sections
Recommended

/