The Interface of Gene Editing with Regenerative Medicine

Veronica E. Farag, Elsie A. Devey, Kam W. Leong

Engineering ›› 2025, Vol. 46 ›› Issue (3) : 73-100.

PDF(2857 KB)
PDF(2857 KB)
Engineering ›› 2025, Vol. 46 ›› Issue (3) : 73-100. DOI: 10.1016/j.eng.2024.10.019
Research
Review

The Interface of Gene Editing with Regenerative Medicine

Author information +
History +

Abstract

The potential of regenerative medicine in the clinical space is vast, given its ability to repair and replace damaged tissues, restore lost functions due to age or disease, and transform personalized therapy. Traditional regenerative medicine and tissue engineering strategies have created specialized tissues using progenitor cells and various biological stimuli. To date, there are many US Food and Drug Administration (FDA)-approved regenerative medicine therapies, such as those for wound healing and orthopedic injuries. Nonetheless, these therapies face challenges, including off-target effects, a lack of precision, and failure to target the disease or injury at its origin. In search of novel, precise, and efficient alternatives, the regenerative medicine landscape is shifting towards genome engineering technologies, particularly gene editing. Clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing systems enable precise knock-ins, knockouts, transcriptional activation and repression, as well as specific base conversions. This advancement has allowed researchers to treat genetic and degenerative diseases, control cell fate for highly regulated tissue repair, and enhance tissue functions. In this review, we explore the progress and future prospects of CRISPR technologies in regenerative medicine, focusing on how gene editing has led to advanced therapeutic applications and served as a versatile research tool for understanding tissue development and disease progression.

Graphical abstract

Keywords

CRISPR/Cas9 / Tissue engineering / Regenerative medicine / Gene editing / Stem cell transplantation / Disease models

Cite this article

Download citation ▾
Veronica E. Farag, Elsie A. Devey, Kam W. Leong. The Interface of Gene Editing with Regenerative Medicine. Engineering, 2025, 46(3): 73‒100 https://doi.org/10.1016/j.eng.2024.10.019

References

[1]
Tavakoli K, Pour-Aboughadareh A, Kianersi F, Poczai P, Etminan A, Shooshtari L.Applications of CRISPR–Cas9 as an advanced genome editing system in life sciences.BioTech 2021; 10(3):14.
[2]
Olson JL, Atala A, Yoo JJ.Tissue engineering: current strategies and future directions.Chonnam Med J 2011; 47(1):1-13.
[3]
Akhtar A, Rad VF, Moradi AR, Yar M, Bazzar M.Emerging polymeric biomaterials and manufacturing-based tissue engineering approaches for neuro regeneration—a critical review on recent effective approaches.Smart Mater Med. 2023; 4:337-355.
[4]
Syed Mohamed SMDS, Welsh GI, Roy I.Renal tissue engineering for regenerative medicine using polymers and hydrogels.Biomater Sci 2023; 11(17):5706-5726.
[5]
Sarkar N, Bhumiratana S, Geris L, Papantoniou I, Grayson WL.Bioreactors for engineering patient-specific tissue grafts.Nat Rev Bioeng 2023; 1(5):361-377.
[6]
Bibevski S, Ruzmetov M, Fortuna RS, Turrentine MW, Brown JW, Ohye RG.Performance of synergraft decellularized pulmonary allografts compared with standard cryopreserved allografts: results from multiinstitutional data.Ann Thorac Surg 2017; 103(3):869-874.
[7]
Khan MUA, Stojanovi GMć, Abdullah MFB, Dolatshahi-Pirouz A, Marei HE, Ashammakhi N, et al.Fundamental properties of smart hydrogels for tissue engineering applications: a review.Int J Biol Macromol 2024; 254:127882.
[8]
Liu N, Ye X, Yao B, Zhao M, Wu P, Liu G, et al.Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration.Bioact Mater 2021; 6(5):1388-1401.
[9]
Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, et al.3D bioprinting of collagen to rebuild components of the human heart.Science 2019; 365(6452):482-487.
[10]
Kupfer ME, Lin WH, Ravikumar V, Qiu K, Wang L, Gao L, et al.In situ expansion, differentiation, and electromechanical coupling of human cardiac muscle in a 3D bioprinted, chambered organoid.Circ Res 2020; 127(2):207-224.
[11]
Nagarajan MB, Ainscough AJ, Reynolds DS, Uzel SGM, Bjork JW, Baker BA, et al.Biomimetic human skin model patterned with rete ridges.Biofabrication 2023; 16(1):015006.
[12]
Yang GH, Kim W, Kim J, Kim G.A skeleton muscle model using GelMA-based cell-aligned bioink processed with an electric-field assisted 3D/4D bioprinting.Theranostics 2021; 11(1):48-63.
[13]
Sydney Gladman A, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA.Biomimetic 4D printing.Nat Mater 2016; 15(4):413-418.
[14]
Skylar-Scott MA, Huang JY, Lu A, Ng AHM, Duenki T, Liu S, et al.Orthogonally induced differentiation of stem cells for the programmatic patterning of vascularized organoids and bioprinted tissues.Nat Biomed Eng 2022; 6(4):449-462.
[15]
Colombo F, Sampogna G, Cocozza G, Guraya SY, Forgione A.Regenerative medicine: clinical applications and future perspectives.J Microsc Ultrastruct 2017; 5(1):1-8.
[16]
Joyce K, Buljovcic Z, Rosic G, Kaszkin-Bettag M, Pandit A.Issues with tissues: trends in tissue-engineered products in clinical trials in the European Union.Tissue Eng Part B Rev 2023; 29(1):78-88.
[17]
Wong YS, Tay CY, Wen F, Venkatraman S, Tan LP.Engineered polymeric biomaterials for tissue engineering.Curr Tissue Eng 2012; 1(1):41-53.
[18]
Freitas-Ribeiro S, Reis RL, Pirraco RP.Long-term and short-term preservation strategies for tissue engineering and regenerative medicine products: state of the art and emerging trends.PNAS Nexus 2022; 1(4):pgac212.
[19]
Tam E, McGrath M, Sladkova M, AlManaie A, Alostaad A, de Peppo GM.Hypothermic and cryogenic preservation of tissue-engineered human bone.Ann N Y Acad Sci 2020; 1460(1):77-87.
[20]
Freitas-Ribeiro S, Carvalho AF, Costa M, Cerqueira MT, Marques AP, Reis RL, et al.Strategies for the hypothermic preservation of cell sheets of human adipose stem cells.PLoS One 2019; 14(10):e0222597.
[21]
Ahrens JH, Uzel SGM, Skylar-Scott M, Mata MM, Lu A, Kroll KT, et al.Programming cellular alignment in engineered cardiac tissue via bioprinting anisotropic organ building blocks.Adv Mater 2022; 34(26):e2200217.
[22]
Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T.3D printing of personalized thick and perfusable cardiac patches and hearts.Adv Sci 2019; 6(11):1900344.
[23]
Laschke MW, He Aß, Scheuer C, Karschnia P, Menger MD.Subnormothermic short-term cultivation improves the vascularization capacity of adipose tissue-derived microvascular fragments.J Tissue Eng Regen Med 2019; 13(2):131-142.
[24]
Kamat P, Frueh FS, McLuckie M, Sanchez-Macedo N, Wolint P, Lindenblatt N, et al.Adipose tissue and the vascularization of biomaterials: stem cells, microvascular fragments and nanofat—a review.Cytotherapy 2020; 22(8):400-411.
[25]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science 2012; 337(6096):816-821.
[26]
Zhou M, Cao Y, Sui M, Shu X, Wan F, Zhang B.Dead Cas(t) light on new life: CRISPRa-mediated reprogramming of somatic cells into neurons.Cell Mol Life Sci 2022; 79(6):315.
[27]
Adli M.The CRISPR tool kit for genome editing and beyond.Nat Commun 2018; 9:1911.
[28]
Yeh CD, Richardson CD, Corn JE.Advances in genome editing through control of DNA repair pathways.Nat Cell Biol 2019; 21(12):1468-1478.
[29]
Ibraheim R, Tai PWL, Mir A, Javeed N, Wang J, Rodríguez TC, et al.Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo.Nat Commun 2021; 12(1):6267.
[30]
Habib O, Habib G, Hwang GH, Bae S.Comprehensive analysis of prime editing outcomes in human embryonic stem cells.Nucleic Acids Res 2022; 50(2):1187-1197.
[31]
Walton RT, Christie KA, Whittaker MN, Kleinstiver BP.Unconstrained genome targeting with near-PAMless engineered CRISPR–Cas9 variants.Science 2020; 368(6488):290-296.
[32]
Mahas A, Mahfouz M.Engineering virus resistance via CRISPR–Cas systems.Curr Opin Virol 2018; 32:1-8.
[33]
Naeem M, Majeed S, Hoque MZ, Ahmad I.Latest developed strategies to minimize the off-target effects in CRISPR–Cas-mediated genome editing.Cells 2020; 9(7):1608.
[34]
Jost M, Santos DA, Saunders RA, Horlbeck MA, Hawkins JS, Scaria SM, et al.Titrating gene expression using libraries of systematically attenuated CRISPR guide RNAs.Nat Biotechnol 2020; 38(3):355-364.
[35]
Xiang X, Corsi GI, Anthon C, Qu K, Pan X, Liang X, et al.Enhancing CRISPR–Cas9 gRNA efficiency prediction by data integration and deep learning.Nat Commun 2021; 12(1):3238.
[36]
Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al.Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9.Nat Biotechnol 2016; 34(2):184-191.
[37]
Klermund J, Rhiel M, Kocher T, Chmielewski KO, Bischof J, Andrieux G, et al.On- and off-target effects of paired CRISPR–Cas nickase in primary human cells.Mol Ther 2024; 32(5):1298-1310.
[38]
Gopalappa R, Suresh B, Ramakrishna S, Kim HH.Paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption.Nucleic Acids Res 2018; 46(12):e71.
[39]
Torella L, Klermund J, Bilbao-Arribas M, Tamayo I, Andrieux G, Chmielewski KO, et al.Efficient and safe therapeutic use of paired Cas9-nickases for primary hyperoxaluria type 1.EMBO Mol Med 2024; 16(1):112-131.
[40]
Wang Y, Feng Y, Liu Q, Xiao J, Liu S, Huang Z, et al.TREX2 enables efficient genome disruption mediated by paired CRISPR–Cas9 nickases that generate 3′-overhanging ends.Mol Ther Nucleic Acids 2023; 34:102072.
[41]
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al.Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.Cell 2013; 152(5):1173-1183.
[42]
Nuñez JK, Chen J, Pommier GC, Cogan JZ, Replogle JM, Adriaens C, et al.Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing.Cell 2021; 184(9):2503-2519.e17.
[43]
La Russa MF, Qi LS.The new state of the art: Cas9 for gene activation and repression.Mol Cell Biol 2015; 35(22):3800-3809.
[44]
Shakirova KM, Ovchinnikova VY, Dashinimaev EB.Cell reprogramming with CRISPR/Cas9 based transcriptional regulation systems.Front Bioeng Biotechnol 2020; 8:882.
[45]
Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, Iyer EPR, et al.Highly efficient Cas9-mediated transcriptional programming.Nat Methods 2015; 12(4):326-328.
[46]
Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD.A protein-tagging system for signal amplification in gene expression and fluorescence imaging.Cell 2014; 159(3):635-646.
[47]
Chavez A, Tuttle M, Pruitt BW, Ewen-Campen B, Chari R, Ter-Ovanesyan D, et al.Comparison of Cas9 activators in multiple species.Nat Methods 2016; 13(7):563-567.
[48]
Yeo NC, Chavez A, Lance-Byrne A, Chan Y, Menn D, Milanova D, et al.An enhanced CRISPR repressor for targeted mammalian gene regulation.Nat Methods 2018; 15(8):611-616.
[49]
Gehrke JM, Cervantes O, Clement MK, Wu Y, Zeng J, Bauer DE, et al.An APOBEC3A–Cas9 base editor with minimized bystander and off-target activities.Nat Biotechnol 2018; 36(10):977-982.
[50]
Wang L, Xue W, Zhang H, Gao R, Qiu H, Wei J, et al.Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations.Nat Cell Biol 2021; 23(5):552-563.
[51]
Zhang C, Yang Y, Qi T, Zhang Y, Hou L, Wei J, et al.Prediction of base editor off-targets by deep learning.Nat Commun 2023; 14(1):5358.
[52]
Rees HA, Liu DR.Base editing: precision chemistry on the genome and transcriptome of living cells.Nat Rev Genet 2018; 19(12):770-788.
[53]
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al.Search-and-replace genome editing without double-strand breaks or donor DNA.Nature 2019; 576(7785):149-157.
[54]
Lee J, Lim K, Kim A, Mok YG, Chung E, Cho SI, et al.Prime editing with genuine Cas9 nickases minimizes unwanted indels.Nat Commun 2023; 14(1):1786.
[55]
Li X, Zhou L, Gao BQ, Li G, Wang X, Wang Y, et al.Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure.Nat Commun 2022; 13(1):1669.
[56]
Cheng H, Zhang F, Ding Y.CRISPR/Cas9 delivery system engineering for genome editing in therapeutic applications.Pharmaceutics 2021; 13(10):1649.
[57]
Ahmadi SE, Soleymani M, Shahriyary F, Amirzargar MR, Ofoghi M, Fattahi MD, et al.Viral vectors and extracellular vesicles: innate delivery systems utilized in CRISPR/Cas-mediated cancer therapy.Cancer Gene Ther 2023; 30(7):936-954.
[58]
Hu YC.Baculovirus vectors for gene therapy.Adv Virus Res 2006; 68:287-320.
[59]
Barnes C, Scheideler O, Schaffer D.Engineering the AAV capsid to evade immune responses.Curr Opin Biotechnol 2019; 60:99-103.
[60]
Ahern JO, Lara-Sáez I, Zhou D, Murillas R, Bonafont J, ÁMencía , et al.Non-viral delivery of CRISPR–Cas9 complexes for targeted gene editing via a polymer delivery system.Gene Ther 2022; 29(3–4):157-170.
[61]
Mohammadi Ghanbarlou M, Abdoli S, Omid H, Qazizadeh L, Bamehr H, Raigani M, et al.Delivery of dCas9 activator system using magnetic nanoparticles technology as a vector delivery method for human skin fibroblast.Magnetochemistry 2023; 9(3):71.
[62]
Yang TC, Chang CY, Yarmishyn AA, Mao YS, Yang YP, Wang ML, et al.Carboxylated nanodiamond-mediated CRISPR–Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina.Acta Biomater 2020; 101:484-494.
[63]
Wilbie D, Walther J, Mastrobattista E.Delivery aspects of CRISPR/Cas for in vivo genome editing.Acc Chem Res 2019; 52(6):1555-1564.
[64]
Yen J, Fiorino M, Liu Y, Paula S, Clarkson S, Quinn L, et al.TRIAMF: a new method for delivery of Cas9 ribonucleoprotein complex to human hematopoietic stem cells.Sci Rep 2018; 8:16304.
[65]
Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M.Gene therapy comes of age.Science 2018; 359(6372):eaan4672.
[66]
Sayed N, Allawadhi P, Khurana A, Singh V, Navik U, Pasumarthi SK, et al.Gene therapy: comprehensive overview and therapeutic applications.Life Sci 2022; 294:120375.
[67]
Samee M, Kasugai S, Kondo H, Ohya K, Shimokawa H, Kuroda S.Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) transfection to human periosteal cells enhances osteoblast differentiation and bone formation.J Pharmacol Sci 2008; 108(1):18-31.
[68]
Qasim M, Chae DS, Lee NY.Bioengineering strategies for bone and cartilage tissue regeneration using growth factors and stem cells.J Biomed Mater Res A 2020; 108(3):394-411.
[69]
Bueren JA, Auricchio A.Advances and challenges in the development of gene therapy medicinal products for rare diseases.Hum Gene Ther 2023; 34(17–18):763-775.
[70]
Doudna JA.The promise and challenge of therapeutic genome editing.Nature 2020; 578(7794):229-236.
[71]
Prakash V, Moore M, Yáñez-Muñoz RJ.Current progress in therapeutic gene editing for monogenic diseases.Mol Ther 2016; 24(3):465-474.
[72]
Laselva O, Guerra L, Castellani S, Favia M, Di Gioia S, Conese M.Small-molecule drugs for cystic fibrosis: Where are we now?.Pulm Pharmacol Ther 2022; 72:102098.
[73]
Alton EW, Boyd AC, Davies JC, Gill DR, Griesenbach U, Harrison PT, et al.Genetic medicines for CF: hype versus reality.Pediatr Pulmonol 2016; 51(Suppl S44):S5-S17.
[74]
Maule G, Casini A, Montagna C, Ramalho AS, De Boeck K, Debyser Z, et al.Allele specific repair of splicing mutations in cystic fibrosis through AsCas12a genome editing.Nat Commun 2019; 10:3556.
[75]
Wang G.Genome editing for cystic fibrosis.Cells 2023; 12(12):1555.
[76]
Veit G, Avramescu RG, Chiang AN, Houck SA, Cai Z, Peters KW, et al.From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations.Mol Biol Cell 2016; 27(3):424-433.
[77]
Vaidyanathan S, Salahudeen AA, Sellers ZM, Bravo DT, Choi SS, Batish A, et al.High-efficiency, selection-free gene repair in airway stem cells from cystic fibrosis patients rescues CFTR function in differentiated epithelia.Cell Stem Cell 2020; 26(2):161-171.e4.
[78]
Schwank G, Koo BK, Sasselli V, Dekkers Johanna F, Heo I, Demircan T, et al.Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients.Cell Stem Cell 2013; 13(6):653-658.
[79]
Martin RM, Ikeda K, Cromer MK, Uchida N, Nishimura T, Romano R, et al.Highly efficient and marker-free genome editing of human pluripotent stem cells by CRISPR–Cas9 RNP and AAV6 donor-mediated homologous recombination.Cell Stem Cell 2019; 24(5):821-828.e5.
[80]
Vaidyanathan S, Baik R, Chen L, Bravo DT, Suarez CJ, Abazari SM, et al.Targeted replacement of full-length CFTR in human airway stem cells by CRISPR–Cas9 for pan-mutation correction in the endogenous locus.Mol Ther 2022; 30(1):223-237.
[81]
Maule G, Arosio D, Cereseto A.Gene therapy for cystic fibrosis: progress and challenges of genome editing.Int J Mol Sci 2020; 21(11):3903.
[82]
Sanz DJ, Hollywood JA, Scallan MF, Harrison PT.Cas9/gRNA targeted excision of cystic fibrosis-causing deep-intronic splicing mutations restores normal splicing of CFTR mRNA.PLoS One 2017; 12(9):e0184009.
[83]
Krishnamurthy S, Traore S, Cooney AL, Brommel CM, Kulhankova K, Sinn PL, et al.Functional correction of CFTR mutations in human airway epithelial cells using adenine base editors.Nucleic Acids Res 2021; 49(18):10558-10572.
[84]
Geurts MH, de Poel E, Pleguezuelos-Manzano C, Oka R, Carrillo L, Andersson-Rolf A, et al.Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids.Life Sci Alliance 2021; 4(10):e202000940.
[85]
Krishnamurthy S, Wohlford-Lenane C, Kandimalla S, Sartre G, Meyerholz DK, Th Véberge, et al.Engineered amphiphilic peptides enable delivery of proteins and CRISPR-associated nucleases to airway epithelia.Nat Commun 2019; 10:4906.
[86]
Shah VS, Ernst S, Tang XX, Karp PH, Parker CP, Ostedgaard LS, et al.Relationships among CFTR expression, HCO3 secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies.Proc Natl Acad Sci USA 2016; 113(19):5382-5387.
[87]
Sguazzi GP, Muto V, Tartaglia M, Bertini E, Compagnucci C.Induced pluripotent stem cells (iPSCs) and gene therapy: a new era for the treatment of neurological diseases.Int J Mol Sci 2021; 22(24):13674.
[88]
Kanter J, Walters MC, Krishnamurti L, Mapara MY, Kwiatkowski JL, Rifkin-Zenenberg S, et al.Biologic and clinical efficacy of lentiglobin for sickle cell disease.N Engl J Med 2021; 386(7):617-628.
[89]
Hankins J, Aygun B.Pharmacotherapy in sickle cell disease—state of the art and future prospects.Br J Haematol 2009; 145(3):296-308.
[90]
Esrick EB, Lehmann LE, Biffi A, Achebe M, Brendel C, Ciuculescu MF, et al.Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease.N Engl J Med 2021; 384(3):205-215.
[91]
Kingwell K.First CRISPR therapy seeks landmark approval.Nat Rev Drug Discov 2023; 22(5):339-341.
[92]
Locatelli F, Lang P, Corbacioglu S, Wall D, Li AM, de La Fuente J, et al.Improvements in health-related quality of life after exagamglogene autotemcel in patients with transfusion-dependent beta-thalassemia. Blood, 142 (Suppl 1) (2023), p. 4997
[93]
Shyr DC, Lowsky R, Miller W, Schroeder MA, Buchholz T, Dougall K, et al.One year follow-up on the first patient treated with Nula-Cel: an autologous CRISPR/Cas9 gene corrected CD34+ cell product to treat sickle cell disease. Blood, 142 (Suppl 1) (2023), p. 5000
[94]
Li C, Georgakopoulou A, Newby GA, Chen PJ, Everette KA, Paschoudi K, et al.In vivo HSC prime editing rescues sickle cell disease in a mouse model.Blood 2023; 141(17):2085-2099.
[95]
Richter M, Saydaminova K, Yumul R, Krishnan R, Liu J, Nagy EE, et al.In vivo transduction of primitive mobilized hematopoietic stem cells after intravenous injection of integrating adenovirus vectors.Blood 2016; 128(18):2206-2217.
[96]
Vanleene M, Saldanha Z, Cloyd KL, Jell G, Bou-Gharios G, Bassett JH, et al.Transplantation of human fetal blood stem cells in the osteogenesis imperfecta mouse leads to improvement in multiscale tissue properties.Blood 2011; 117(3):1053-1060.
[97]
Jones GN, Moschidou D, Abdulrazzak H, Kalirai BS, Vanleene M, Osatis S, et al.Potential of human fetal chorionic stem cells for the treatment of osteogenesis imperfecta.Stem Cells Dev 2014; 23(3):262-276.
[98]
Jung H, Rim YA, Park N, Nam Y, Ju JH.Restoration of osteogenesis by CRISPR/Cas9 genome editing of the mutated COL1A1 gene in osteogenesis imperfecta.J Clin Med Res 2021; 10(14):3141.
[99]
Howden S, Hosseini Far H, Motazedian A, Elefanty AG, Stanley EG, Lamand SRé, et al.The use of simultaneous reprogramming and gene correction to generate an osteogenesis imperfecta patient COL1A1 c. 3936 G>T iPSC line and an isogenic control iPSC line.Stem Cell Res 2019; 38:101453.
[100]
Ryu SM, Koo T, Kim K, Lim K, Baek G, Kim ST, et al.Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy.Nat Biotechnol 2018; 36(6):536-539.
[101]
Maxwell KG, Augsornworawat P, Velazco-Cruz L, Kim MH, Asada R, Hogrebe NJ, et al.Gene-edited human stem cell-derived β cells from a patient with monogenic diabetes reverse preexisting diabetes in mice.Sci Transl Med 2020; 12(540):eaax9106.
[102]
Ling S, Yang S, Hu X, Yin D, Dai Y, Qian X, et al.Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice.Nat Biomed Eng 2021; 5(2):144-156.
[103]
Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, et al.Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin.Science 2007; 318(5858):1920-1923.
[104]
Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, et al.Human induced pluripotent stem cells free of vector and transgene sequences.Science 2009; 324(5928):797-801.
[105]
Yamanaka S.A fresh look at iPS cells.Cell 2009; 137(1):13-17.
[106]
Stadtfeld M, Maherali N, Breault DT, Hochedlinger K.Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse.Cell Stem Cell 2008; 2(3):230-240.
[107]
Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K.Induced pluripotent stem cells generated without viral integration.Science 2008; 322(5903):945-949.
[108]
Ma T, Xie M, Laurent T, Ding S.Progress in the reprogramming of somatic cells.Circ Res 2013; 112(3):562-574.
[109]
Ge JY, Zheng YW, Liu LP, Isoda H, Oda T.Impelling force and current challenges by chemicals in somatic cell reprogramming and expansion beyond hepatocytes.World J Stem Cells 2019; 11(9):650-665.
[110]
Lange L, Esteban MA, Schambach A.Back to pluripotency: fully chemically induced reboot of human somatic cells.Signal Transduct Target Ther 2022; 7(1):244.
[111]
Weltner J, Balboa D, Katayama S, Bespalov M, Krjut Kškov, Jouhilahti EM, et al.Human pluripotent reprogramming with CRISPR activators.Nat Commun 2018; 9:2643.
[112]
Sokka J, Yoshihara M, Kvist J, Laiho L, Warren A, Stadelmann C, et al.CRISPR activation enables high-fidelity reprogramming into human pluripotent stem cells.Stem Cell Reports 2022; 17(2):413-426.
[113]
Buchrieser J, James W, Moore MD.Human induced pluripotent stem cell-derived macrophages share ontogeny with MYB-independent tissue-resident macrophages.Stem Cell Reports 2017; 8(2):334-345.
[114]
He L, Ding Y, Zhao Y, So KK, Peng XL, Li Y, et al.CRISPR/Cas9/AAV9-mediated in vivo editing identifies MYC regulation of 3D genome in skeletal muscle stem cell.Stem Cell Reports 2021; 16(10):2442-2458.
[115]
Nguyen NTK, Chang YH, Truong VA, Hsu MN, Pham NN, Chang CW, et al.CRISPR activation of long non-coding RNA DANCR promotes bone regeneration.Biomaterials 2021; 275:120965.
[116]
Böhm S, Splith V, Riedmayr LM, Rötzer RD, Gasparoni G, Nordström KJV, et al.A gene therapy for inherited blindness using dCas9-VPR-mediated transcriptional activation.Sci Adv 2020; 6(34):eaba5614.
[117]
Liao HK, Hatanaka F, Araoka T, Reddy P, Wu MZ, Sui Y, et al.In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation.Cell 2017; 171(7):1495-1507.e15.
[118]
Van MV, Fujimori T, Bintu L.Nanobody-mediated control of gene expression and epigenetic memory.Nat Commun 2021; 12(1):537.
[119]
Zhang K, Chooi WH, Liu S, Chin JS, Murray A, Nizetic D, et al.Localized delivery of CRISPR/dCas9 via layer-by-layer self-assembling peptide coating on nanofibers for neural tissue engineering.Biomaterials 2020; 256:120225.
[120]
Replogle JM, Norman TM, Xu A, Hussmann JA, Chen J, Cogan JZ, et al.Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing.Nat Biotechnol 2020; 38(8):954-961.
[121]
Hsu MN, Huang KL, Yu FJ, Lai PL, Truong AV, Lin MW, et al.Coactivation of endogenous Wnt10b and Foxc2 by CRISPR activation enhances BMSC osteogenesis and promotes calvarial bone regeneration.Mol Ther 2020; 28(2):441-451.
[122]
Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K.A high-efficiency system for the generation and study of human induced pluripotent stem cells.Cell Stem Cell 2008; 3(3):340-345.
[123]
Lundin A, Porritt MJ, Jaiswal H, Seeliger F, Johansson C, Bidar AW, et al.Development of an ObLiGaRe doxycycline inducible Cas9 system for pre-clinical cancer drug discovery.Nat Commun 2020; 11(1):4903.
[124]
Guo J, Ma D, Huang R, Ming J, Ye M, Kee K, et al.An inducible CRISPR-ON system for controllable gene activation in human pluripotent stem cells.Protein Cell 2017; 8(5):379-393.
[125]
Davis-Anderson K, Micheva-Viteva S, Solomon E, Hovde B, Cirigliano E, Harris J, et al.CRISPR/Cas9 directed reprogramming of iPSC for accelerated motor neuron differentiation leads to dysregulation of neuronal fate patterning and function.Int J Mol Sci 2023; 24(22):16161.
[126]
Roddy E, DeBaun MR, Daoud-Gray A, Yang YP, Gardner MJ.Treatment of critical-sized bone defects: clinical and tissue engineering perspectives.Eur J Orthop Surg Traumatol 2018; 28(3):351-362.
[127]
Szpalski C, Barr J, Wetterau M, Saadeh PB, Warren SM.Cranial bone defects: current and future strategies.Neurosurg Focus 2010; 29(6):E8.
[128]
Shao R, Wang Y, Li L, Dong Y, Zhao J, Liang W.Bone tumors effective therapy through functionalized hydrogels: current developments and future expectations.Drug Deliv 2022; 29(1):1631-1647.
[129]
Fukumoto T, Sperling JW, Sanyal A, Fitzsimmons JS, Reinholz GG, Conover CA, et al.Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro.Osteoarthritis Cartilage 2003; 11(1):55-64.
[130]
Freitas GP, Lopes HB, Souza ATP, Gomes MPO, Quiles GK, Gordon J, et al.Mesenchymal stem cells overexpressing BMP-9 by CRISPR–Cas9 present high in vitro osteogenic potential and enhance in vivo bone formation.Gene Ther 2021; 28(12):748-759.
[131]
Lo SC, Li KC, Chang YH, Hsu MN, Sung LY, Vu TA, et al.Enhanced critical-size calvarial bone healing by ASCs engineered with Cre/loxP-based hybrid baculovirus.Biomaterials 2017; 124:1-11.
[132]
Chen G, Deng S, Zuo M, Wang J, Cheng D, Chen B.Non-viral CRISPR activation system targeting VEGF-A and TGF-β1 for enhanced osteogenesis of pre-osteoblasts implanted with dual-crosslinked hydrogel.Mater Today Bio 2022; 16:100356.
[133]
Zhang R, Li X, Liu Y, Gao X, Zhu T, Lu L.Acceleration of bone regeneration in critical-size defect using BMP-9-Loaded nHA/ColI/MWCNTs scaffolds seeded with bone marrow mesenchymal stem cells.BioMed Res Int 2019; 2019:7343957.
[134]
Vo TN, Kasper FK, Mikos AG.Strategies for controlled delivery of growth factors and cells for bone regeneration.Adv Drug Deliv Rev 2012; 64(12):1292-1309.
[135]
Stojic L, Lun ATL, Mangei J, Mascalchi P, Quarantotti V, Barr AR, et al.Specificity of RNAi, LNA and CRISPRi as loss-of-function methods in transcriptional analysis.Nucleic Acids Res 2018; 46(12):5950-5966.
[136]
Tian R, Gachechiladze MA, Ludwig CH, Laurie MT, Hong JY, Nathaniel D, et al.CRISPR interference-based platform for multimodal genetic screens in human iPSC-derived neurons.Neuron 2019; 104(2):239-255.e12.
[137]
Hsu MN, Yu FJ, Chang YH, Huang KL, Pham NN, Truong VA, et al.CRISPR interference-mediated noggin knockdown promotes BMP2-induced osteogenesis and calvarial bone healing.Biomaterials 2020; 252:120094.
[138]
Truong VA, Lin YH, Nguyen NTK, Hsu MN, Pham NN, Chang YH, et al.Bi-directional gene activation and repression promote ASC differentiation and enhance bone healing in osteoporotic rats.Mol Ther 2022; 30(1):92-104.
[139]
Komor AC, Badran AH, Liu DR.CRISPR-based technologies for the manipulation of eukaryotic genomes.Cell 2017; 168(1–2):20-36.
[140]
Moghadam F, LeGraw R, Velazquez JJ, Yeo NC, Xu C, Park J, et al.Synthetic immunomodulation with a CRISPR super-repressor in vivo.Nat Cell Biol 2020; 22(9):1143-1154.
[141]
Stepper P, Kungulovski G, Jurkowska RZ, Chandra T, Krueger F, Reinhardt R, et al.Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase.Nucleic Acids Res 2017; 45(4):1703-1713.
[142]
Chang YK, Hwang JS, Chung TY, Shin YJ.SOX2 activation using CRISPR/dCas9 promotes wound healing in corneal endothelial cells.Stem Cells 2018; 36(12):1851-1862.
[143]
Hsu MN, Liao HT, Truong VA, Huang KL, Yu FJ, Chen HH, et al.CRISPR-based activation of endogenous neurotrophic genes in adipose stem cell sheets to stimulate peripheral nerve regeneration.Theranostics 2019; 9(21):6099-6111.
[144]
Michurina S, Stafeev I, Boldyreva M, Truong VA, Ratner E, Menshikov M, et al.Transplantation of adipose-tissue-engineered constructs with CRISPR-mediated UCP1 activation.Int J Mol Sci 2023; 24(4):3844.
[145]
Meissner TB, Schulze HS, Dale SM.Immune editing: overcoming immune barriers in stem cell transplantation.Curr Stem Cell Rep 2022; 8(4):206-218.
[146]
Chung L, Maestas DR, Housseau F, Elisseeff JH.Key players in the immune response to biomaterial scaffolds for regenerative medicine.Adv Drug Deliv Rev 2017; 114:184-192.
[147]
Deuse T, Tediashvili G, Hu X, Gravina A, Tamenang A, Wang D, et al.Hypoimmune induced pluripotent stem cell-derived cell therapeutics treat cardiovascular and pulmonary diseases in immunocompetent allogeneic mice.Proc Natl Acad Sci USA 2021; 118(28):e2022091118.
[148]
Moore EM, Maestas Jr DR, Comeau HY, Elisseeff JH.The immune system and its contribution to variability in regenerative medicine.Tissue Eng Part B Rev 2020; 27(1):39-47.
[149]
S RFîrbulescu, Boehm CK, Soon E, Wilks MQ, Ilie Iş, Yuan H, et al.Mature B cells accelerate wound healing after acute and chronic diabetic skin lesions.Wound Repair Regen 2017; 25(5):774-791.
[150]
Povoleri GAM, Nova-Lamperti E, Scott Cà, Fanelli G, Chen YC, Becker PD, et al.Human retinoic acid-regulated CD161+ regulatory T cells support wound repair in intestinal mucosa.Nat Immunol 2018; 19(12):1403-1414.
[151]
Kitano Y, Nishimura S, Kato TM, Ueda A, Takigawa K, Umekage M, et al.Generation of hypoimmunogenic induced pluripotent stem cells by CRISPR–Cas9 system and detailed evaluation for clinical application.Mol Ther Methods Clin Dev 2022; 26:15-25.
[152]
Deuse T, Hu X, Gravina A, Wang D, Tediashvili G, De C, et al.Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients.Nat Biotechnol 2019; 37(3):252-258.
[153]
Jang Y, Choi J, Park N, Kang J, Kim M, Kim Y, et al.Development of immunocompatible pluripotent stem cells via CRISPR-based human leukocyte antigen engineering.Exp Mol Med 2019; 51:3.
[154]
Kawamura T, Miyagawa S, Fukushima S, Maeda A, Kashiyama N, Kawamura A, et al.Cardiomyocytes derived from MHC-homozygous induced pluripotent stem cells exhibit reduced allogeneic immunogenicity in MHC-matched non-human primates.Stem Cell Reports 2016; 6(3):312-320.
[155]
Badin RA, Bugi A, Williams S, Vadori M, Michael M, Jan C, et al.MHC matching fails to prevent long-term rejection of iPSC-derived neurons in non-human primates.Nat Commun 2019; 10:4357.
[156]
Ichise H, Nagano S, Maeda T, Miyazaki M, Miyazaki Y, Kojima H, et al.NK cell alloreactivity against KIR-ligand-mismatched HLA-haploidentical tissue derived from HLA haplotype-homozygous iPSCs.Stem Cell Reports 2017; 9(3):853-867.
[157]
Xu H, Wang B, Ono M, Kagita A, Fujii K, Sasakawa N, et al.Targeted disruption of HLA genes via CRISPR–Cas9 generates iPSCs with enhanced immune compatibility.Cell Stem Cell 2019; 24(4):566-578.e7.
[158]
Wang B, Iriguchi S, Waseda M, Ueda N, Ueda T, Xu H, et al.Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells.Nat Biomed Eng 2021; 5(5):429-440.
[159]
Gornalusse GG, Hirata RK, Funk SE, Riolobos L, Lopes VS, Manske G, et al.HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells.Nat Biotechnol 2017; 35(8):765-772.
[160]
Zhao L, Teklemariam T, Hantash BM.Heterelogous expression of mutated HLA-G decreases immunogenicity of human embryonic stem cells and their epidermal derivatives.Stem Cell Res 2014; 13(2):342-354.
[161]
Shi L, Li W, Liu Y, Chen Z, Hui Y, Hao P, et al.Generation of hypoimmunogenic human pluripotent stem cells via expression of membrane-bound and secreted β2m-HLA-G fusion proteins.Stem Cells 2020; 38(11):1423-1437.
[162]
Merola J, Reschke M, Pierce RW, Qin L, Spindler S, Baltazar T, et al.Progenitor-derived human endothelial cells evade alloimmunity by CRISPR/Cas9-mediated complete ablation of MHC expression.JCI Insight 2019; 4(20):e129739.
[163]
Rigato M, Monami M, Fadini GP.Autologous cell therapy for peripheral arterial disease: systematic review and meta-analysis of randomized, nonrandomized, and noncontrolled studies.Circ Res 2017; 120(8):1326-1340.
[164]
de Vries NL, van de Haar J, Veninga V, Chalabi M, Ijsselsteijn ME, van der Ploeg M, et al.γδ T cells are effectors of immunotherapy in cancers with HLA class I defects.Nature 2023; 613(7945):743-750.
[165]
Webber BR, Lonetree CL, Kluesner MG, Johnson MJ, Pomeroy EJ, Diers MD, et al.Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors.Nat Commun 2019; 10:5222.
[166]
Cooper DKC, Ekser B, Tector AJ.A brief history of clinical xenotransplantation.Int J Surg 2015; 23:205-210.
[167]
Li Q, Lan P.Activation of immune signals during organ transplantation.Signal Transduct Target Ther 2023; 8(1):110.
[168]
Yang L, Güell M, Niu D, George H, Lesha E, Grishin D, et al.Genome-wide inactivation of porcine endogenous retroviruses (PERVs).Science 2015; 350(6264):1101-1104.
[169]
Wynn TA.Cellular and molecular mechanisms of fibrosis.J Pathol 2008; 214(2):199-210.
[170]
Mahdy MAA.Skeletal muscle fibrosis: an overview.Cell Tissue Res 2019; 375(3):575-588.
[171]
Yang G, Chen H, Chen Q, Qiu J, Qahar M, Fan Z, et al.Injury-induced interleukin-1 alpha promotes Lgr5 hair follicle stem cells de novo regeneration and proliferation via regulating regenerative microenvironment in mice.Inflamm Regen 2023; 43(1):14.
[172]
DeRossi C, Bambino K, Morrison J, Sakarin I, Villacorta-Martin C, Zhang C, et al.Mannose phosphate isomerase and mannose regulate hepatic stellate cell activation and fibrosis in zebrafish and humans.Hepatology 2019; 70(6):2107-2122.
[173]
Ramalingam P, Poulos MG, Lazzari E, Gutkin MC, Lopez D, Kloss CC, et al.Chronic activation of endothelial MAPK disrupts hematopoiesis via NFκB dependent inflammatory stress reversible by SCGF.Nat Commun 2020; 11(1):666.
[174]
Hernandez G, Mills TS, Rabe JL, Chavez JS, Kuldanek S, Kirkpatrick G, et al.Pro-inflammatory cytokine blockade attenuates myeloid expansion in a murine model of rheumatoid arthritis.Haematologica 2020; 105(3):585-597.
[175]
Matatall KA, Jeong M, Chen S, Sun D, Chen F, Mo Q, et al.Chronic infection depletes hematopoietic stem cells through stress-induced terminal differentiation.Cell Rep 2016; 17(10):2584-2595.
[176]
Li Y, Li J, Zhu J, Sun B, Branca M, Tang Y, et al.Decorin gene transfer promotes muscle cell differentiation and muscle regeneration.Mol Ther 2007; 15(9):1616-1622.
[177]
Chang Y, Li H.Hepatic antifibrotic pharmacotherapy: are we approaching success?.J Clin Transl Hepatol 2020; 8(2):222-229.
[178]
Choy EH, Kavanaugh AF, Jones SA.The problem of choice: current biologic agents and future prospects in RA.Nat Rev Rheumatol 2013; 9(3):154-163.
[179]
Perrault DP, Bramos A, Xu X, Shi S, Wong AK.Local administration of interleukin-1 receptor antagonist improves diabetic wound healing.Ann Plast Surg 2018; 80(Suppl 5):S317-S321.
[180]
Ramirez H, Patel SB, Pastar I.The role of TGFβ signaling in wound epithelialization.Adv Wound Care 2014; 3(7):482-491.
[181]
Xu X, Zheng L, Yuan Q, Zhen G, Crane JL, Zhou X, et al.Transforming growth factor-β in stem cells and tissue homeostasis.Bone Res 2018; 6:2.
[182]
Lee P, Gund R, Dutta A, Pincha N, Rana I, Ghosh S, et al.Stimulation of hair follicle stem cell proliferation through an IL-1 dependent activation of γδT-cells.eLife 2017; 6:e28875.
[183]
Fu X, Xiao J, Wei Y, Li S, Liu Y, Yin J, et al.Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion.Cell Res 2015; 25(6):655-673.
[184]
Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y, et al.Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis.Am J Pathol 2004; 164(3):1007-1019.
[185]
Ota S, Uehara K, Nozaki M, Kobayashi T, Terada S, Tobita K, et al.Intramuscular transplantation of muscle-derived stem cells accelerates skeletal muscle healing after contusion injury via enhancement of angiogenesis.Am J Sports Med 2011; 39(9):1912-1922.
[186]
Luo N, Li J, Chen Y, Xu Y, Wei Y, Lu J, et al.Hepatic stellate cell reprogramming via exosome-mediated CRISPR/dCas9-VP64 delivery.Drug Deliv 2021; 28(1):10-18.
[187]
Pferdehirt L, Guo P, Lu A, Huard M, Guilak F, Huard J.In vitro analysis of genome-engineered muscle-derived stem cells for autoregulated anti-inflammatory and antifibrotic activity.J Orthop Res 2022; 40(12):2937-2946.
[188]
Brunger JM, Zutshi A, Willard VP, Gersbach CA, Guilak F.Genome engineering of stem cells for autonomously regulated, closed-loop delivery of biologic drugs.Stem Cell Reports 2017; 8(5):1202-1213.
[189]
Breunig M, Lungwitz U, Liebl R, Goepferich A.Breaking up the correlation between efficacy and toxicity for nonviral gene delivery.Proc Natl Acad Sci USA 2007; 104(36):14454-14459.
[190]
Iancu O, Allen D, Knop O, Zehavi Y, Breier D, Arbiv A, et al.Multiplex HDR for disease and correction modeling of SCID by CRISPR genome editing in human HSPCs.Mol Ther Nucleic Acids 2023; 31:105-121.
[191]
Zhu W, Zhang B, Li M, Mo F, Mi T, Wu Y, et al.Precisely controlling endogenous protein dosage in hPSCs and derivatives to model FOXG1 syndrome.Nat Commun 2019; 10:928.
[192]
Lallemand Y, Nicola MA, Ramos C, Bach A, Cloment CS, Robert B.Analysis of Msx1; Msx2 double mutants reveals multiple roles for Msx genes in limb development.Development 2005; 132(13):3003-3014.
[193]
Kaushal K, Tyagi A, Karapurkar JK, Kim EJ, Tanguturi P, Kim KS, et al.Genome-wide CRISPR/Cas9-based screening for deubiquitinase subfamily identifies ubiquitin-specific protease 11 as a novel regulator of osteogenic differentiation.Int J Mol Sci 2022; 23(2):856.
[194]
Liu Y, Yu C, Daley TP, Wang F, Cao WS, Bhate S, et al.CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming.Cell Stem Cell 2018; 23(5):758-771.e8.
[195]
Libby AR, Joy DA, So PL, Mandegar MA, Muncie JM, Mendoza-Camacho FN, et al.Spatiotemporal mosaic self-patterning of pluripotent stem cells using CRISPR interference.eLife 2018; 7:e36045.
[196]
Zheng Y, Shen W, Zhang J, Yang B, Liu YN, Qi H, et al.CRISPR interference-based specific and efficient gene inactivation in the brain.Nat Neurosci 2018; 21(3):447-454.
[197]
Black JB, McCutcheon SR, Dube S, Barrera A, Klann TS, Rice GA, et al.Master regulators and cofactors of human neuronal cell fate specification identified by CRISPR gene activation screens.Cell Rep 2020; 33(9):108460.
[198]
Saarimäki-Vire J, Balboa D, Russell MA, Saarikettu J, Kinnunen M, Keskitalo S, et al.An activating STAT3 mutation causes neonatal diabetes through premature induction of pancreatic differentiation.Cell Rep 2017; 19(2):281-294.
[199]
Sluch VM, Davis CHO, Ranganathan V, Kerr JM, Krick K, Martin R, et al.Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line.Sci Rep 2015; 5(1):16595.
[200]
Yoshihara E, O C’Connor, Gasser E, Wei Z, Oh TG, Tseng TW, et al.Immune-evasive human islet-like organoids ameliorate diabetes.Nature 2020; 586(7830):606-611.
[201]
Vojnits K, Nakanishi M, Porras D, Kim Y, Feng Z, Golubeva D, et al.Developing CRISPR/Cas9-mediated fluorescent reporter human pluripotent stem-cell lines for high-content screening.Molecules 2022; 27(8):2434.
[202]
Verma N, Zhu Z, Huangfu D.CRISPR/Cas-mediated knockin in human pluripotent stem cells.Methods Mol Biol 2017; 1513:119-140.
[203]
Mukherjee P, Roy S, Ghosh D, Nandi SK.Role of animal models in biomedical research: a review.Lab Anim Res 2022; 38(1):18.
[204]
De Masi C, Spitalieri P, Murdocca M, Novelli G, Sangiuolo F.Application of CRISPR/Cas9 to human-induced pluripotent stem cells: from gene editing to drug discovery.Hum Genomics 2020; 14(1):25.
[205]
Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE.Reconstituting organ-level lung functions on a chip.Science 2010; 328(5986):1662-1668.
[206]
Penney J, Ralvenius WT, Tsai LH.Modeling Alzheimer’s disease with iPSC-derived brain cells.Mol Psychiatry 2020; 25(1):148-167.
[207]
Ortega-Prieto AM, Skelton JK, Wai SN, Large E, Lussignol M, Vizcay-Barrena G, et al.3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection.Nat Commun 2018; 9:682.
[208]
Schoon J, Hesse B, Rakow A, Ort MJ, Lagrange A, Jacobi D, et al.Metal-specific biomaterial accumulation in human peri-implant bone and bone marrow.Adv Sci 2020; 7(20):2000412.
[209]
Afanasyeva TAV, Athanasiou D, Perdigao PRL, Whiting KR, Duijkers L, Astuti GDN, et al.CRISPR–Cas9 correction of a nonsense mutation in LCA5 rescues lebercilin expression and localization in human retinal organoids.Mol Ther Methods Clin Dev 2023; 29:522-531.
[210]
Park J, Cui G, Lee H, Jeong H, Kwak JJ, Lee J, et al.CRISPR/Cas9 mediated specific ablation of vegfa in retinal pigment epithelium efficiently regresses choroidal neovascularization.Sci Rep 2023; 13(1):3715.
[211]
Allende ML, Cook EK, Larman BC, Nugent A, Brady JM, Golebiowski D, et al.Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation.J Lipid Res 2018; 59(3):550-563.
[212]
Strikoudis A, Cie Aślak, Loffredo L, Chen YW, Patel N, Saqi A, et al.Modeling of fibrotic lung disease using 3D organoids derived from human pluripotent stem cells.Cell Rep 2019; 27(12):3709-3723.e5.
[213]
Hirt CK, Booij TH, Grob L, Simmler P, Toussaint NC, Keller D, et al.Drug screening and genome editing in human pancreatic cancer organoids identifies drug-gene interactions and candidates for off-label treatment.Cell Genom 2022; 2(2):100095.
[214]
Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agarwal A, et al.Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies.Nat Med 2014; 20(6):616-623.
[215]
Wauchop M, Rafatian N, Zhao Y, Chen W, Gagliardi M, Mass Sé, et al.Maturation of iPSC-derived cardiomyocytes in a heart-on-a-chip device enables modeling of dilated cardiomyopathy caused by R222Q-SCN5A mutation.Biomaterials 2023; 301:122255.
[216]
Lehmann R, Lee CM, Shugart EC, Benedetti M, Charo RA, Gartner Z, et al.Human organoids: a new dimension in cell biology.Mol Biol Cell 2019; 30(10):1129-1137.
[217]
Hofer M, Lutolf MP.Engineering organoids.Nat Rev Mater 2021; 6(5):402-420.
[218]
Sun S, Xue X, Fu J.Modeling development using microfluidics: bridging gaps to foster fundamental and translational research.Curr Opin Genet Dev 2023; 82:102097.
[219]
Hagenbuchner J, Nothdurfter D, Ausserlechner MJ.3D bioprinting: novel approaches for engineering complex human tissue equivalents and drug testing.Essays Biochem 2021; 65(3):417-427.
[220]
Jain P, Kathuria H, Dubey N.Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models.Biomaterials 2022; 287:121639.
[221]
Murphy SV, Atala A.3D bioprinting of tissues and organs.Nat Biotechnol 2014; 32(8):773-785.
[222]
Juraski AC, Sharma S, Sparanese S, da Silva VA, Wong J, Laksman Z, et al.3D bioprinting for organ and organoid models and disease modeling.Expert Opin Drug Discov 2023; 18(9):1043-1059.
[223]
Hellwarth PB, Chang Y, Das A, Liang PY, Lian X, Repina NA, et al.Optogenetic-mediated cardiovascular differentiation and patterning of human pluripotent stem cells.Adv Genet 2021; 2(3):e202100011.
[224]
Akiyama H, Ito A, Kawabe Y, Kamihira M.Fabrication of complex three-dimensional tissue architectures using a magnetic force-based cell patterning technique.Biomed Microdevices 2009; 11(4):713-721.
[225]
Bratt-Leal AM, Kepple KL, Carpenedo RL, Cooke MT, McDevitt TC.Magnetic manipulation and spatial patterning of multi-cellular stem cell aggregates.Integr Biol 2011; 3(12):1224-1232.
[226]
Singh RK, Nasonkin IO.Limitations and promise of retinal tissue from human pluripotent stem cells for developing therapies of blindness.Front Cell Neurosci 2020; 14:179.
[227]
Salas A, Duarri A, Fontrodona L, Ramírez DM, Badia A, Isla-Magran Hé, et al.Cell therapy with hiPSC-derived RPE cells and RPCs prevents visual function loss in a rat model of retinal degeneration.Mol Ther Methods Clin Dev 2021; 20:688-702.
[228]
Megaw R, Abu-Arafeh H, Jungnickel M, Mellough C, Gurniak C, Witke W, et al.Gelsolin dysfunction causes photoreceptor loss in induced pluripotent cell and animal retinitis pigmentosa models.Nat Commun 2017; 8:271.
[229]
Lokai T, Albin B, Qubbaj K, Tiwari AP, Adhikari P, Yang IH.A review on current brain organoid technologies from a biomedical engineering perspective.Exp Neurol 2023; 367:114461.
[230]
Chen A, Guo Z, Fang L, Bian S.Application of fused organoid models to study human brain development and neural disorders.Front Cell Neurosci 2020; 14:133.
[231]
Quadrato G, Brown J, Arlotta P.The promises and challenges of human brain organoids as models of neuropsychiatric disease.Nat Med 2016; 22(11):1220-1228.
[232]
Zhang DY, Song H, Ming GL.Modeling neurological disorders using brain organoids.Semin Cell Dev Biol 2021; 111:4-14.
[233]
Paulsen B, Velasco S, Kedaigle AJ, Pigoni M, Quadrato G, Deo AJ, et al.Autism genes converge on asynchronous development of shared neuron classes.Nature 2022; 602(7896):268-273.
[234]
Bershteyn M, Nowakowski TJ, Pollen AA, Di Lullo E, Nene A, Wynshaw-Boris A, et al.Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia.Cell Stem Cell 2017; 20(4):435-449.e4.
[235]
Yildirim M, Delepine C, Feldman D, Pham VA, Chou S, Ip J, et al.Label-free three-photon imaging of intact human cerebral organoids for tracking early events in brain development and deficits in Rett syndrome.eLife 2022; 11:e78079.
[236]
Iefremova V, Manikakis G, Krefft O, Jabali A, Weynans K, Wilkens R, et al.An organoid-based model of cortical development identifies non-cell-autonomous defects in wnt signaling contributing to miller-dieker syndrome.Cell Rep 2017; 19(1):50-59.
[237]
Ye F, Kang E, Yu C, Qian X, Jacob F, Yu C, et al.DISC1 regulates neurogenesis via modulating kinetochore attachment of Ndel1/Nde1 during mitosis.Neuron 2017; 96(5):1041-54 e5.
[238]
Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al.Cerebral organoids model human brain development and microcephaly.Nature 2013; 501(7467):373-379.
[239]
Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al.Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure.Cell 2016; 165(5):1238-1254.
[240]
Dang J, Tiwari SK, Lichinchi G, Qin Y, Patil VS, Eroshkin AM, et al.Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3.Cell Stem Cell 2016; 19(2):258-265.
[241]
Lee CT, Chen J, Kindberg AA, Bendriem RM, Spivak CE, Williams MP, et al.CYP3A5 mediates effects of cocaine on human neocorticogenesis: studies using an in vitro 3D self-organized hPSC model with a single cortex-like unit.Neuropsychopharmacology 2017; 42(3):774-784.
[242]
Teriyapirom I, Batista-Rocha AS, Koo BK.Genetic engineering in organoids.J Mol Med 2021; 99(4):555-568.
[243]
Antón-Bolaños N, Faravelli I, Faits T, Andreadis S, Kastli R, Trattaro S, et al.Brain chimeroids reveal individual susceptibility to neurotoxic triggers.Nature 2024; 631(8019):142-149.
[244]
Li Y, Wu Q, Sun X, Shen J, Chen H.Organoids as a powerful model for respiratory diseases.Stem Cells Int 2020; 2020:5847876.
[245]
Lechner AJ, Driver IH, Lee J, Conroy CM, Nagle A, Locksley RM, et al.Recruited monocytes and type 2 immunity promote lung regeneration following pneumonectomy.Cell Stem Cell 2017; 21(1):120-134.e7.
[246]
Cui Y, Zhao H, Wu S, Li X.Human female reproductive system organoids: applications in developmental biology, disease modelling, and drug discovery.Stem Cell Rev Rep 2020; 16(6):1173-1184.
[247]
Bi J, Newtson AM, Zhang Y, Devor EJ, Samuelson MI, Thiel KW, et al.Successful patient-derived organoid culture of gynecologic cancers for disease modeling and drug sensitivity testing.Cancers 2021; 13(12):2901.
[248]
Hendriks D, Clevers H, Artegiani B.CRISPR–Cas tools and their application in genetic engineering of human stem cells and organoids.Cell Stem Cell 2020; 27(5):705-731.
[249]
Ribitsch I, Baptista PM, Lange-Consiglio A, Melotti L, Patruno M, Jenner F, et al.Large animal models in regenerative medicine and tissue engineering: to do or not to do.Front Bioeng Biotechnol 2020; 8:972.
[250]
Lander ES, Baylis F, Zhang F, Charpentier E, Berg P, Bourgain C, et al.Adopt a moratorium on heritable genome editing.Nature 2019; 567(7747):165-168.
[251]
Foss DV, Muldoon JJ, Nguyen DN, Carr D, Sahu SU, Hunsinger JM, et al.Peptide-mediated delivery of CRISPR enzymes for the efficient editing of primary human lymphocytes.Nat Biomed Eng 2023; 7(5):647-660.
[252]
Wang P, Zhang L, Zheng W, Cong L, Guo Z, Xie Y, et al.Thermo-triggered release of CRISPR–Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy.Angew Chem Int Ed Engl 2018; 57(6):1491-1496.
[253]
Wu Y, Zheng J, Zeng Q, Zhang T, Xing D.Light-responsive charge-reversal nanovector for high-efficiency in vivo CRISPR/Cas9 gene editing with controllable location and time.Nano Res 2020; 13(9):2399-2406.
[254]
Ho TC, Kim HS, Chen Y, Li Y, LaMere MW, Chen C, et al.Scaffold-mediated CRISPR–Cas9 delivery system for acute myeloid leukemia therapy.Sci Adv 2021; 7(21):eabg3217.
[255]
Abdeen AA, Cosgrove BD, Gersbach CA, Saha K.Integrating biomaterials and genome editing approaches to advance biomedical science.Annu Rev Biomed Eng 2021; 23:493-516.
[256]
Fletcher RB, Stokes LD, Kelly 3rd IB, Henderson KM, Vallecillo-Viejo IC, Colazo JM, et al.Nonviral in vivo delivery of CRISPR–Cas9 using protein-agnostic, high-loading porous silicon and polymer nanoparticles.ACS Nano 2023; 17(17):16412-16431.
[257]
Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ.Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing.Nat Nanotechnol 2020; 15(4):313-320.
[258]
Wei T, Sun Y, Cheng Q, Chatterjee S, Traylor Z, Johnson LT, et al.Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models.Nat Commun 2023; 14(1):7322.
[259]
Lin S, Staahl BT, Alla RK, Doudna JA.Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery.eLife 2014; 3:e04766.
[260]
Liang X, Potter J, Kumar S, Ravinder N, Chesnut JD.Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA.J Biotechnol 2017; 241:136-146.
[261]
Paix A, Folkmann A, Goldman DH, Kulaga H, Grzelak MJ, Rasoloson D, et al.Precision genome editing using synthesis-dependent repair of Cas9-induced DNA breaks.Proc Natl Acad Sci USA 2017; 114(50):E10745-E10754.
[262]
Okamoto S, Amaishi Y, Maki I, Enoki T, Mineno J.Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs.Sci Rep 2019; 9:4811.
[263]
Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL.Increasing the efficiency of precise genome editing with CRISPR–Cas9 by inhibition of nonhomologous end joining.Nat Biotechnol 2015; 33(5):538-542.
[264]
Riesenberg S, Kanis P, Macak D, Wollny D, Düsterhöft D, Kowalewski J, et al.Efficient high-precision homology-directed repair-dependent genome editing by HDRobust.Nat Methods 2023; 20(9):1388-1399.
[265]
Ma X, Chen X, Jin Y, Ge W, Wang W, Kong L, et al.Small molecules promote CRISPR–Cpf1-mediated genome editing in human pluripotent stem cells.Nat Commun 2018; 9:1303.
[266]
Chen PJ, Liu DR.Prime editing for precise and highly versatile genome manipulation.Nat Rev Genet 2023; 24(3):161-177.
[267]
Nelson JW, Randolph PB, Shen SP, Everette KA, Chen PJ, Anzalone AV, et al.Engineered pegRNAs improve prime editing efficiency.Nat Biotechnol 2022; 40(3):402-410.
[268]
Corsi GI, Qu K, Alkan F, Pan X, Luo Y, Gorodkin J.CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context.Nat Commun 2022; 13(1):3006.
[269]
Pan X, Qu K, Yuan H, Xiang X, Anthon C, Pashkova L, et al.Massively targeted evaluation of therapeutic CRISPR off-targets in cells.Nat Commun 2022; 13(1):4049.
[270]
Zou RS, Liu Y, Gaido OER, Konig MF, Mog BJ, Shen LL, et al.Improving the sensitivity of in vivo CRISPR off-target detection with DISCOVER-Seq+.Nat Methods 2023; 20(5):706-713.
[271]
Sherkatghanad Z, Abdar M, Charlier J, Makarenkov V.Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review.Brief Bioinform 2023; 24(3):bbad131.
[272]
Charlier J, Nadon R, Makarenkov V.Accurate deep learning off-target prediction with novel sgRNA-DNA sequence encoding in CRISPR–Cas9 gene editing.Bioinformatics 2021; 37(16):2299-2307.
[273]
Isaac RS, Jiang F, Doudna JA, Lim WA, Narlikar GJ, Almeida R.Nucleosome breathing and remodeling constrain CRISPR–Cas9 function.eLife 2016; 5:e13450.
[274]
Wang D, Zhang C, Wang B, Li B, Wang Q, Liu D, et al.Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning.Nat Commun 2019; 10:4284.
[275]
Vora DS, Bhandari SM, Sundar D.DNA shape features improve prediction of CRISPR/Cas9 activity.Methods 2024; 226:120-126.
[276]
Störtz F, Mak JK, Minary P.piCRISPR: Physically informed deep learning models for CRISPR/Cas9 off-target cleavage prediction.Artif Intell Life Sci 2023; 3:100075.
[277]
Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB, Gersbach CA.Increasing the specificity of CRISPR systems with engineered RNA secondary structures.Nat Biotechnol 2019; 37(6):657-666.
[278]
Herring-Nicholas A, Dimig H, Roesing MR, Josephs EA.Selection of extended CRISPR RNAs with enhanced targeting and specificity.Commun Biol 2024; 7(1):86.
[279]
Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, et al.Engineered CRISPR–Cas9 nucleases with altered PAM specificities.Nature 2015; 523(7561):481-485.
PDF(2857 KB)

Accesses

Citations

Detail

Sections
Recommended

/