Hydrate Blockage in Subsea Oil/Gas Pipelines: Characterization, Detection, and Engineering Solutions

Yang Meng, Bingyue Han, Jiguang Wang, Jiawei Chu, Haiyuan Yao, Jiafei Zhao, Lunxiang Zhang, Qingping Li, Yongchen Song

Engineering ›› 2025, Vol. 46 ›› Issue (3) : 363-382.

PDF(3052 KB)
PDF(3052 KB)
Engineering ›› 2025, Vol. 46 ›› Issue (3) : 363-382. DOI: 10.1016/j.eng.2024.10.020
Research
Review

Hydrate Blockage in Subsea Oil/Gas Pipelines: Characterization, Detection, and Engineering Solutions

Author information +
History +

Abstract

With the development of offshore oil and gas resources, hydrates pose a significant challenge to flow assurance. Hydrates can form, accumulate, and settle in pipelines, causing blockages, reducing transport capacity, and leading to significant economic losses and fatalities. As oil and gas exploration moves deeper into the ocean, the issue of hydrate blockages has become more severe. It is essential to take adequate measures promptly to mitigate the hazards of hydrate blockages after they form. However, a prerequisite for effective mitigation is accurately detecting the location and amount of hydrate formation. This article summarizes the temperature–pressure, acoustic, electrical, instrumental–response, and flow characteristics of hydrate formation and blocking under various conditions. It also analyzes the principles, limitations, and applicability of various blockage detection methods, including acoustic, transient, and fiber-optic-based methods. Finally, it lists the results of field experiments and commercially used products. Given their advantages of accuracy and a wide detection range, acoustic pulse reflectometry and transient-based methods are considered effective for detecting hydrate blockages in future underwater pipelines. Using strict backpressure warnings combined with accurate detection via acoustic pulse reflectometry or transient-based methods, efficient and timely diagnosis of hydrate blockages can be achieved. The use of a hydrate model combined with fiber optics could prove to be an effective method for detecting blockages in newly laid pipelines in the future.

Graphical abstract

Keywords

Oil and gas pipeline / Flow assurance / Hydrate blockage detection / Acoustic / Transient

Cite this article

Download citation ▾
Yang Meng, Bingyue Han, Jiguang Wang, Jiawei Chu, Haiyuan Yao, Jiafei Zhao, Lunxiang Zhang, Qingping Li, Yongchen Song. Hydrate Blockage in Subsea Oil/Gas Pipelines: Characterization, Detection, and Engineering Solutions. Engineering, 2025, 46(3): 363‒382 https://doi.org/10.1016/j.eng.2024.10.020

References

[1]
Zhang J, Li C, Shi L, Xia X, Yang F, Sun G.The formation and aggregation of hydrate in W/O emulsion containing different compositions: a review.Chem Eng J 2022; 445:136800.
[2]
Ning Y, Yao M, Li Y, Song G, Liu Z, Li Q, et al.Integrated investigation on the nucleation and growing process of hydrate in W/O emulsion containing asphaltene.Chem Eng J 2023; 454:140389.
[3]
Yu W, Song S, Li Y, Min Y, Huang W, Wen K, et al.Gas supply reliability assessment of natural gas transmission pipeline systems.Energy 2018; 162:853-870.
[4]
Wang T, Sun L, Fan Z, Wei R, Li Q, Yao H, et al.Promoting CH4/CO2 replacement from hydrate with warm brine injection for synergistic energy harvest and carbon sequestration.Chem Eng J 2023; 457:141129.
[5]
Wang Z, Zhao Y, Zhang J, Wang X, Yu J, Sun B.Quantitatively assessing hydrate-blockage development during deepwater–gas–well testing.SPE J 2018; 23(4):1166-1183.
[6]
Lang C, Chen Z, Hassanpouryouzband A, Farahani MV, Zhang L, Zhao J, et al.Spontaneous lifting and self-cleaning of gas hydrate crystals.ACS Nano 2024; 18(49):33671-33680.
[7]
Liu W, Sun Z, Hu J, Chen S, Wu K, Sun Y, et al.Prediction of hydrate formation risk based on temperature–pressure field coupling in the deepwater gas well cleanup process.Energy Fuels 2021; 35(3):2024-2032.
[8]
Wang F, Ma R, Xiao S, English NJ, He J, Zhang Z.Anti-gas hydrate surfaces: perspectives, progress and prospects.J Mater Chem A 2022; 10(2):379-406.
[9]
Farhadian A, Zhao Y, Naeiji P, Rahimi A, Berisha A, Zhang L, et al.Simultaneous inhibition of natural gas hydrate formation and CO2/H2S corrosion for flow assurance inside the oil and gas pipelines.Energy 2023; 260:126797.
[10]
Zeng X, Feng J, Ke W, Wang J, Zhang S, Xie Y.Film formation kinetics of methane–propane hydrate on gas bubble in MEG and luvicap EG solutions.Appl Energy 2023; 330:120301.
[11]
Sloan Jr ED, Koh CA.Clathrate hydrates of natural gases. (3rd ed.), CRC Press, Boca Raton (2007)
[12]
Both AK, Gao Y, Zeng XC, Cheung CL.Gas hydrates in confined space of nanoporous materials: new frontier in gas storage technology.Nanoscale 2021; 13(16):7447-7470.
[13]
Perrin A, Musa OM, Steed JW.The chemistry of low dosage clathrate hydrate inhibitors.Chem Soc Rev 2013; 42(5):1996-2015.
[14]
Lee D, Jeoung S, Moon HR, Seo Y.Recoverable and recyclable gas hydrate inhibitors based on magnetic nanoparticle-decorated metal–organic frameworks.Chem Eng J 2020; 401:126081.
[15]
Lee D, Go W, Ko G, Seo Y.Inhibition synergism of glycine (an amino acid) and BMIM BF4 (an ionic liquid) on the growth of CH4 hydrate.Chem Eng J 2020; 393:124466.
[16]
Anderson BJ, Tester JW, Borghi GP, Trout BL.Properties of inhibitors of methane hydrate formation via molecular dynamics simulations.J Am Chem Soc 2005; 127(50):17852-17862.
[17]
Majid AAA, Wu DT, Koh CA.A perspective on rheological studies of gas hydrate slurry properties.Engineering 2018; 4(3):321-329.
[18]
Zhao X, Fang Q, Qiu Z, Mi S, Wang Z, Geng Q, et al.Experimental investigation on hydrate anti-agglomerant for oil-free systems in the production pipe of marine natural gas hydrates.Energy 2022; 242:122973.
[19]
Xiao P, Li J, Zhang HL, Chen GJ, Sun CY.Study on fluidizing the highly converted methane hydrate for gas storage and transportation.Chem Eng J 2022; 427:132047.
[20]
Kamal MS, Hussein IA, Sultan AS, von Solms N.Application of various water soluble polymers in gas hydrate inhibition.Renew Sust Energ Rev 2016; 60:206-225.
[21]
Zi M, Wu G, Wang J, Chen D.Investigation of gas hydrate formation and inhibition in oil–water system containing model asphaltene.Chem Eng J 2021; 412:128452.
[22]
Creek JL.Efficient hydrate plug prevention.Energy Fuels 2012; 26(7):4112-4116.
[23]
Kakitani C, Marques DC, Teixeira A, Valim L, Marcelino Neto MA, Sum AK, et al.Experimental characterization of hydrate formation in non-emulsifying systems upon shut-in and restart conditions.Fuel 2022; 307:121690.
[24]
Sum AK.Prevention, management, and remediation approaches for gas hydrates in the flow assurance of oil/gas flowlines.In: Proceedings of OTC Brasil; 2013 Oct 29–31; Rio de Janeiro, Brazil. Richardson: OnePetro; 2013.
[25]
Sloan E, Koh C, Sum A, Ballard A, Shoup G, McMullen N, et al.Hydrates: state of the art inside and outside flowlines.J Pet Technol 2009; 61(12):89-94.
[26]
Goncalves M, Camargo R, Nieckele AO, Faraco R, Barreto CV, Pires LFG.Hydrate plug movement by one-sided depressurization.In: Proceedings of 31st ASME International Conference on Ocean, Offshore and Arctic Engineering; 2012 Jul 1–6; Rio de Janeiro, Brazil. New York City: ASME; 2012.
[27]
Sloan ED.Fundamental principles and applications of natural gas hydrates.Nature 2003; 426(6964):353-359.
[28]
Sloan ED.A changing hydrate paradigm—from apprehension to avoidance to risk management.Fluid Phase Equilib 2005; 228:67-74.
[29]
Sloan D, Koh CA, Sum AK.Natural gas hydrates in flow assurance. Gulf Professional Publishing, Burlington (2010)
[30]
Perfeldt CM, Sharifi H, von Solms N, Englezos P.Oil and gas pipelines with hydrophobic surfaces better equipped to deal with gas hydrate flow assurance issues.J Nat Gas Sci Eng 2015; 27:852-861.
[31]
Chaudhari P, Zerpa LE, Sum AK.A correlation to quantify hydrate plugging risk in oil and gas production pipelines based on hydrate transportability parameters.J Nat Gas Sci Eng 2018; 58:152-161.
[32]
Wei N, Pei J, Li H, Sun W, Xue J.Application of in-situ heat generation plugging removal agents in removing gas hydrate: a numerical study.Fuel 2022; 323:124397.
[33]
Kashou S, Subramanian S, Matthews P, Thummel L, Faucheaux E, Subik D, et al.GOM export gas pipeline, hydrate plug detection and removal.In: Proceedings of Offshore Technology Conference; 2004 May 3–6; Houston, TX, USA. Richardson: OnePetro; 2004.
[34]
Yu Y, Safari A, Niu X, Drinkwater B, Horoshenkov KV.Acoustic and ultrasonic techniques for defect detection and condition monitoring in water and sewerage pipes: a review.Appl Acoust 2021; 183:108282.
[35]
Che T, Duan H, Lee PJ.Transient wave-based methods for anomaly detection in fluid pipes: a review.Mech Syst Sig Proc 2021; 160:107874.
[36]
Brunone B, Maietta F, Capponi C, Duan HF, Meniconi S.Detection of partial blockages in pressurized pipes by transient tests: a review of the physical experiments.Fluids 2023; 8(1):19.
[37]
Datta S, Sarkar S.A review on different pipeline fault detection methods.J Loss Prev Process Ind 2016; 41:97-106.
[38]
Wong B, McCann JA.Failure detection methods for pipeline networks: from acoustic sensing to cyber–physical systems.Sensors 2021; 21(15):4959.
[39]
Wang J, Meng Y, Han B, Liu Z, Zhang L, Yao H, et al.Hydrate blockage in subsea oil/gas flowlines: prediction, prevention, and remediation.Chem Eng J 2023; 461:142020.
[40]
Sun Z, Shi K, Guan D, Lv X, Wang J, Liu W, et al.Current flow loop equipment and research in hydrate-associated flow assurance.J Nat Gas Sci Eng 2021; 96:104276.
[41]
Rao I, Koh CA, Sloan ED, Sum AK.Gas hydrate deposition on a cold surface in water-saturated gas systems.Ind Eng Chem Res 2013; 52(18):6262-6269.
[42]
Di Lorenzo M, Aman ZM, Sanchez Soto G, Johns M, Kozielski KA, May EF.Hydrate formation in gas-dominant systems using a single-pass flowloop.Energy Fuels 2014; 28(5):3043-3052.
[43]
Charlton TB, Di Lorenzo M, Zerpa LE, Koh CA, Johns ML, May EF, et al.Simulating hydrate growth and transport behavior in gas-dominant flow.Energy Fuels 2018; 32(2):1012-1023.
[44]
Wang Y, Koh CA, Dapena JA, Zerpa LE.A transient simulation model to predict hydrate formation rate in both oil- and water-dominated systems in pipelines.J Nat Gas Sci Eng 2018; 58:126-134.
[45]
Turner DJ.Clathrate hydrate formation in water-in-oil dispersions [dissertation].Golden: Colorado School of Mines; 2005.
[46]
Song G, Li Y, Wang W, Jiang K, Ye X, Zhao P.Investigation of hydrate plugging in natural gas + diesel oil + water systems using a high-pressure flow loop.Chem Eng Sci 2017; 158:480-489.
[47]
Zerpa LE, Salager JL, Koh CA, Sloan ED, Sum AK.Surface chemistry and gas hydrates in flow assurance.Ind Eng Chem Res 2011; 50(1):188-197.
[48]
Fidel-Dufour A, Gruy F, Herri JM.Rheology of methane hydrate slurries during their crystallization in a water in dodecane emulsion under flowing.Chem Eng Sci 2006; 61(2):505-515.
[49]
Melchuna A, Cameirao A, Herri JM, Glenat P.Topological modeling of methane hydrate crystallization from low to high water cut emulsion systems.Fluid Phase Equilib 2016; 413:158-169.
[50]
Austvik T, Li X, Gjertsen LH.Hydrate plug properties: formation and removal of plugs.Ann N Y Acad Sci 2000; 912(1):294-303.
[51]
Leba H, Cameirao A, Herri JM, Darbouret M, Peytavy JL, Glenat P.Chord length distributions measurements during crystallization and agglomeration of gas hydrate in a water-in-oil emulsion: simulation and experimentation.Chem Eng Sci 2010; 65(3):1185-1200.
[52]
Zerpa LE, Aman ZM, Joshi S, Rao I, Sloan ED, Koh C, et al.Predicting hydrate blockages in oil, gas and water-dominated systems.In: Proceedings of Offshore Technology conference; 2012 Apr 30–May 3; Houston, TX, USA. Richardson: OnePetro; 2012.
[53]
Bassani CL, Melchuna AM, Cameirao A, Herri JM, Morales REM, Sum AK.A multiscale approach for gas hydrates considering structure, agglomeration, and transportability under multiphase flow conditions: i. phenomenological model.Ind Eng Chem Res 2019; 58(31):14446-14461.
[54]
Kvamme B.Enthalpies of hydrate formation from hydrate formers dissolved in water.Energies 2019; 12(6):1039.
[55]
Avlonitis D.An investigation of gas hydrates formation energetics.AlChE J 2005; 51(4):1258-1273.
[56]
Gupta A, Lachance J, Sloan Jr ED, Koh CA.Measurements of methane hydrate heat of dissociation using high pressure differential scanning calorimetry.Chem Eng Sci 2008; 63(24):5848-5853.
[57]
Lievois JS, Perkins R, Martin RJ, Kobayashi R.Development of an automated, high pressure heat flux calorimeter and its application to measure the heat of dissociation and hydrate numbers of methane hydrate.Fluid Phase Equilib 1990; 59(1):73-97.
[58]
Kang SP, Lee H, Ryu BJ.Enthalpies of dissociation of clathrate hydrates of carbon dioxide, nitrogen, (carbon dioxide plus nitrogen), and (carbon dioxide plus nitrogen plus tetrahydrofuran).J Chem Thermodyn 2001; 33(5):513-521.
[59]
Yoon JH, Yamamoto Y, Komai T, Haneda H, Kawamura T.Rigorous approach to the prediction of the heat of dissociation of gas hydrates.Ind Eng Chem Res 2003; 42(5):1111-1114.
[60]
Rydzy MB, Schicks JM, Naumann R, Erzinger J.Dissociation enthalpies of synthesized multicomponent gas hydrates with respect to the guest composition and cage occupancy.J Phys Chem B 2007; 111(32):9539-9545.
[61]
Lingelem MN, Majeed AI, Stange E.Industrial experience in evaluation of hydrate formation, inhibition, and dissociation in pipeline design and operation.Nat Gas Hydrates 1994; 715(1):75-93.
[62]
Singh P, Venkatesan R, Fogler HS, Nagarajan N.Formation and aging of incipient thin film wax–oil gels.AlChE J 2000; 46(5):1059-1074.
[63]
Na BC, Webb RL.New model for frost growth rate.Int J Heat Mass Transfer 2004; 47(5):925-936.
[64]
Nicholas JW, Koh CA, Sloan ED.A preliminary approach to modeling gas hydrate/ice deposition from dissolved water in a liquid condensate system.AlChE J 2009; 55(7):1889-1897.
[65]
Chong ZR, Yang SHB, Babu P, Linga P, Li XS.Review of natural gas hydrates as an energy resource: prospects and challenges.Appl Energy 2016; 162:1633-1652.
[66]
Shen X, Hou G, Ding J, Zhou X, Tang C, He Y, et al.Flow characteristics of methane hydrate slurry in the transition region in a high-pressure flow loop.J Nat Gas Sci Eng 2018; 55:64-73.
[67]
Hassanpouryouzband A, Joonaki E, Farahani MV, Takeya S, Ruppel C, Yang J, et al.Gas hydrates in sustainable chemistry.Chem Soc Rev 2020; 49(15):5225-5309.
[68]
Zhang X, Lee BR, Sa JH, Kinnari KJ, Askvik KM, Li X, et al.Hydrate management in deadlegs: effect of header temperature on hydrate deposition.Energy Fuels 2017; 31(11):11802-11810.
[69]
Zhang X, Lee BR, Sa JH, Kinnari KJ, Askvik KM, Li X, et al.Hydrate management in deadlegs: effect of wall temperature on hydrate deposition.Energy Fuels 2018; 32(3):3254-3262.
[70]
Song G, Li Y, Sum AK.Hydrate management in deadlegs: thermal conductivity of hydrate deposits.Energy Fuels 2021; 35(4):3112-3118.
[71]
Kumar P, Turner D, Sloan ED.Thermal diffusivity measurements of porous methane hydrate and hydrate–sediment mixtures.J Geophys Res Solid Earth 2004; 109:B01207.
[72]
Li D, Liang D.Experimental study on the effective thermal conductivity of methane hydrate-bearing sand.Int J Heat Mass Transfer 2016; 92:8-14.
[73]
Ren S, Liu Y, Liu Y, Zhang W.Acoustic velocity and electrical resistance of hydrate bearing sediments.J Pet Sci Eng 2010; 70(1–2):52-56.
[74]
Hu GW, Ye YG, Zhang J, Liu CL, Diao SB, Wang JS.Acoustic properties of gas hydrate-bearing consolidated sediments and experimental testing of elastic velocity models.J Geophys Res Solid Earth 2010; 115:B02102.
[75]
Bu Q, Hu G, Ye Y, Liu C, Li C, Wang J.Experimental study on 2-D acoustic characteristics and hydrate distribution in sand.Geophys J Int 2017; 211(2):990-1004.
[76]
Bu Q, Hu G, Liu C, Xing T, Li C, Meng Q.Acoustic characteristics and micro-distribution prediction during hydrate dissociation in sediments from the South China Sea.J Nat Gas Sci Eng 2019; 65:135-144.
[77]
Prasad NT, Murthy KNVV, Sandhya CS, Gobichandhru D, Ramesh S, Ramadass GA, et al.Experimental investigations on in-situ properties measurement of gas hydrate systems.In: Proceedings of 2022; 2022 Feb 21–24; Chennai OCEANS, India. IEE E; 2022.
[78]
Duchkov AD, Duchkov AA, Permyakov ME, Manakov AY, Golikov NA, Drobchik AN.Acoustic properties of hydrate-bearing sand samples: laboratory measurements (setup, methods, and results).Russ Geol Geophys 2017; 58(6):727-737.
[79]
Xing L, Zhu T, Niu J, Liu C, Wang B.Development and validation of an acoustic–electrical joint testing system for hydrate-bearing porous media.Adv Mech Eng 2020; 12(3):1971-1992.
[80]
Gimaltdinov IK, Khusainov IG, Khusainova GY, Gimaltdinova AA.Reflection of acoustic waves from a bubble screen in water with hydrate bubbles.IOP Conf Ser Mater Sci Eng 2020; 919:062055.
[81]
Hu G, Ye Y, Zhang J, Liu C, Li Q.Acoustic response of gas hydrate formation in sediments from South China Sea.Mar Pet Geol 2014; 52:1-8.
[82]
Gubaidullin AA, Boldyreva OY, Dudko DN.Waves in porous media containing gas hydrate.In: Proceedings of 15th All-Russian Seminar on Dynamics of Multiphase Media (DMM); 2017 Oct 3–5; Novosibirsk, Russia. AIP Publishing; 2017.
[83]
Minshull TA, Singh SC, Westbrook GK.Seismic velocity structure at a gas hydrate reflector, offshore western colombia, from full-wave-form inversion.J Geophys Res Solid Earth 1994; 99(B3):4715-4734.
[84]
Chapman R.Fiery ice from the sea: marine gas hydrates.J Acoust Soc Am 2014; 136(4):2316.
[85]
Du Frane WL, Stern LA, Weitemeyer KA, Constable S, Pinkston JC, Roberts JJ.Electrical properties of polycrystalline methane hydrate.Geophys Res Lett 2011; 38:L09313.
[86]
Du Frane WL, Stern LA, Constable S, Weitemeyer KA, Smith MM, Roberts JJ.Electrical properties of methane hydrate plus sediment mixtures.J Geophys Res Solid Earth 2015; 120(7):4773-4783.
[87]
Shankar U, Riedel M.Gas hydrate saturation in the Krishna-Godavari basin from P-wave velocity and electrical resistivity logs.Mar Pet Geol 2011; 28(10):1768-1778.
[88]
Lu R, Stern LA, Du Frane WL, Pinkston JC, Roberts JJ, Constable S.The effect of brine on the electrical properties of methane hydrate.J Geophys Res Solid Earth 2019; 124(11):10877-10892.
[89]
Pearson C, Murphy J, Hermes R.Acoustic and resistivity measurements on rock samples containing tetrahydrofuran hydrates—laboratory analogs to natural-gas hydrate deposits.J Geophys Res Solid Earth 1986; 91(B14):14132-14138.
[90]
Lee JY, Santamarina JC, Ruppel C.Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: electromagnetic properties.J Geophys Res Solid Earth 2010; 115:B11104.
[91]
Buffett BA, Zatsepina OY.Formation of gas hydrate from dissolved gas in natural porous media.Mar Geol 2000; 164(1–2):69-77.
[92]
Zatsepina OY, Buffett BA.Experimental study of the stability of CO2–hydrate in a porous medium.Fluid Phase Equilib 2001; 192(1–2):85-102.
[93]
Li F, Sun C, Li S, Chen G, Guo X, Yang L, et al.Experimental studies on the evolvement of electrical resistivity during methane hydrate formation in sediments.Energy Fuels 2012; 26(10):6210-6217.
[94]
Spangenberg E, Kulenkampff J.Influence of methane hydrate content on electrical sediment properties.Geophys Res Lett 2006; 33(24):L24315.
[95]
Zhou X, Fan S, Liang D, Wang D, Huang N.Use of electrical resistance to detect the formation and decomposition of methane hydrate.J Nat Gas Chem 2007; 16(4):399-403.
[96]
Li S, Xia X, Xuan J, Liu Y, Li Q.Resistivity in formation and decomposition of natural gas hydrate in porous medium.Chin J Chem Eng 2010; 18(1):39-42.
[97]
Haukalid K, Folgero K.Broad-band permittivity measurements of formation of gas hydrate layers using open-ended coaxial probes.Energy Fuels 2016; 30(9):7196-7205.
[98]
Jakobsen T, Sjoblom J, Ruoff P.Kinetics of gas hydrate formation in w/o-emulsions the model system trichlorofluoromethane/water/non-ionic surfactant studied by means of dielectric spectroscopy.Colloid Surf A Physicochem Eng Asp 1996; 112(1):73-84.
[99]
Jakobsen T, Folgero K.Dielectric measurements of gas hydrate formation in water-in-oil emulsions using open-ended coaxial probes.Meas Sci Technol 1997; 8(9):1006-1015.
[100]
Haukalid K.Impact of gas hydrate formation/dissociation on water-in-crude oil emulsion properties studied by dielectric measurements.Energy Fuels 2015; 29(1):43-51.
[101]
Chaouachi M, Falenty A, Sell K, Enzmann F, Kersten M, Haberthuer D, et al.Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy.Geochem Geophys Geosyst 2015; 16(6):1711-1722.
[102]
Lei L, Seol Y, Jarvis K.Pore-scale visualization of methane hydrate-bearing sediments with micro-CT.Geophys Res Lett 2018; 45(11):5417-5426.
[103]
Zhang L, Ge K, Wang J, Zhao J, Song Y.Pore-scale investigation of permeability evolution during hydrate formation using a pore network model based on X-ray CT.Mar Petrol Geol 2020; 113:104157.
[104]
Kim S, Lee M, Lee K, Ahn T, Lee J.Data-driven estimation of three-phase saturation during gas hydrate depressurization using CT images.J Pet Sci Eng 2021; 205:108916.
[105]
Kim S, Lee K, Lee M, Lee J, Ahn T, Lim JT.Evaluation of saturation changes during gas hydrate dissociation core experiment using deep learning with data augmentation.J Pet Sci Eng 2022; 209:109820.
[106]
Le TX, Bornert M, Aimedieu P, Chabot B, King A, Tang AM.An experimental investigation on methane hydrate morphologies and pore habits in sandy sediment using synchrotron X-ray computed tomography.Mar Pet Geol 2020; 122:104646.
[107]
Li R, Zhou Y, Zhan W, Yang J.Pore-scale modelling of elastic properties in hydrate-bearing sediments using 4-D synchrotron radiation imaging.Mar Pet Geol 2022; 145:105864.
[108]
Zhang L, Wang Y, Lang C, Yang L, Zhao J, Song Y.Crystal growth of CO2–CH4 hydrate on a solid surface with varying wettability in the presence of PVCap.Cryst Growth Des 2024; 24(11):4697-4706.
[109]
Uchida T, Takagi A, Kawabata J, Mae S, Hondoh T.Raman-spectroscopic analyses on the growth-process of CO2 hydrates.Energy Convers Manage 1995; 36(6–9):547-550.
[110]
Sasaki S, Hori S, Kume T, Shimizu H.Microscopic observation and in situ Raman scattering studies on high-pressure phase transformations of a synthetic nitrogen hydrate.J Chem Phys 2003; 118(17):7892-7897.
[111]
Kim DY, Lee H.Spectroscopic identification of the mixed hydrogen and carbon dioxide clathrate hydrate.J Am Chem Soc 2005; 127(28):9996-9997.
[112]
Abbasi GR, Arif M, Isah A, Ali M, Mahmoud M, Hoteit H, et al.Gas hydrate characterization in sediments via X-ray microcomputed tomography.Earth Sci Rev 2022; 234:104233.
[113]
Minagawa H, Nishikawa Y, Ikeda I, Miyazaki K, Takahara N, Sakamoto Y, et al.Characterization of sand sediment by pore size distribution and permeability using proton nuclear magnetic resonance measurement.J Geophys Res Solid Earth 2008; 113:B07210.
[114]
Rousina-Webb A, Leek DM, Ripmeester J.Effect of clathrate hydrate formation and decomposition on NMR parameters in THF-D2O solution.J Phys Chem B 2012; 116(25):7544-7547.
[115]
Sun H, Chen J, Ji X, Karunakaran G, Chen B, RRanjith PG, et al.Optimizing CO2 hydrate storage: dynamics and stability of hydrate caps in submarine sediments.Appl Energ 2024; 376:124309.
[116]
Lu H, Seo Y, Lee J, Moudrakovski I, Ripmeester JA, Ross Chapman N, et al.Complex gas hydrate from the Cascadia margin.Nature 2007; 445(7125):303-306.
[117]
Zhang X, Du Z, Luan Z, Wang X, Xi S, Wang B, et al.In situ Raman detection of gas hydrates exposed on the seafloor of the South China Sea.Geochem Geophys Geosyst 2017; 18(10):3700-3713.
[118]
Meng Q, Liu C, Li C, Hao X, Hu G, Sun J, et al.Effect of common guest molecules on the lattice constants of clathrate hydrates.Acta Phys Chim Sin 2020; 36(11):1910010.
[119]
Kumar R, Linga P, Moudrakovski I, Ripmeester JA, Englezos P.Structure and kinetics of gas hydrates from methane/ethane/propane mixtures relevant to the design of natural gas hydrate storage and transport facilities.AlChE J 2008; 54(8):2132-2144.
[120]
Sum AK, Burruss RC, Sloan ED.Measurement of clathrate hydrates via Raman spectroscopy.J Phys Chem B 1997; 101(38):7371-7377.
[121]
Subramanian S, Kini RA, Dec SF, Sloan ED.Evidence of structure II hydrate formation from methane plus ethane mixtures.Chem Eng Sci 2000; 55(11):1981-1999.
[122]
Seo YT, Lee H.C-13 NMR analysis and gas uptake measurements of pure and mixed gas hydrates: development of natural gas transport and storage method using gas hydrate.Korean J Chem Eng 2003; 20(6):1085-1091.
[123]
Uchida T, Takeya S, Kamata Y, Ikeda IY, Nagao J, Ebinuma T, et al.Spectroscopic observations and thermodynamic calculations on clathrate hydrates of mixed gas containing methane and ethane: determination of structure, composition and cage occupancy.J Phys Chem B 2002; 106(48):12426-12431.
[124]
Truong-Lam HS, Cho SJ, Lee JD.Simultaneous in-situ macro and microscopic observation of CH4 hydrate formation/decomposition and solubility behavior using Raman spectroscopy.Appl Energy 2019; 255:113834.
[125]
Dec SF.Clathrate hydrate formation: dependence on aqueous hydration number.J Phys Chem C 2009; 113(28):12355-12361.
[126]
Dec SF.Surface transformation of methane–ethane sI and sII clathrate hydrates.J Phys Chem C 2012; 116(17):9660-9665.
[127]
Truong-Lam HS, Seo S, Kim S, Seo Y, Lee JD.In situ Raman study of the formation and dissociation kinetics of methane and methane/propane hydrates.Energy Fuels 2020; 34(5):6288-6297.
[128]
Bbosa B, Ozbayoglu E, Volk M.Experimental investigation of hydrate formation, plugging and flow properties using a high-pressure viscometer with helical impeller.J Pet Explor Prod Technol 2019; 9(2):1089-1104.
[129]
Camargo R, Palermo T, Sinquin A, Glenat P.Rheological characterization of hydrate suspensions in oil dominated systems.Ann N Y Acad Sci 2000; 912:906-916.
[130]
Peng B, Chen J, Sun C, Dandekar A, Guo S, Liu B, et al.Flow characteristics and morphology of hydrate slurry formed from (natural gas plus diesel oil/condensate oil plus water) system containing anti-agglomerant.Chem Eng Sci 2012; 84:333-344.
[131]
Yan K, Sun C, Chen J, Chen L, Shen D, Liu B, et al.Flow characteristics and rheological properties of natural gas hydrate slurry in the presence of anti-agglomerant in a flow loop apparatus.Chem Eng Sci 2014; 106:99-108.
[132]
Shi B, Chai S, Ding L, Chen Y, Liu Y, Song S, et al.An investigation on gas hydrate formation and slurry viscosity in the presence of wax crystals.AlChE J 2018; 64(9):3502-3518.
[133]
Majid AAA, Wu DT, Koh CA.New in situ measurements of the viscosity of gas clathrate hydrate slurries formed from model water-in-oil emulsions.Langmuir 2017; 33(42):11436-11445.
[134]
Wang W, Fan S, Liang D, Yang X.Experimental study on flow characters of CH3CCl2F hydrate slurry.Int J Refrig Rev Int Froid 2008; 31(3):371-378.
[135]
Joshi SV, Grasso GA, Lafond PG, Rao I, Webb E, Zerpa LE, et al.Experimental flowloop investigations of gas hydrate formation in high water cut systems.Chem Eng Sci 2013; 97:198-209.
[136]
Tang C, Zhao X, Li D, He Y, Shen X, Liang D.Investigation of the flow characteristics of methane hydrate slurries with low flow rates.Energies 2017; 10(1):145.
[137]
Sinquin A, Palermo I, Peysson Y.Rheological and flow properties of gas hydrate suspensions.Oil Gas Sci Technol 2004; 59(1):41-57.
[138]
Lv X, Zuo J, Liu Y, Zhou S, Lu D, Yan K, et al.Experimental study of growth kinetics of CO2 hydrates and multiphase flow properties of slurries in high pressure flow systems.RSC Adv 2019; 9(56):32873-32888.
[139]
Shi B, Ding L, Liu Y, Yang J, Song S, Wu H, et al.Hydrate slurry flow property in W/O emulsion systems.RSC Adv 2018; 8(21):11436-11445.
[140]
Ding L, Shi B, Liu Y, Song S, Wang W, Wu H, et al.Rheology of natural gas hydrate slurry: effect of hydrate agglomeration and deposition.Fuel 2019; 239:126-137.
[141]
Aman ZM, Di Lorenzo M, Kozielski K, Koh CA, Warrier P, Johns ML, et al.Hydrate formation and deposition in a gas-dominant flowloop: initial studies of the effect of velocity and subcooling.J Nat Gas Sci Eng 2016; 35:1490-1498.
[142]
Fu W, Yu J, Xiao Y, Wang C, Huang B, Sun B.A pressure drop prediction model for hydrate slurry based on energy dissipation under turbulent flow condition.Fuel 2022; 311:122188.
[143]
Joshi S.Experimental investigation and modeling of gas hydrate formation in high water cut producing oil pipelines [dissertation].Golden: Colorado School of Mines; 2012.
[144]
Zerpa LE, Rao I, Aman ZM, Danielson TJ, Koh CA, Sloan ED, et al.Multiphase flow modeling of gas hydrates with a simple hydrodynamic slug flow model.Chem Eng Sci 2013; 99:298-304.
[145]
Ding L, Shi B, Lv X, Liu Y, Wu H, Wang W, et al.Investigation of natural gas hydrate slurry flow properties and flow patterns using a high pressure flow loop.Chem Eng Sci 2016; 146:199-206.
[146]
Liu Z, Liu Z, Wang J, Yang M, Zhao J, Song Y.Hydrate blockage observation and removal using depressurization in a fully visual flow loop.Fuel 2021; 294:120588.
[147]
Albors GO, Kyle AM, Wodicka GR, Juan EJ.Computer simulation tool for predicting sound propagation in air-filled tubes with acoustic impedance discontinuities.In: Proceedings of 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2007 Aug 22–26; Lyon, France. IEEE; 2007.
[148]
Silva LL, Monteiro PCC, Vidal JLA, Netto TA.Acoustic reflectometry for blockage detection in pipeline.In: Proceedings of 33rd International Conference on Ocean, Offshore and Arctic Engineering; 2013 Jun 8–13; San Francisco, CA, USA. IEEE; 2013.
[149]
Kinsler LE, Frey AR, Coppens AB, Sanders JV.Fundamentals of acoustics.Hoboken: John Wiley & Sons; 2000.
[150]
Morgan ES, Crosse PAE.The acoustic ranger, a new instrument for tube and pipe inspection.NDT Int 1978; 11(4):179-183.
[151]
Amir N, Barzelay O, Yefet A, Pechter T.Condenser tube examination using acoustic pulse reflectometry.J Eng Gas Turbines Power Trans ASME 2010; 132(1):014501.
[152]
Wang X, Lewis KM, Papadopoulou KA, Lennox B, Turner JT.Detection of hydrate and other blockages in gas pipelines using acoustic reflectometry.Proc Inst Mech Eng Part C J Eng Mech Eng Sci 2012; 226(C7):1800-1810.
[153]
An Y, Wang XC, Yue B, Qu ZG, Wu LQ, Chu RH.Compensation of sound velocity variation based on resampling algorithm for natural gas pipeline safety monitoring.Measurement 2019; 148:106942.
[154]
Duan W, Kirby R, Prisutova J, Horoshenkov KV.On the use of power reflection ratio and phase change to determine the geometry of a blockage in a pipe.Appl Acoust 2015; 87:190-197.
[155]
An Y, Wang X, Yue B, Jin S, Wu L, Qu Z.A novel method for natural gas pipeline safety online monitoring based on acoustic pulse compression.Proc Saf Environ Protect 2019; 130:174-181.
[156]
Zhao Y, Feng Z, Zhu X.Condition identification of buried drainage pipeline based on CEEMDAN-DE and time-frequency images recognition.In: Proceedings of the 32nd 2020 Chinese Control and Decision Conference (CCDC 2020); 2020 Aug 22–24; Hefei, China. IEEE; 2020.
[157]
Papadopoulou KA, Shamout MN, Lennox B, Mackay D, Taylor AR, Turner JT, et al.An evaluation of acoustic reflectometry for leakage and blockage detection.Proc Inst Mech Eng Part C J Eng Mech Eng Sci 2008; 222(6):959-966.
[158]
Zeng W, Zecchin AC, Gong J, Lambert MF, Simpson AR, Cazzolato BS.Inverse wave reflectometry method for hydraulic transient-based pipeline condition assessment.J Hydraul Eng 2020; 146(8):04020056.
[159]
Domis MA.Acoustic resonances as a means of blockage detection in sodium-cooled fast-reactors.Nucl Eng Des 1979; 54(1):125-147.
[160]
Domis MA.Frequency dependence of acoustic resonances on blockage position in a fast reactor subassembly wrapper.J Sound Vib 1980; 72(4):443-450.
[161]
Wu QL, Fricke F.Estimation of blockage dimensions in a duct using measured eigenfrequency shifts.J Sound Vib 1989; 133(2):289-301.
[162]
Wu QL, Fricke F.Determination of blocking locations and cross-sectional area in a duct by eigenfrequency shifts.J Acoust Soc Am 1990; 87(1):67-75.
[163]
De Salis MHF, Oldham DJ.A rapid technique to determine the internal area function of finite-length ducts using maximum length sequence analysis.J Acoust Soc Am 2000; 108(1):44-52.
[164]
Lile NLT, Hadi H, Roslan MR.Vibration analysis of blocked circular pipe flow.Appl Mech Mater 2012; 165:197-201.
[165]
Lile NLT, Hasnul MJ, Siregar RA, Leong JC.Effect of blockage size on pipe vibration.Adv Mat Res 2012; 626:993-996.
[166]
Ma J, Simonetti F, Lowe MJS.Scattering of the fundamental torsional mode by an axisymmetric layer inside a pipe.J Acoust Soc Am 2006; 120(4):1871-1880.
[167]
Simonetti F, Cawley P.A guided wave technique for the characterization of highly attenuative viscoelastic materials.J Acoust Soc Am 2003; 114(1):158-165.
[168]
Ma J, Lowe MJS, Simonetti F.Feasibility study of sludge and blockage detection inside pipes using guided torsional waves.Meas Sci Technol 2007; 18(8):2629-2641.
[169]
Wylie EB, Streeter VL, Suo L.Fluid transients in systems. Prentice Hall, Englewood Cliffs (1993)
[170]
Gato LMC, Henriques JCC.Dynamic behaviour of high-pressure natural-gas flow in pipelines.Int J Heat Fluid Flow 2005; 26(5):817-825.
[171]
Yuan Z, Deng Z, Jiang M, Xie Y, Wu Y.A modeling and analytical solution for transient flow in natural gas pipelines with extended partial blockage.J Nat Gas Sci Eng 2015; 22:141-149.
[172]
Alghlam AS, Stevanovic VD, Elgazdori EA, Banjac M.Numerical simulation of natural gas pipeline transients.J Energy Resour Technol 2019; 141(10):JERT-18-1862.
[173]
Hinderdael M, Jardon Z, Guillaume P.An analytical amplitude model for negative pressure waves in gaseous media.Mech Syst Sig Proc 2020; 144:106800.
[174]
Ghidaoui MS, Ming Z, McInnis DA, Axworthy DH.A review of water hammer theory and practice.Appl Mech Rev 2005; 58(1):49-76.
[175]
Meniconi S, Brunone B, Ferrante M, Massari C.Small amplitude sharp pressure waves to diagnose pipe systems.Water Resour Manage 2011; 25(1):79-96.
[176]
Ferrante M, Brunone B, Meniconi S.Leak detection in branched pipe systems coupling wavelet analysis and a Lagrangian model.J Water Supply Res Technol 2009; 58(2):95-106.
[177]
Haghighi A, Covas D, Ramos H.Direct backward transient analysis for leak detection in pressurized pipelines: from theory to real application.J Water Supply Res Technol 2012; 61(3):189-200.
[178]
Lee PJ, Duan HF, Tuck J, Ghidaoui M.Numerical and experimental study on the effect of signal bandwidth on pipe assessment using fluid transients.J Hydraul Eng 2015; 141(2):04014074.
[179]
Beck SBM, Curren MD, Sims ND, Stanway R.Pipeline network features and leak detection by cross-correlation analysis of reflected waves.J Hydraul Eng 2005; 131(8):715-723.
[180]
Ferrante M, Brunone B, Meniconi S.Wavelets for the analysis of transient pressure signals for leak detection.J Hydraul Eng 2007; 133(11):1274-1282.
[181]
Meniconi S, Brunone B, Ferrante M.In-line pipe device checking by short-period analysis of transient tests.J Hydraul Eng 2011; 137(7):713-722.
[182]
Wang X, Lin J, Ghidaoui MS.Usage and effect of multiple transient tests for pipeline leak detection.J Water Resour Plann Manage 2020; 146(11):06020011.
[183]
Tian Y, Zhao X, Tian D, Wu R, Tang H.Dynamic detection of the multiple hydrate blockages in natural gas pipeline using mass pulse at the inlet.Appl Mech Mater 2014; 490:490-497.
[184]
Meniconi S, Brunone B, Frisinghelli M, Mazzetti E, Larentis M, Costisella C.Safe transients for pipe survey in a real transmission main by means of a portable device: the case study of the Trento (I) supply system.Proc Eng 2017; 186:228-235.
[185]
Adeleke N, Ityokumbul MT, Adewumi M.Blockage detection and characterization in natural gas pipelines by transient pressure-wave reflection analysis.SPE J 2013; 18(2):355-365.
[186]
Chu J, Liu Y, Lv X, Li Q, Dong H, Song Y, et al.Experimental investigation on blockage predictions in gas pipelines using the pressure pulse wave method.Energy 2021; 230:120897.
[187]
Yu W, Wen K, Min Y, He L, Huang W, Gong J.A methodology to quantify the gas supply capacity of natural gas transmission pipeline system using reliability theory.Reliab Eng Syst Saf 2018; 175:128-141.
[188]
Zhao J, Lang C, Chu J, Yang L, Zhang L.Flow assurance of hydrate risk in natural gas/oil transportation: state-of-the-art and future challenges.J Phys Chem C 2023; 127(28):13439-13450.
[189]
Zanganeh R, Jabbari E, Shabakhty N, Keramat A.The first half-period of pressure heads for frequency response extraction and analysis of waterhammer with fluid–structure interaction.European Journal of Mechanics B Fluids 2023; 101:89-105.
[190]
Stephens M, Lambert M, Simpson A, Nixon J, Vitkovsky J.Water pipeline condition assessment using transient response analysis.In: Proceedings of New Zealand Water and Wastes Association Conference; 2005; Auckland, New Zealand. The University of Adelaide; 2005.
[191]
Duan H, Lee PJ, Ghidaoui MS, Tung YK.Extended blockage detection in pipelines by using the system frequency response analysis.J Water Resour Plann Manage 2012; 138(1):55-62.
[192]
Mohapatra PK, Chaudhry MH, Kassem A, Moloo J.Detection of partial blockages in a branched piping system by the frequency response method.J Fluids Eng Trans 2006; 128(5):1106-1114.
[193]
Sattar AM, Chaudhry MH, Kassem AA.Partial blockage detection in pipelines by frequency response method.J Hydraul Eng 2008; 134(1):76-89.
[194]
Duan H, Lee PJ, Kashima A, Lu J, Ghidaoui MS, Tung YK.Extended blockage detection in pipes using the system frequency response: analytical analysis and experimental verification.J Hydraul Eng 2013; 139(7):763-771.
[195]
Meniconi S, Duan HF, Lee PJ, Brunone B, Ghidaoui MS, Ferrante M.Experimental investigation of coupled frequency and time-domain transient test-based techniques for partial blockage detection in pipelines.J Hydraul Eng 2013; 139(10):1033-1040.
[196]
Louati M, Ghidaoui MS, Meniconi S, Brunone B.Bragg-type resonance in blocked pipe system and its effect on the eigenfrequency shift.J Hydraul Eng 2018; 144(1):04017056.
[197]
Mohapatra PK, Chaudhry MH.Frequency responses of single and multiple partial pipeline blockages.J Hydraul Res 2011; 49(2):263-266.
[198]
Lee PJ, Vitkovsky JP, Lambert MF, Simpson AR, Liggett JA.Discrete blockage detection in pipelines using the frequency response diagram: numerical study.J Hydraul Eng 2008; 134(5):658-663.
[199]
Brunone B, Ferrante M, Meniconi S.Discussion of “detection of partial blockage in single pipelines” by PK Mohapatra, MH Chaudhry, AA Kassem, and.J. Moloo. J Hydraul Eng 2008; 134(6):872-874.
[200]
Duan HF, Lee PJ, Ghidaoui MS, Tuck J.Transient wave–blockage interaction and extended blockage detection in elastic water pipelines.J Fluids Struct 2014; 46:2-16.
[201]
Louati M, Ghidaoui MS.Eigenfrequency shift mechanism due to variation in the cross sectional area of a conduit.J Hydraul Res 2017; 55(6):829-846.
[202]
Louati M, Ghidaoui MS.Eigenfrequency shift mechanism due to an interior blockage in a pipe.J Hydraul Eng 2018; 144(1):04017055.
[203]
Louati M, Meniconi S, Ghidaoui MS, Brunone B.Experimental study of the eigenfrequency shift mechanism in a blocked pipe system.J Hydraul Eng 2017; 143(10):04017044.
[204]
Duan HF, Lee PJ, Che TC, Ghidaoui MS, Karney BW, Kolyshkin AA.The influence of non-uniform blockages on transient wave behavior and blockage detection in pressurized water pipelines.J Hydro Environ Res 2017; 17:1-7.
[205]
Che TC, Duan HF, Lee PJ, Pan B, Ghidaoui MS.Frequency responses for pressurized water pipelines containing blockages with linearly varying diameters.J Hydraul Eng 2018; 144(8):04018054.
[206]
Che TC, Duan HF, Pan B, Lee PJ, Ghidaoui MS.Energy analysis of the resonant frequency shift pattern induced by nonuniform blockages in pressurized water pipes.J Hydraul Eng 2019; 145(7):04019027.
[207]
Yang MD, Su TC, Pan NF, Yang YF.Systematic image quality assessment for sewer inspection.Expert Syst Appl 2011; 38(3):1766-1776.
[208]
Su TC, Yang MD, Wu TC, Lin JY.Morphological segmentation based on edge detection for sewer pipe defects on CCTV images.Expert Syst Appl 2011; 38(10):13094-13114.
[209]
Halfawy MR, Hengmeechai J.Automated defect detection in sewer closed circuit television images using histograms of oriented gradients and support vector machine.Autom Constr 2014; 38:1-13.
[210]
Zhou Q, Situ Z, Teng S, Chen G.Convolutional neural networks-based model for automated sewer defects detection and classification.J Water Resour Plann Manage 2021; 147(7):04021036.
[211]
Schempf H, Mutschler E, Goltsberg V, Chemel B.Robotic repair system for live distribution gasmains.Field and Service Robotics Conference, FSR.
[212]
Shi Y, Hao L, Cai M, Wang Y, Yao J, Li R, et al.High-precision diameter detector and three-dimensional reconstruction method for oil and gas pipelines.J Pet Sci Eng 2018; 165:842-849.
[213]
Karkoub M, Bouhali O, Sheharyar A.Gas pipeline inspection using autonomous robots with omni-directional cameras.IEEE Sens J 2021; 21(14):15544-15553.
[214]
Burkett S, Schempf H.Wireless self-powered visual and NDE robotic inspection system for live gas distribution mains.Report. Pittsburgh: Carnegie Mellon University; 2006.
[215]
Zhou S, Yu H, Ren Z, Ma Q, Du H, Dong L, inventors; Wang M.An intelligent pipe cleaner for natural gas pipelines.China patent CN202110624300.7. 2021.
[216]
Kim J, Jung S, Moon J, Cho G.A feasibility study on gamma-ray tomography by Monte Carlo simulation for development of portable tomographic system.Appl Radiat Isot 2012; 70(2):404-414.
[217]
Alnaimat F, Ziauddin M.Wax deposition and prediction in petroleum pipelines.J Pet Sci Eng 2020; 184:106385.
[218]
Li X, Liu Y, Liu Z, Chu J, Song Y, Yu T, et al.A hydrate blockage detection apparatus for gas pipeline using ultrasonic focused transducer and its application on a flow loop.Energy Sci Eng 2020; 8(5):1770-1780.
[219]
Gouveia MAG, Lopes RT, de Jesus EFO, Camerini CS.Materials characterization in petroleum pipeline using Compton scattering technique.Nucl Instrum Methods Phys Res Sect A 2003; 505(1–2):540-543.
[220]
Benson D, Robins L.Nonintrusive pipeline-inspection techniques for accurate measurement of hydrates and waxes within operational pipelines.In: Proceedings of SPE Offshore Europe Oil and Gas Conference and Exhibition; 2007 Sep 4–7; Scotland, UK. Richardson: OnePetro; 2007.
[221]
Rao P, Yelgaonkar V, Tiwari C, Dhakar V, Panicker M.Locating block caused by stuck PIGs in multi product pipeline using combination of radioisotope techniques.Appl Radiat Isot 2023; 193:110660.
[222]
Cheng C, Jia W, Hei D, Geng S, Wang H, Xing L.Determination of thickness of wax deposition in oil pipelines using gamma-ray transmission method.Nucl Sci Tech 2018; 29(8):109.
[223]
Sharma A, Sandhu B, Singh B.Incoherent scattering of gamma photons for non-destructive tomographic inspection of pipeline.Appl Radiat Isot 2010; 68(12):2181-2188.
[224]
Salgado WL, Dam RSd F, Teixeira TP, Conti C, Salgado C.Application of artificial intelligence in scale thickness prediction on offshore petroleum using a gamma-ray densitometer.Radiat Phys Chem 2020; 168:108549.
[225]
Alkabaa AS, Nazemi E, Taylan O, Kalmoun EM.Application of artificial intelligence and gamma attenuation techniques for predicting gas–oil–water volume fraction in annular regime of three-phase flow independent of oil pipeline’s scale layer.Mathematics 2021; 9(13):1460.
[226]
Askari M, Taheri A, Kochakpour J, Sasanpour MT.An intelligent gamma-ray technique for determining wax thickness in pipelines.Appl Radiat Isot 2021; 172:109667.
[227]
Candeias JP, de Oliveira DF, dos Anjos MJ, Lopes RT.Scale analysis using X-ray microfluorescence and computed radiography.Radiat Phys Chem 2014; 95:408-411.
[228]
Oliveira DF, Santos RS, Machado AS, Silva ASS, Anjos MJ, Lopes RT.Characterization of scale deposition in oil pipelines through X-ray microfluorescence and X-ray microtomography.Appl Radiat Isot 2019; 151:247-255.
[229]
Harara W.Deposit thickness measurement in pipes by tangential radiography using gamma ray sources.Russ J Nondestr Test 2008; 44(11):796-802.
[230]
Oliveira DF, Nascimento JR, Marinho CA, Lopes RT.Gamma transmission system for detection of scale in oil exploration pipelines.Nucl Instrum Methods Phys Res Sect A 2015; 784:616-620.
[231]
Roslee MN, Muji SZM, Pusppanathan J, Shaib MFA.A pilot study on pipeline wall inspection technology tomography.In: Proceedings of the 11th National Technical Seminar on Unmanned System Technology; 2019 Dec 2–3; Perth, Malaysia. Singapore: Springer; 2021.
[232]
Piao C, Kim SH, Lee JK, Choi WG, Kim YY.Non-invasive ultrasonic inspection of sludge accumulation in a pipe.Ultrasonics. 2022; 119:106602.
[233]
Piao C, Lee J, Kim SH, Kim YY.Ultrasonic inspection of sludge accumulated in plastic pipes using meta-slab mode-converting wedge transducers.NDT E Int 2024; 142:103020.
[234]
Maung CO, Kawashima D, Oshima H, Tanaka Y, Yamane Y, Takei M.Particle volume flow rate measurement by combination of dual electrical capacitance tomography sensor and plug flow shape model.Powder Technol 2020; 364:310-320.
[235]
Zhang L, Wang Z, Wu S.Gas–liquid flow behavior analysis based on phase-amplitude coupling and ERT.IEEE Trans Instrum Meas 2022; 71:1-10.
[236]
Jing N, Li M, Liu L, Shen Y, Yang P, Qin X.Visualization detection of solid–liquid two-phase flow infilling pipeline by electrical capacitance tomography technology.Comput Model Eng Sci 2022; 131(1):465-476.
[237]
Xu Y, Pu H, Li Y, Wang H.Flow pattern identification for gas–oil two-phase flow based on a virtual capacitance tomography sensor and numerical simulation.Flow Meas Instrum 2023; 92:102376.
[238]
Zhao Y, Yue S, Zhang Y, Wang H.Flow velocity computation using a single ERT sensor.Flow Meas Instrum 2023; 93:102433.
[239]
Li Y, Wu N, Liu C, Chen Q, Ning F, Wang S, et al.Hydrate formation and distribution within unconsolidated sediment: insights from laboratory electrical resistivity tomography.Acta Oceanolog Sin 2022; 41(9):127-136.
[240]
Liu Y, Zou C, Chen Q, Zhao J, Li Y, Sun J, et al.Cross-hole electrical resistivity tomography as an aid in monitoring marine gas hydrate reservoirs for gas recovery: an experimental simulation study.Geophys J Int 2023; 233(1):195-210.
[241]
Liu Y, Chen Q, Li S, Wang X, Zhao J, Zou C.Characterizing spatial distribution of ice and methane hydrates in sediments using cross-hole electrical resistivity tomography.Gas Sci Eng 2024; 128:205378.
[242]
Sa JH, Lee BR, Zhang X, Folgero K, Haukalid K, Kocbach J, et al.Hydrate management in deadlegs: detection of hydrate deposition using permittivity probe.Energy Fuels 2018; 32(2):1693-1702.
[243]
Scott SL, Satterwhite LA.Evaluation of the backpressure technique for blockage detection in gas flowlines.J Energy Resour Technol 1998; 120(1):27-31.
[244]
Scott SL, Yi J.Flow testing methods to detect and characterize partial blockages in looped subsea flowlines.J Energy Resour Technol 1999; 121(3):154-160.
[245]
Liu L, Scott SL.Development of a type curve to locate partial blockages in gas flowlines.In: Proceedings of SPE Annual Technical Conference and Exhibition; 2000 Oct 1–4; Dallas, TX, USA. Richardson: OnePetro; 2000.
[246]
Yang L, Fu H, Liang H, Wang Y, Han G, Ling K.Detection of pipeline blockage using lab experiment and computational fluid dynamic simulation.J Pet Sci Eng 2019; 183:106421.
[247]
Ling K, Wu X, Shen Z.A new method to detect partial blockage in gas pipelines.Oil Gas Facil 2016; 5(5):SPE-174751-PA.
[248]
Inaudi D, Glisic B.Long-range pipeline monitoring by distributed fiber optic sensing.In: Proceedings of 2006 International Pipeline Conference; 2006 Sep 25–29; Calgary, AB, Canada. ASME; 2006.
[249]
Brower DV, Prescott CN, Zhang J, Howerter C, Rafferty D.Real-time flow assurance monitoring with non-intrusive fiber optic technology.In: Proceedings of Offshore Technology Conference; 2005 May 2–5; Houston, TX, USA. Richardson: OnePetro; 2005.
[250]
Li L, Pan R, Zhang W, Li H.Overview of fiber optic pipeline monitoring sensors.Appl Mech Mater, 246–247 2013; 872-876.
[251]
Ashry I, Mao Y, Wang B, Hveding F, Bukhamsin AY, Ng TK, et al.A review of distributed fiber–optic sensing in the oil and gas industry.J Lightwave Technol 2022; 40(5):1407-1431.
[252]
Berthold JW.Detection of flowline blockage using bragg grating sensors.In: Proceedings of Fiber Optic and Laser Sensors and Applications; Including Distributed and Multiplexed Fiber Optic Sensors VII; 1999 Feb 3; Boston, MA, USA. SPIE; 1999.
[253]
Meniconi S, Brunone B, Ferrante M, Capponi C, Carrettini CA, Chiesa C, et al.Anomaly pre-localization in distribution–transmission mains by pump trip: preliminary field tests in the Milan pipe system.J Hydroinf 2015; 17(3):377-389.
[254]
Ferrante M, Bartocci D, Busti B, Fracchia S, Gentile MT, Marelli F, et al.Diagnosis of water distribution systems through transient tests: the pilot study of Milan.J Water Resour Plann Manage 2022; 148(6):05022004.
[255]
Panhuis P, den Boer H, van Der Horst J, Paleja R, Randell D, Joinson D, et al.Flow monitoring and production profiling using DAS.In: Proceedings of SPE Annual Technical Conference and Exhibition; 2014 Oct 27–29; Amsterdam, Netherlands. Richardson: OnePetro; 2014.
[256]
Schempf H, Mutschler E, Goltsberg V, Crowley W.GRISLEE: Gasmain repair and inspection system for live entry environments.Int J Rob Res 2003; 22(7–8):603-616.
[257]
Schempf H, Vradis G.Explorer: untethered real-time gas main assessment robot system.Report. San Francisco: Academia; 2003.
[258]
Schempf H, D’Zurko D.Long-range untethered real-time live gas main robotic inspection system.Report. Washington, DC: US Department of Energy; 2004.
[259]
Schempf H, Mutschler E, Gavaert A, Skoptsov G, Crowley W.Visual and nondestructive evaluation inspection of live gas mains using the explorer™ family of pipe robots.J Field Rob 2010; 27(3):217-249.
[260]
Verifying tee installations—solution for unlocatable PE gas main features. Report. Hauppauge: ULC Technologies; 2024.
[261]
Enablement works on London medium pressure gas network. Report. Hauppauge: ULC Technologies; 2024.
[262]
Rosen. Corrosion and crack detection in an offshore riser and flowline. Report. Obere Spichermatt: Rosen group; 2024.
[263]
PLT logging while tractoring with Well Tractor® 212 tandem. Report. Gydevang: Welltec; 2024.
[264]
Wang Z, Cao Q, Luan N, Zhang L.Development of an autonomous in-pipe robot for offshore pipeline maintenance.Industrial Robot 2010; 37(2):177-184.
[265]
Li H, Li R, Zhang J, Zhang P.Development of a pipeline inspection robot for the standard oil pipeline of China National Petroleum Corporation.Appl Sci Basel 2020; 10(8):2853.
AI Summary AI Mindmap
PDF(3052 KB)

Accesses

Citations

Detail

Sections
Recommended

/