Dual-Unloading Mode Autonomous Operation Strategy and Cotransporter System for Rice Harvester and Transporter

Fan Dinga,c, Xiwen Luoa,b,c, Zhigang Zhanga,b,c, Lian Hua,b,c, Xinluo Wua,c, Kaiyuan Baoa,c, Jiarui Zhanga,c, Bingxuan Yuana,c, Wenyu Zhanga,b,c

Engineering ›› 2025, Vol. 48 ›› Issue (5) : 220-233.

PDF(4639 KB)
PDF(4639 KB)
Engineering ›› 2025, Vol. 48 ›› Issue (5) : 220-233. DOI: 10.1016/j.eng.2024.11.006
Research
Article

Dual-Unloading Mode Autonomous Operation Strategy and Cotransporter System for Rice Harvester and Transporter

  • Fan Dinga,c, Xiwen Luoa,b,c, Zhigang Zhanga,b,c, Lian Hua,b,c, Xinluo Wua,c, Kaiyuan Baoa,c, Jiarui Zhanga,c, Bingxuan Yuana,c, Wenyu Zhanga,b,c
Author information +
History +

Abstract

To achieve an unmanned rice farm, in this study, a cotransporter system was developed using a tracked rice harvester and transporter for autonomous harvesting, unloading, and transportation. Additionally, two unloading and transportation modes—harvester waiting for unloading (HWU) and transporter following for unloading (TFU)--were proposed, and a harvesting-unloading-transportation (HUT) strategy was defined. By breaking down the main stages of the collaborative operation, designing Module-state machines (MSMs), and constructing state-transition chains, a HUT collaborative operation logic framework suitable for the embedded navigation controller was designed using the concept and method of the finite-state machine (FSM). This method addresses the multiple-stage, nonsequential, and complex processes in HUT collaborative operations. Simulations and field-harvesting experiments were performed to evaluate the applicability of this proposed strategy and system. The experimental results showed that the HUT collaborative operation strategy effectively integrated path planning, path-tracking control, inter-vehicle communication, collaborative operation control, and implementation control. The cotransporter system completed the entire process of harvesting, unloading, and transportation. The field-harvesting experiment revealed that a harvest efficiency of 0.42 hm2∙h−1 was achieved. This study can provide insight into collaborative harvesting and solutions for the harvesting process of unmanned farms.

Keywords

Agricultural machinery / Harvesting-unloading-transportation strategy / Cotransporter system / Unmanned farm / Finite-state machine (FSM)

Cite this article

Download citation ▾
Fan Ding, Xiwen Luo, Zhigang Zhang, Lian Hu, Xinluo Wu, Kaiyuan Bao, Jiarui Zhang, Bingxuan Yuan, Wenyu Zhang. Dual-Unloading Mode Autonomous Operation Strategy and Cotransporter System for Rice Harvester and Transporter. Engineering, 2025, 48(5): 220‒233 https://doi.org/10.1016/j.eng.2024.11.006

References

[1]
D. Li, Z. Li. System analysis and development prospect of unmanned farming. Trans Chin Soc Agric Mach, 51 (7) ( 2020), pp. 1-12(Chinese).
[2]
X. Luo, J. Liao, L. Hu, Z. Zhou, Z. Zhang, Y. Zang, et al.. Research progress of intelligent agricultural machinery and practice of unmanned farm in China. J South China Agric Univ, 42 (6) ( 2021), pp. 8-17(Chinese).
[3]
Z. Zhang, X. Luo, Z. Zhao, P. Huang. Trajectory tracking control method based on kalman filter and pure pursuit model for agricultural vehicle. Trans Chin Soc Agric Mach, 40 (S1) ( 2009), pp. 6-12(Chinese).
[4]
H. Chou, F. Khorsandi, S. Vougioukas, F. Fathallah. Developing and evaluating an autonomous agricultural all-terrain vehicle for field experimental rollover simulations. Comput Electron Agric, 194 ( 2022), Article 106735
[5]
H. Sun, D. Slaughter, M. Ruiz, C. Gliever, S. Upadhyaya, R. Smith. Rtk gps mapping of transplanted row crops. Comput Electron Agric, 71 (1) ( 2010), pp. 32-37
[6]
Y. Ding, Z. Xia, J. Peng, Z. Hu. Design and experiment of the single-neuron PID navigation controller for a combine harvester. Trans Chin Soc Agric Eng, 36 (7) ( 2020), pp. 34-42(Chinese).
[7]
J. Xue, L. Zhang, T. Grift. Variable field-of-view machine vision based row guidance of an agricultural robot. Comput Electron Agric, 84 ( 2012), pp. 85-91
[8]
Y. Zhang, Y. Li, X. Liu, J. Tao, C. Liu, R. Li. Fuzzy adaptive control method for autonomous rice seeder. Trans Chin Soc Agric Mach, 49 (10) ( 2018), pp. 30-37(Chinese).
[9]
X. Niu, G. Gao, Z. Bao, H. Zhou. Path tracking of mobile robots for greenhouse spraying controlled by sliding mode variable structure. Trans Chin Soc Agric Eng, 29 (02) ( 2013), pp. 9-16(Chinese).
[10]
G. Xu, M. Chen, X. He, H. Pang, H. Miao, P. Cui, et al.. Path following control of tractor with an electro-hydraulic coupling steering system: layered multi-loop robust control architecture. Biosyst Eng, 209 ( 2021), pp. 282-299
[11]
J. He, L. Hu, P. Wang, Y. Liu, Z. Man, T. Tu, et al.. Path tracking control method and performance test based on agricultural machinery pose correction. Comput Electron Agric, 200 ( 2022), Article 107185
[12]
R. Chi, Z. Xiong, L. Jiang, Y. Ma, X. Huang, X. Zhu. Path tracking control algorithm of transplanter based on model prediction. Trans Chin Soc Agric Mach, 53 (11) ( 2022), pp. 22-30(Chinese).
[13]
X. Zhang, M. Geimer, P. Noack, L. Grandl. A semi-autonomous tractor in an intelligent master-slave vehicle system. Intell Serv Robot, 3 (4) ( 2010), pp. 263-269
[14]
S. Li, R. Cao, S. Wei, Y. Ji, M. Zhang, H. Li. Development of multivehicle cooperative navigation communication system based on TD-LTE. Trans Chin Soc Agric Mach, 48 (S1) ( 2017), pp. 45-51(Chinese).
[15]
C. Zhang, N. Noguchi, L. Yang. Leader-follower system using two robot tractors to improve work efficiency. Comput Electron Agric, 121 ( 2016), pp. 269-281
[16]
J. Chen, S. Fu, Z. Guan, F. Zhu, L. Zhu, H. Xia, et al.. Communication method for combine harvester group using Lora technology. Trans Chin Soc Agric Eng, 38 (16) ( 2022), pp. 81-89(Chinese).
[17]
J. Yao, G. Teng, L. Huo, Y. Yuan, F. Zhang. Optimization of cooperative operation path for multiple combine harvesters without conflict. Trans Chin Soc Agric Eng, 35 (17) ( 2019), pp. 12-18(Chinese).
[18]
Z. Zhai, X. Wang, L. Wang, Z. Zhu, Y. Du, E. Mao. Collaborative path planning for autonomous agricultural machinery of master slave cooperation. Trans Chin Soc Agric Mach, 52 (S1) ( 2021), pp. 542-547(Chinese).
[19]
F. Zhang, X. Luo, Z. Zhang, J. He, W. Zhang. Agricultural machinery scheduling optimization method based on improved multi-parents genetic algorithm. Trans Chin Soc Agric Eng, 37 (9) ( 2021), pp. 192-198(Chinese).
[20]
N. Wang, X. Yang, T. Wang, J. Xiao, M. Zhang, H. Wang, et al.. Collaborative path planning and task allocation for multiple agricultural machines. Comput Electron Agric, 213 ( 2023), Article 108218
[21]
N. Noguchi, J. Will, J. Reid, Q. Zhang. Development of a master-slave robot system for farm operations. Comput Electron Agric, 44 (1) ( 2004), pp. 1-19
[22]
X. Bai, Z. Wang, J. Hu, L. Gao, F. Xiong. Harvester group corporative navigation method based on leader-follower structure. Trans Chin Soc Agric Mach, 48 (7) ( 2017), pp. 14-21(Chinese).
[23]
S. Li, H. Xu, Y. Ji, R. Cao, M. Zhang, H. Li. Development of a following agricultural machinery automatic navigation system. Comput Electron Agric, 158 ( 2019), pp. 335-344
[24]
W. Zhang, Z. Zhang, X. Luo, J. He, L. Hu, B. Yue. Position-velocity coupling control method and experiments for longitudinal relative position of harvester and grain truck. Trans Chin Soc Agric Eng, 37 (9) ( 2021), pp. 1-11(Chinese).
[25]
F. Ding, W. Zhang, X. Luo, L. Hu, Z. Zhang, M. Wang, et al.. Gain self-adjusting single neuron pid control method and experiments for longitudinal relative position of harvester and transport vehicle. Comput Electron Agric, 213 ( 2023), Article 108215
[26]
H. Cho, G.D. Hachtel, E. Macii, B. Plessier, F. Somenzi. Algorithms for approximate fsm traversal based on state space decomposition. IEEE Trans Comput Aided Des Integrated Circ Syst, 15 (12) ( 1996), pp. 1465-1478
[27]
J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore, et al.. A perception-driven autonomous urban vehicle. J Field Robot, 25 (10) ( 2008), pp. 727-774
[28]
A. Talebpour, H. Mahmassani, S. Hamdar. Modeling lane-changing behavior in a connected environment: a game theory approach. Transp Res Procedia, 7 ( 2015), pp. 420-440
[29]
L. Xiong, T. Jia, J. Chen, X. Xing, B. Li. Hazard identification method for safety of the intended functionality based on finite state machine. J Tongji Univ, 51 (4) ( 2023), pp. 616-622(Chinese).
[30]
L. Yang, X. Tang, S. Wu, L. Wen, W. Yang, C. Wu. Local path planning for autonomous agricultural machinery on farm road. Trans Chin Soc Agric Eng, 40 (01) ( 2024), pp. 27-36(Chinese).
[31]
K. Fue, W. Porter, E. Barnes, C. Li, G. Rains. Center-articulated hydrostatic cotton harvesting rover using visual-servoing control and a finite state machine. Electronics, 9 (8) ( 2020), p. 1226
[32]
J. He, X. Luo, Z. Zhang, P. Wang, J. He, B. Yue, et al.. Positioning correction method for rice transplanters based on the attitude of the implement. Comput Electron Agric, 176 ( 2020), Article 105598
[33]
H. Wang, G. Wang, X. Luo, Z. Zhang, Y. Gao, J. He, et al.. Path tracking control method of agricultural machine navigation based on aiming pursuit model. Trans Chin Soc Agric Eng, 35 (4) ( 2019), pp. 11-19(Chinese).
[34]
F. Ding, W. Zhang, X. Luo, Z. Zhang, M. Wang, H. Li, et al.. Design and experiment for inter-vehicle communication based on dead-reckoning and delay compensation in a cooperative harvester and transport system. Agriculture, 12 (12) ( 2022), p. 2052
[35]
W. Zhang, L. Hu, F. Ding, X. Luo, Z. Zhang, L. Hu, et al.. Parking precise alignment control and cotransporter system for rice harvester and transporter. Comput Electron Agric, 215 ( 2023), Article 108443
[36]
Y. Tian, S. Bhattacharya. Smart autonomous grain carts for harvesting-on-demand, IEEE, Vancouver, BC, Canada. Piscataway ( 2017), pp. 5168-5173
[37]
P. He, J. Li. The two-echelon multi-trip vehicle routing problem with dynamic satellites for crop harvesting and transportation. Appl Soft Comput, 77 ( 2019), pp. 387-398
[38]
W. Zhang, Z. Zhang, F. Zhang, F. Ding, L. Hu, X. Luo. Cooperative autonomous operation strategy and experiment of the rice harvester together with a rice-transporting vehicle. Trans Chin Soc Agric Eng, 38 (15) ( 2022), pp. 1-9(Chinese).
[39]
S. Li, M. Zhang, N. Wang, R. Cao, Z. Zhang, Y. Ji, et al.. Intelligent scheduling method for multi-machine cooperative operation based on nsga-iii and improved ant colony algorithm. Comput Electron Agric, 204 ( 2023), Article 107532
Funding
 
AI Summary AI Mindmap
PDF(4639 KB)

Accesses

Citations

Detail

Sections
Recommended

/