A Neuro Metasurface Mode-Router for Fiber Mode Demultiplexing and Communications

Yu Zhao, Huijiao Wang, Zile Li, Tian Huang, Chao Yang, Ying Qiu, Yuhan Gong, Zhou Zhou, Congling Liang, Lei Yu, Jin Tao, Shaohua Yu, Guoxing Zheng

Engineering ›› 2025, Vol. 45 ›› Issue (2) : 88-96.

PDF(2277 KB)
PDF(2277 KB)
Engineering ›› 2025, Vol. 45 ›› Issue (2) : 88-96. DOI: 10.1016/j.eng.2024.11.012
Research
Article

A Neuro Metasurface Mode-Router for Fiber Mode Demultiplexing and Communications

Author information +
History +

Abstract

Advancements in mode-division multiplexing (MDM) techniques, aimed at surpassing the Shannon limit and augmenting transmission capacity, have garnered significant attention in optical fiber communication, propelling the demand for high-quality multiplexers and demultiplexers. However, the criteria for ideal-mode multiplexers/demultiplexers, such as performance, scalability, compatibility, and ultra-compactness, have only partially been achieved using conventional bulky devices (e.g., waveguides, gratings, and free space optics)—an issue that will substantially restrict the application of MDM techniques. Here, we present a neuro-meta-router (NMR) optimized through deep learning that achieves spatial multi-mode division and supports multi-channel communication, potentially offering scalability, compatibility, and ultra-compactness. An MDM communication system based on an NMR is theoretically designed and experimentally demonstrated to enable simultaneous and independent multi-dataset transmission, showcasing a capacity of up to 100 gigabits per second (Gbps) and a symbol error rate down to the order of 10−4, all achieved without any compensation technologies or correlation devices. Our work presents a paradigm that merges metasurfaces, fiber communications, and deep learning, with potential applications in intelligent metasurface-aided optical interconnection, as well as all-optical pattern recognition and classification.

Graphical abstract

Keywords

Metasurfaces / Deep learning / Mode-division multiplexing / Fiber communication

Cite this article

Download citation ▾
Yu Zhao, Huijiao Wang, Zile Li, Tian Huang, Chao Yang, Ying Qiu, Yuhan Gong, Zhou Zhou, Congling Liang, Lei Yu, Jin Tao, Shaohua Yu, Guoxing Zheng. A Neuro Metasurface Mode-Router for Fiber Mode Demultiplexing and Communications. Engineering, 2025, 45(2): 88‒96 https://doi.org/10.1016/j.eng.2024.11.012

References

[1]
Mahdavinejad MS, Rezvan M, Barekatain M, Adibi P, Barnaghi P, Sheth AP.Machine learning for Internet of Things data analysis: a survey.Digit Commun Netw 2018; 4(3):161-175.
[2]
Stergiou C, Psannis KE, Kim BG, Gupta B.Secure integration of IoT and cloud computing.Future Gener Comput Syst 2018; 78(3):964-975.
[3]
Richardson DJ, Fini JM, Nelson LE.Space-division multiplexing in optical fibres.Nat Photonics 2013; 7(5):354-362.
[4]
Li G, Bai N, Zhao N, Xia C.Space-division multiplexing: the next frontier in optical communication.Adv Opt Photonics 2014; 6(4):413-487.
[5]
Rademacher G, Puttnam BJ, Luís RS, Eriksson TA, Fontaine NK, Mazur M, et al.Peta-bit-per-second optical communications system using a standard cladding diameter 15-mode fiber.Nat Commun 2021; 12:4238-4244.
[6]
Kong D, Jørgensen AA, Henriksen MR, Klejs F, Ye Z, et al.Single dark-pulse Kerr comb supporting 1.84 Pbit/s transmission over 37-core fiber. In: Proceedings of 2020 Conference on Lasers and Electro-Optics; 2020 May 10–15; San Jose, CA, USA. New York City: IEEE; 2020. p. 1–2.
[7]
Rademacher G, Puttnam BJ, Luís RS, Sakaguchi J, Klaus W, Eriksson TA, et al.10.66 peta-bit/s transmission over a 38-core-three-mode fiber. In: Proceedings of 2020 Optical Fiber Communications Conference and Exhibition; 2020 Mar 8–12; San Diego, CA, USA. New York City: IEEE; 2020. p. 1–3.
[8]
Luís RS, Rademacher G, Puttnam BJ, Eriksson TA, Furukawa H, Ross-Adams A, et al.1.2 Pb/s throughput transmission using a 160 μm cladding, 4-core, 3-mode fiber.J Lightwave Technol 2019; 37(8):1798-1804.
[9]
Benedikovic D, Cheben P, Schmid JH, Xu DX, Lapointe J, Wang S, et al.High-efficiency single etch step apodized surface grating coupler using subwavelength structure.Laser Photonics Rev 2014; 8(6):93-97.
[10]
Hanzawa N, Saitoh K, Sakamoto T, Matsui T, Tsujikawa K, Koshiba M, et al.Mode multi/demultiplexing with parallel waveguide for mode division multiplexed transmission.Opt Express 2014; 22(24):29321-29330.
[11]
Wu Y, Chiang KS.Ultra-broadband mode multiplexers based on three-dimensional asymmetric waveguide branches.Opt Lett 2017; 42(3):407-410.
[12]
Huang Q, Wu Y, Jin W, Chiang KS.Mode multiplexer with cascaded vertical asymmetric waveguide directional couplers.J Lightwave Technol 2018; 36(14):2903-2911.
[13]
Shen W, Du J, Xiong J, Ma L, He Z.Silicon-integrated dual-mode fiber-to-chip edge coupler for 2 × 100 Gbps/lambda MDM optical interconnection.Opt Express 2020; 28(22):33254-33262.
[14]
Labroille G, Denolle B, Jian P, Genevaux P, Treps N, Morizur JF.Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion.Opt Express 2014; 22(13):15599-15606.
[15]
Fontaine NK, Ryf R, Chen H, Neilson DT, Kim K, Carpenter J.Multi-plane light conversion of high spatial mode count. In: Proceedings of SPIE Laser Beam Shaping XVIII; 2018 Sep 14; San Diego, CA, USA. SPIE; 2018. p. 107440M.1-6.
[16]
Velázquez-Benítez AM, Antonio-López JE, Alvarado-Zacarías JC, Fontaine NK, Ryf R, Chen H, et al.Scaling photonic lanterns for spacedivision multiplexing.Sci Rep 2018; 8:8897.
[17]
Yu N, Capasso F.Flat optics with designer metasurfaces.Nat Mater 2014; 13(2):139-150.
[18]
Zhang F, Guo Y, Pu M, Chen L, Xu M, Liao M, et al.Meta-optics empowered vector visual cryptography for high security and rapid decryption.Nat Commun 2023; 14:1946.
[19]
Wen D, Pan K, Meng J, Wu X, Guo X, Li P, et al.Broadband multichannel cylindrical vector beam generation by a single metasurface.Laser Photonics Rev 2022; 16(10):2200206.
[20]
Li J, Wang Y, Chen C, Fu R, Zhou Z, Li Z, et al.From lingering to rift: metasurface decoupling for near- and far-field functionalization.Adv Mater 2021; 33(16):2007507.
[21]
Chen MK, Liu X, Wu Y, Zhang J, Yuan J, Zhang Z, et al.A meta-device for intelligent depth perception.Adv Mater 2023; 35(34):2107465.
[22]
Zhou Z, Wang Y, Chen C, Fu R, Guan Z, Li Z, et al.Multifold integration of printed and holographic meta-image displays enabled by dual-degeneracy.Small 2022; 18(13):2106148.
[23]
Cai G, Li Y, Zhang Y, Jiang X, Chen Y, Qu G, et al.Compact angle-resolved metasurface spectrometer.Nat Mater 2024; 23(1):71-78.
[24]
Liang X, Zhou Z, Li Z, Li J, Peng C, Cui H, et al.All-optical multiplexed meta-differentiator for tri-mode surface morphology observation.Adv Mater 2023; 35(29):2301505.
[25]
Yang Z, Huang PS, Lin YT, Qin H, Z Júñiga-Pérez, Shi Y, et al.Creating pairs of exceptional points for arbitrary polarization control: asymmetric vectorial wavefront modulation.Nat Commun 2024; 15:232.
[26]
Intaravanne Y, Wang R, Ahmed H, Ming Y, Zheng Y, Zhou ZK, et al.Color-selective three-dimensional polarization structures.Light Sci Appl 2022; 11:302.
[27]
Feng Z, Shi T, Geng G, Li J, Deng ZL, Kivshar Y, et al.Dual–band polarized upconversion photoluminescence enhanced by resonant dielectric metasurfaces.eLight 2023; 3:21.
[28]
Guo X, Zhong J, Li B, Qi S, Li Y, Li P, et al.Full-color holographic display and encryption with full-polarization degree of freedom.Adv Mater 2022; 34(3):2103192.
[29]
Mao N, Zhang G, Tang Y, Li Y, Hu Z, Zhang X, et al.Nonlinear vectorial holography with quad-atom metasurfaces.Appl Phys Sci 2022; 119(22):e2204418119.
[30]
Song M, Feng L, Huo P, Liu M, Huang C, Yan F, et al.Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface.Nat Nanotechnol 2023; 18(1):71-78.
[31]
Feng F, Si G, Min C, Yuan X, Somekh M.On-chip plasmonic spin-hall nanograting for simultaneously detecting phase and polarization singularities.Light Sci Appl 2020; 9:95.
[32]
Kim J, Seong J, Kim W, Lee GY, Kim S, Kim H, et al.Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible.Nat Mater 2023; 22(4):474-481.
[33]
Xiao X, Zhao Y, Ye X, Chen C, Lu X, Rong Y, et al.Large-scale achromatic flat lens by light frequency-domain coherence optimization.Light Sci Appl 2022; 11:323.
[34]
Qu G, Yang W, Song Q, Liu Y, Qiu CW, Han J, et al.Reprogrammable meta-hologram for optical encryption.Nat Commun 2020; 11:5484.
[35]
Tao J, You Q, Li Z, Luo M, Liu Z, Qiu Y, et al.Mass-manufactured beam-steering metasurfaces for high-speed full-duplex optical wireless-broadcasting communications.Adv Mater 2022; 34(6):2106080.
[36]
Zhang XG, Sun YL, Zhu B, Jiang WX, Yu Q, Tian HW, et al.A metasurface-based light-to-microwave transmitter for hybrid wireless communications.Light Sci Appl 2022; 11:126.
[37]
Ouyang X, Xu Y, Xian M, Feng Z, Zhu L, Cao Y, et al.Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing.Nat Photonics 2021; 15(12):901-907.
[38]
Kruk S, Ferreira F, Mac Suibhne N, Tsekrekos C, Kravchenko I, Ellis A, et al.Transparent dielectric metasurfaces for spatial mode multiplexing.Laser Photonics Rev 2018; 12(8):1800031.
[39]
Nazemosadat E, Mazur M, Kruk S, Kravchenko I, Carpenter J, Schröder J, et al.Dielectric broadband metasurfaces for fiber mode-multiplexed communications.Adv Opt Mater 2019; 7(14):1801679.
[40]
Tao J, Wu L, Yang Y, Liu Z, Qiu Y, Zheng G, et al.Light spin angular momentum spatial mode converter based on dielectric metasurface.J Lightwave Technol 2021; 39(8):2438-2442.
[41]
Oh J, Li K, Yang J, Chen WT, Li MJ, Dainese P, et al.Adjoint-optimized metasurfaces for compact mode-division multiplexing.ACS Photonics 2022; 9(3):929-937.
[42]
Chen R, Chang Y, Zhuang Z, Liu Y, Chen W, Dong J.Metasurface-based fiber-to-chip multiplexing coupler.Adv Opt Mater 2023; 11(6):2202317.
[43]
Wright LG, Onodera T, Stein MM, Wang T, Schachter DT, Hu Z, et al.Deep physical neural networks trained with backpropagation.Nature 2022; 601(7894):549-559.
[44]
Lin X, Rivenson Y, Yardimci NT, Veli M, Luo Y, Jarrahi M, et al.All-optical machine learning using diffractive deep neural networks.Science 2018; 361(6406):1004-1008.
[45]
Lillicrap TP, Santoro A, Marris L, Akerman CJ, Hinton G.Backpropagation and the brain.Nat Rev Neurosci 2020; 21(6):335-346.
[46]
Qian C, Wang Z, Qian H, Cai T, Zheng B, Lin X, et al.Dynamic recognition and mirage using neuro-metamaterials.Nat Commun 2022; 13:2694.
[47]
Bai B, Luo Y, Gan T, Hu J, Li Y, Zhao Y, et al.To image, or not to image: class–specific diffractive cameras with all–optical erasure of undesired objects.eLight 2022; 2:14.
[48]
Luo Y, Mengu D, Yardimci NT, Rivenson Y, Veli M, Jarrahi M, et al.Design of task-specific optical systems using broadband diffractive neural networks.Light Sci Appl 2019; 8:112.
[49]
Luo X, Hu Y, Ou X, Li X, Lai J, Liu N, et al.Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible.Light Sci Appl 2022; 11:158.
[50]
Goi E, Chen X, Zhang Q, Cumming BP, Schoenhardt S, Luan H, et al.Nanoprinted high-neuron-density optical linear perceptrons performing near-infrared inference on a CMOS chip.Light Sci Appl 2021; 10:40.
[51]
Getman F, Makarenko M, Burguete-Lopez A, Fratalocchi A.Broadband vectorial ultrathin optics with experimental efficiency up to 99% in the visible region via universal approximators.Light Sci Appl 2021; 10:47.
[52]
Luo Y, Zhao Y, Li J, Rivenson Y, Jarrahi M, et al.Computational imaging without a computer: seeing through random diffusers at the speed of light.eLight 2022; 2:4.
[53]
So S, Kim J, Badloe T, Lee C, Yang Y, Kang H, et al.Multicolor and 3D holography generated by inverse-designed single-cell metasurfaces.Adv Mater 2023; 35(17):2208520.
AI Summary AI Mindmap
PDF(2277 KB)

Accesses

Citations

Detail

Sections
Recommended

/