Development Trends and Challenges of Additive Manufacturing Metamaterials

Bo Song, Shaoji Zhang, Lei Zhang, Yusheng Shi

Engineering ›› 2025, Vol. 44 ›› Issue (1) : 2-6.

PDF(529 KB)
PDF(529 KB)
Engineering ›› 2025, Vol. 44 ›› Issue (1) : 2-6. DOI: 10.1016/j.eng.2024.11.014
Views & Comments

Development Trends and Challenges of Additive Manufacturing Metamaterials

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Bo Song, Shaoji Zhang, Lei Zhang, Yusheng Shi. Development Trends and Challenges of Additive Manufacturing Metamaterials. Engineering, 2025, 44(1): 2‒6 https://doi.org/10.1016/j.eng.2024.11.014

References

[1]
Smith DR, Pendry JB, Wiltshire MCK. Metamaterials and negative refractive index. Science 2004; 305(5685):788-792.
[2]
Lakes R. Foam structures with a negative Poisson’s ratio. Science 1987; 235(4792):1038-1040.
[3]
Yoon G, Kim I, Rho J. Challenges in fabrication towards realization of practical metamaterials. Microelectron Eng 2016; 163:7-20.
[4]
Askari M, Hutchins DA, Thomas PJ, Astolfi L, Watson RL, Abdi M, et al. Additive manufacturing of metamaterials: a review. Addit Manuf 2020; 36:101562.
[5]
Shi Y, Zhang J, Wen S, Song B, Yan C, Wei Q, et al. Additive manufacturing and foundry innovation. China Foundry 2021; 18(4):286-295.
[6]
Zheng X, Smith W, Jackson J, Moran B, Cui H, Chen D, et al. Multiscale metallic metamaterials. Nat Mater 2016; 15(10):1100-1106.
[7]
Li Z, Jia Y, Duan K, Xiao R, Qiao J, Liang S, et al. One-photon three-dimensional printed fused silica glass with sub-micron features. Nat Commun 2024; 15(1):2689.
[8]
Lipiäinen K, Afkhami S, Lund H, Ahola A, Varis S, Skriko T, et al. Manufacturing and mechanical performance of a large-scale stainless steel vessel fabricated by wire-arc direct energy deposition. Mater Des 2024; 243:113044.
[9]
Raviv D, Zhao W, McKnelly C, Papadopoulou A, Kadambi A, Shi B, et al. Active printed materials for complex self-evolving deformations. Sci Rep 2014; 4:7422.
[10]
Veselago VG. The electrodynamics of substance with simultaneously negative values of ε and μ. Sov Phys Uspekhi 1968; 10(4):509-514.
[11]
Plihal M, Maradudin A. Photonic band structure of two-dimensional systems: the triangular lattice. Phys Rev B 1991; 44(16):8565-8571.
[12]
Liu Z, Zhang X, Mao Y, Zhu YY, Yang Z, Chan CT, et al. Locally resonant sonic materials. Science 2000; 289(5485):1734-1736.
[13]
Fan CZ, Gao Y, Huang JP. Shaped graded materials with an apparent negative thermal conductivity. Appl Phys Lett 2008; 92(25):251907.
[14]
Narayana S, Sato Y. Heat flux manipulation with engineered thermal materials. Phys Rev Lett 2012; 108(21):214303.
[15]
Zheludev NI, Kivshar YS. From metamaterials to metadevices. Nat Mater 2012; 11(11):917-924.
[16]
Fan J, Zhang L, Wei S, Zhang Z, Choi SK, Song B, et al. A review of additive manufacturing of metamaterials and developing trends. Mater Today 2021; 50:303-328.
[17]
Chen Z, Guo B, Yang Y, Cheng C. Metamaterials-based enhanced energy harvesting: a review. Phys B 2014; 438:1-8.
[18]
Zhou J, Koschny T, Kafesaki M, Economou E, Pendry J, Soukoulis C. Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys Rev Lett 2005; 95(22):223902.
[19]
Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011; 334(6054):333-337.
[20]
Peng J, Wang S, Liang B, Wen Q, Sun C, Li K, et al. Review of micro and nano scale 3D printing of electromagnetic metamaterial absorbers: mechanism, fabrication, and functionality. Virtual Phys Prototyp 2024; 19(1):e2378937.
[21]
Berglund B, Hassm Pén, Job RFS. Sources and effects of low-frequency noise. J Acoust Soc Am 1996; 99(5):2985-3002.
[22]
Yang M, Sheng P. Sound absorption structures: from porous media to acoustic metamaterials. Annu Rev Mater Res 2017; 47(1):83-114.
[23]
Wu X, Su Y, Shi J. Perspective of additive manufacturing for metamaterials development. Smart Mater Struct 2019; 28(9):093001.
[24]
Guenneau S, Amra C, Veynante D. Transformation thermodynamics: cloaking and concentrating heat flux. Opt Express 2012; 20(7):8207-8218.
[25]
Xiao X, Chen J, Wang K, Yu Y, Wei K. Multimaterial additively manufactured metamaterials functionalized with customizable thermal expansion in multiple directions. ACS Appl Mater Interfaces 2023; 15(40):47434-47446.
[26]
Wang K, Wang Z, Wei K, Yang X. Multimaterial metamaterials: customize targeted thermal deformation modes responding to time- and space-variant temperature stimuli. ACS Appl Mater Interfaces 2024; 16(30):39981-39992.
[27]
Yu X, Zhou J, Liang H, Jiang Z, Wu L. Mechanical metamaterials associated with stiffness, rigidity, and compressibility: a brief review. Prog Mater Sci 2018; 94:114-173.
[28]
Kolken HMA, Zadpoor AA. Auxetic mechanical metamaterials. RSC Adv 2017; 7(9):5111-5129.
[29]
Hu LL, Zhou MZ, Deng H. Dynamic indentation of auxetic and non-auxetic honeycombs under large deformation. Compos Struct 2019; 207:323-330.
[30]
Ju J, Summers JD. Compliant hexagonal periodic lattice structures having both high shear strength and high shear strain. Mater Des 2011; 32(2):512-524.
[31]
Xiang J, Du J. Energy absorption characteristics of bio-inspired honeycomb structure under axial impact loading. Mater Sci Eng A 2017; 696:283-289.
[32]
Amendola A, Smith C, Goodall R, Auricchio F, Feo L, Benzoni G, et al. Experimental response of additively manufactured metallic pentamode materials confined between stiffening plates. Compos Struct 2016; 142:254-262.
[33]
Zhao A, Jia H, Zhang M, Wang Z, Zhou P, Liu C, et al. Design and experimental verification of a broadband multiphase pentamode material. Phys Rev Appl 2022; 18(3):034001.
[34]
Zhang L, Song B, Zhang J, Yao Y, Lu J, Shi Y. Decoupling microlattice metamaterial properties through a structural design strategy inspired by the hall–petch relation. Acta Mater 2022; 238:118214.
[35]
Zhao A, Liu C, Zou H, Jia H, Zhang M, Wu T, et al. Massive and fast fabrication of pentamode devices through a multiphase honeycomb-corrugation configuration. Mater Des 2023; 228:111816.
[36]
Wang K, Chen J, Han Z, Wei K, Yang X, Wang Z, et al. Synergistically program thermal expansional and mechanical performances in 3D metamaterials: design-architecture-performance. J Mech Phys Solids 2022; 169:105064.
[37]
Zhang Z, Song B, Yao Y, Zhang L, Wang X, Fan J, et al. Bioinspired, simulation-guided design of polyhedron metamaterial for simultaneously efficient heat dissipation and energy absorption. Adv Mater Technol 2022; 7(10):2200076.
[38]
Li X, Zhao M, Yu X, Chua JW, Yang Y, Lim KM, et al. Multifunctional and customizable lattice structures for simultaneous sound insulation and structural applications. Mater Des 2023; 234:112354.
[39]
Zhang L, Liu H, Song B, Gu J, Li L, Shi W, et al. Wood-inspired metamaterial catalyst for robust and high-throughput water purification. Nat Commun 2024; 15(1):2046.
[40]
Momeni F, Hassani M, Liu X, Ni J. A review of 4D printing. Mater Des 2017; 122:42-79.
[41]
Kanishka K, Acherjee B. Revolutionizing manufacturing: a comprehensive overview of additive manufacturing processes, materials, developments, and challenges. J Manuf Process 2023; 107:574-619.
[42]
Kumar S, Gopi T, Harikeerthana N, Gupta MK, Gaur V, Krolczyk GM, et al. Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control. J Intell Manuf 2023; 34(1):21-55.
AI Summary AI Mindmap
PDF(529 KB)

Accesses

Citations

Detail

Sections
Recommended

/