Acoustofluidics-Based Intracellular Nanoparticle Delivery

Zhishang Li, Zhenhua Tian, Jason N. Belling, Joseph T. Rich, Haodong Zhu, Zhehan Ma, Hunter Bachman, Liang Shen, Yaosi Liang, Xiaolin Qi, Liv K. Heidenreich, Yao Gong, Shujie Yang, Wenfen Zhang, Peiran Zhang, Yingchun Fu, Yibin Ying, Steven J. Jonas, Yanbin Li, Paul S. Weiss, Tony J. Huang

Engineering ›› 2025, Vol. 47 ›› Issue (4) : 130-138.

PDF(1761 KB)
PDF(1761 KB)
Engineering ›› 2025, Vol. 47 ›› Issue (4) : 130-138. DOI: 10.1016/j.eng.2024.11.030
Research
Article

Acoustofluidics-Based Intracellular Nanoparticle Delivery

Author information +
History +

Abstract

Controlled intracellular delivery of biomolecular cargo is critical for developing targeted therapeutics and cell reprogramming. Conventional delivery approaches (e.g., endocytosis of nano-vectors, microinjection, and electroporation) usually require time-consuming uptake processes, labor-intensive operations, and/or costly specialized equipment. Here, we present an acoustofluidics-based intracellular delivery approach capable of effectively delivering various functional nanomaterials to multiple cell types (e.g., adherent and suspension cancer cells). By tuning the standing acoustic waves in a glass capillary, our approach can push cells in flow to the capillary wall and enhance membrane permeability by increasing membrane stress to deform cells via acoustic radiation forces. Moreover, by coating the capillary with cargo-encapsulated nanoparticles, our approach can achieve controllable cell-nanoparticle contact and facilitate nanomaterial delivery beyond Brownian movement. Based on these mechanisms, we have successfully delivered nanoparticles loaded with small molecules or protein-based cargo to U937 and HeLa cells. Our results demonstrate enhanced delivery efficiency compared to attempts made without the use of acoustofluidics. Moreover, compared to conventional sonoporation methods, our approach does not require special contrast agents with microbubbles. This acoustofluidics-based approach creates exciting opportunities to achieve controllable intracellular delivery of various biomolecular cargoes to diverse cell types for potential therapeutic applications and biophysical studies.

Graphical abstract

Keywords

Acoustofluidics / Sonoporation / Nanocarriers / Metal-organic frameworks

Cite this article

Download citation ▾
Zhishang Li, Zhenhua Tian, Jason N. Belling, Joseph T. Rich, Haodong Zhu, Zhehan Ma, Hunter Bachman, Liang Shen, Yaosi Liang, Xiaolin Qi, Liv K. Heidenreich, Yao Gong, Shujie Yang, Wenfen Zhang, Peiran Zhang, Yingchun Fu, Yibin Ying, Steven J. Jonas, Yanbin Li, Paul S. Weiss, Tony J. Huang. Acoustofluidics-Based Intracellular Nanoparticle Delivery. Engineering, 2025, 47(4): 130‒138 https://doi.org/10.1016/j.eng.2024.11.030

References

[1]
Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, et al.Diverse applications of nanomedicine.ACS Nano 2017; 11(3):2313-2381.
[2]
Stewart MP, Langer R, Jensen KF.Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts.Chem Rev 2018; 118(16):7409-7531.
[3]
Chung YH, Cai H, Steinmetz NF.Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications.Adv Drug Deliv Rev 2020; 156:214-235.
[4]
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG.Non-viral vectors for gene-based therapy.Nat Rev Genet 2014; 15(8):541-555.
[5]
van A Wamel, Kooiman K, Harteveld M, Emmer M, ten FJ Cate, Versluis M, et al.Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation.J Control Release 2006; 112(2):149-155.
[6]
Yarmush ML, Golberg A, Ser Gša, Kotnik T, Miklav Dčič.Electroporation-based technologies for medicine: principles, applications, and challenges.Annu Rev Biomed Eng 2014; 16:295-320.
[7]
Wang S, Wang H, Jiao J, Chen KJ, Owens GE, Kamei K, et al.Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells.Angew Chem Int Ed 2009; 48(47):8970-8973.
[8]
Wurm M, Zeng AP.Mechanical disruption of mammalian cells in a microfluidic system and its numerical analysis based on computational fluid dynamics.Lab Chip 2012; 12(6):1071-1077.
[9]
Frost IM, Mendoza AM, Chiou TT, Kim P, Aizenberg J, Kohn DB, et al.Fluorinated silane-modified filtroporation devices enable gene knockout in human hematopoietic stem and progenitor cells.ACS Appl Mater Interfaces 2023; 15(35):41299-41309.
[10]
Man T, Zhu X, Chow YT, Dawson ER, Wen X, Patananan AN, et al.Intracellular photothermal delivery for suspension cells using sharp nanoscale tips in microwells.ACS Nano 2019; 13(9):10835-10844.
[11]
Stevenson DJ, Gunn-Moore FJ, Campbell P, Dholakia K.Single cell optical transfection.J R Soc Interface 2010; 7(47):863-871.
[12]
Koike S, Jahn R.Probing and manipulating intracellular membrane traffic by microinjection of artificial vesicles.Proc Natl Acad Sci USA 2017; 114(46):E9883-E9892.
[13]
Gao J, Bergmann T, Zhang W, Schiwon M, Ehrke-Schulz E, Ehrhardt A.Viral vector-based delivery of CRISPR/Cas9 and donor DNA for homology-directed repair in an in vitro model for canine hemophilia B.Mol Ther Nucleic Acids 2019; 14:364-376.
[14]
Pereyra AS, Mykhaylyk O, Lockhart EF, Taylor JR, Delbono O, Goya RG, et al.Magnetofection enhances adenoviral vector-based gene delivery in skeletal muscle cells.J Nanomed Nanotechnol 2016; 7(2):364.
[15]
Gresch O, Engel FB, Nesic D, Tran TT, England HM, Hickman ES, et al.New non-viral method for gene transfer into primary cells.Methods 2004; 33(2):151-163.
[16]
Cui J, Yan Y, Wang Y, Caruso F.Templated assembly of pH-labile polymer-drug particles for intracellular drug delivery.Adv Funct Mater 2012; 22(22):4718-4723.
[17]
Wan ACA, Ying JY.Nanomaterials for in situ cell delivery and tissue regeneration.Adv Drug Deliv Rev 2010; 62(7–8):731-740.
[18]
Zaman NT, Yang YY, Ying JY.Stimuli-responsive polymers for the targeted delivery of paclitaxel to hepatocytes.Nano Today 2010; 5(1):9-14.
[19]
Broaders KE, Grandhe S, Fr JMéchet.A biocompatible oxidation-triggered carrier polymer with potential in therapeutics.J Am Chem Soc 2011; 133(4):756-758.
[20]
Cai W, Chu CC, Liu G, Wang YX.Metal-organic framework-based nanomedicine platforms for drug delivery and molecular imaging.Small 2015; 11(37):4806-4822.
[21]
Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van MA Eijndhoven, Hopmans ES, Lindenberg JL, et al.Functional delivery of viral miRNAs via exosomes.Proc Natl Acad Sci USA 2010; 107(14):6328-6333.
[22]
Wang Z, Rich J, Hao N, Gu Y, Chen C, Yang S, et al.Acoustofluidics for simultaneous nanoparticle-based drug loading and exosome encapsulation.Microsyst Nanoeng 2022; 8:45.
[23]
Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF.In vitro and ex vivo strategies for intracellular delivery.Nature 2016; 538(7624):183-192.
[24]
Lu Y, Sun W, Gu Z.Stimuli-responsive nanomaterials for therapeutic protein delivery.J Controll Release 2014; 194:1-19.
[25]
Doane TL, Burda C.The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy.Chem Soc Rev 2012; 41(7):2885-2911.
[26]
Hassan S, Prakash G, Bal A Ozturk, Saghazadeh S, Sohail MF, Seo J, et al.Evolution and clinical translation of drug delivery nanomaterials.Nano Today 2017; 15:91-106.
[27]
Li J, Cai C, Li J, Li J, Li J, Sun T, et al.Chitosan-based nanomaterials for drug delivery.Molecules 2018; 23(10):2661.
[28]
Buschmann MD, Carrasco MJ, Alishetty S, Paige M, Alameh MG, Weissman D.Nanomaterial delivery systems for mRNA vaccines.Vaccines 2021; 9(1):65.
[29]
Mahto SK, Yoon TH, Rhee SW.A new perspective on in vitro assessment method for evaluating quantum dot toxicity by using microfluidics technology.Biomicrofluidics 2010; 4(3):034111.
[30]
Deng Y, Kizer M, Rada M, Sage J, Wang X, Cheon DJ, et al.Intracellular delivery of nanomaterials via an inertial microfluidic cell hydroporator.Nano Lett 2018; 18(4):2705-2710.
[31]
Hapala I.Breaking the barrier: methods for reversible permeabilization of cellular membranes.Crit Rev Biotechnol 1997; 17(2):105-122.
[32]
Mcneil PL.Incorporation of macromolecules into living cells.Methods Cell Biol 1988; 29:153-173.
[33]
Mead BP, Curley CT, Kim N, Negron K, Garrison WJ, Song J, et al.Focused ultrasound preconditioning for augmented nanoparticle penetration and efficacy in the central nervous system.Small 2019; 15(49):1903460.
[34]
Kinoshita M, Hynynen K.Key factors that affect sonoporation efficiency in in vitro settings: the importance of standing wave in sonoporation.Biochem Biophys Res Commun 2007; 359(4):860-865.
[35]
Zhang P, Rufo J, Chen C, Xia J, Tian Z, Zhang L, et al.Acoustoelectronic nanotweezers enable dynamic and large-scale control of nanomaterials.Nat Commun 2021; 12(1):3844.
[36]
Tian Z, Shen C, Li J, Reit E, Bachman H, Socolar JES, et al.Dispersion tuning and route reconfiguration of acoustic waves in valley topological phononic crystals.Nat Commun 2020; 11(1):762.
[37]
Bruus H, Dual J, Hawkes J, Hill M, Laurell T, Nilsson J, et al.Forthcoming lab on a chip tutorial series on acoustofluidics: acoustofluidics—exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation.Lab Chip 2011; 11(21):3579-3580.
[38]
Friend J, Yeo LY.Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics.Rev Mod Phys 2011; 83(2):647-704.
[39]
Reboud J, Bourquin Y, Wilson R, Pall GS, Jiwaji M, Pitt AR, et al.Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies.Proc Natl Acad Sci USA 2012; 109(38):15162-15167.
[40]
Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A.Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves.Nat Commun 2015; 6:8686.
[41]
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, et al.Ultrasound-responsive systems as components for smart materials.Chem Rev 2022; 122(5):5165-5208.
[42]
Fan Y, Zhang J, Wei B, Drinkwater BW.Controllable patterns and streaming of plane acoustic vortex with annular piezoelectric arrays excitation.Phys Fluids 2021; 33(3):032009.
[43]
Aghaamoo M, Chen YH, Li X, Garg N, Jiang R, Yun JTH, et al.High-throughput and dosage-controlled intracellular delivery of large cargos by an acoustic–electric micro-vortices platform.Adv Sci 2022; 9(1):2102021.
[44]
Naquin TD, Canning AJ, Gu Y, Chen J, Naquin CM, Xia J, et al.Acoustic separation and concentration of exosomes for nucleotide detection: ASCENDx.Sci Adv 2024; 10(10):eadm8597.
[45]
Yang S, Rufo J, Zhong R, Rich J, Wang Z, Lee LP, et al.Acoustic tweezers for high-throughput single-cell analysis.Nat Protoc 2023; 18(8):2441-2458.
[46]
Yang S, Tian Z, Wang Z, Rufo J, Li P, Mai J, et al.Harmonic acoustics for dynamic and selective particle manipulation.Nat Mater 2022; 21(5):540-546.
[47]
Rufo J, Zhang P, Zhong R, Lee LP, Huang TJ.A sound approach to advancing healthcare systems: the future of biomedical acoustics.Nat Commun 2022; 13(1):3459.
[48]
Rufo J, Cai F, Friend J, Wiklund M, Huang TJ.Acoustofluidics for biomedical applications.Nat Rev Method Prim 2022; 2(1):30.
[49]
Gu Y, Chen C, Mao Z, Bachman H, Becker R, Rufo J, et al.Acoustofluidic centrifuge for nanoparticle enrichment and separation.Sci Adv 2021; 7(1):eabc0467.
[50]
Zhang P, Bachman H, Ozcelik A, Huang TJ.Acoustic microfluidics.Annu Rev Anal Chem 2020; 13(1):17-43.
[51]
Rich J, Tian Z, Huang TJ.Sonoporation: past, present, and future.Adv Mater Technol 2022; 7(1):2100885.
[52]
Ramesan S, Rezk AR, Dekiwadia C, Cortez-Jugo C, Yeo LY.Acoustically-mediated intracellular delivery.Nanoscale 2018; 10(27):13165-13178.
[53]
Li X, Sun W, Fu W, Lv H, Zu X, Guo Y, et al.Advances in sensing mechanisms and micro/nanostructured sensing layers for surface acoustic wave-based gas sensors.J Mater Chem A 2023; 11(17):9216-9238.
[54]
Gong Z, Baudoin M.Three-dimensional trapping and dynamic axial manipulation with frequency-tuned spiraling acoustical tweezers: a theoretical study.Phys Rev Appl 2021; 16(2):024034.
[55]
Zhang Z, Wang Y, Zhang H, Tang Z, Liu W, Lu Y, et al.Hypersonic poration: a new versatile cell poration method to enhance cellular uptake using a piezoelectric nano-electromechanical device.Small 2017; 13(18):1602962.
[56]
Belling JN, Heidenreich LK, Tian Z, Mendoza AM, Chiou TT, Gong Y, et al.Acoustofluidic sonoporation for gene delivery to human hematopoietic stem and progenitor cells.Proc Natl Acad Sci USA 2020; 117(20):10976-10982.
[57]
Sharei A, Zoldan J, Adamo A, Sim WY, Cho N, Jackson E, et al.A vector-free microfluidic platform for intracellular delivery.Proc Natl Acad Sci USA 2013; 110(6):2082-2087.
[58]
Kang G, Carlson DW, Kang TH, Lee S, Haward SJ, Choi I, et al.Intracellular nanomaterial delivery via spiral hydroporation.ACS Nano 2020; 14(3):3048-3058.
[59]
Zhang Y, Yu J, Bomba HN, Zhu Y, Gu Z.Mechanical force-triggered drug delivery.Chem Rev 2016; 116(19):12536-12563.
[60]
Fu YQ, Luo JK, Nguyen NT, Walton AJ, Flewitt AJ, Zu XT, et al.Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications.Prog Mater Sci 2017; 89:31-91.
[61]
Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nyström AM, et al.One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery.J Am Chem Soc 2016; 138(3):962-968.
[62]
Liang K, Ricco R, Doherty CM, Styles MJ, Bell S, Kirby N, et al.Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules.Nat Commun 2015; 6:7240.
[63]
Alsaiari SK, Patil S, Alyami M, Alamoudi KO, Aleisa FA, Merzaban JS, et al.Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework.J Am Chem Soc 2018; 140(1):143-146.
[64]
Garofalo F, Laurell T, Bruus H.Performance study of acoustophoretic microfluidic silicon-glass devices by characterization of material- and geometry-dependent frequency spectra.Phys Rev Appl 2017; 7(5):054026.
[65]
Chen WH, Luo GF, Vázquez-González M, Cazelles R, Sohn YS, Nechushtai R, et al.Glucose-responsive metal-organic-framework nanoparticles act as “smart” sense-and-treat carriers.ACS Nano 2018; 12(8):7538-7545.
[66]
Liang Z, Yang Z, Yuan H, Wang C, Qi J, Liu K, et al.A protein@metal-organic framework nanocomposite for pH-triggered anticancer drug delivery.Dalton Trans 2018; 47(30):10223-10228.
[67]
Chen TT, Yi JT, Zhao YY, Chu X.Biomineralized metal-organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins.J Am Chem Soc 2018; 140(31):9912-9920.
[68]
Ren H, Zhang L, An J, Wang T, Li L, Si X, et al.Polyacrylic acid@zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release.Chem Commun 2014; 50(8):1000-1002.
[69]
Hur J, Park I, Lim KM, Doh J, Cho SG, Chung AJ.Microfluidic cell stretching for highly effective gene delivery into hard-to-transfect primary cells.ACS Nano 2020; 14(11):15094-15106.
[70]
Yaghoubi A, Ramazani A.Anticancer DOX delivery system based on CNTs: functionalization, targeting and novel technologies.J Control Release 2020; 327:198-224.
[71]
Miller DL, Quddus J.Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast-agent gas bodies.Ultrasound Med Biol 2000; 26(4):661-667.
[72]
Carugo D, Ankrett DN, Glynne-Jones P, Capretto L, Boltryk RJ, Zhang X, et al.Contrast agent-free sonoporation: the use of an ultrasonic standing wave microfluidic system for the delivery of pharmaceutical agents.Biomicrofluidics 2011; 5(4):044108.
AI Summary AI Mindmap
PDF(1761 KB)

Accesses

Citations

Detail

Sections
Recommended

/