Knowledge-Empowered, Collaborative, and Co-Evolving AI Models: The Post-LLM Roadmap

Fei Wu, Tao Shen, Thomas Bäck, Jingyuan Chen, Gang Huang, Yaochu Jin, Kun Kuang, Mengze Li, Cewu Lu, Jiaxu Miao, Yongwei Wang, Ying Wei, Fan Wu, Junchi Yan, Hongxia Yang, Yi Yang, Shengyu Zhang, Zhou Zhao, Yueting Zhuang, Yunhe Pan

Engineering ›› 2025, Vol. 44 ›› Issue (1) : 87-100.

PDF(1447 KB)
PDF(1447 KB)
Engineering ›› 2025, Vol. 44 ›› Issue (1) : 87-100. DOI: 10.1016/j.eng.2024.12.008
Research
Review

Knowledge-Empowered, Collaborative, and Co-Evolving AI Models: The Post-LLM Roadmap

Author information +
History +

Abstract

Large language models (LLMs) have significantly advanced artificial intelligence (AI) by excelling in tasks such as understanding, generation, and reasoning across multiple modalities. Despite these achievements, LLMs have inherent limitations including outdated information, hallucinations, inefficiency, lack of interpretability, and challenges in domain-specific accuracy. To address these issues, this survey explores three promising directions in the post-LLM era: knowledge empowerment, model collaboration, and model co-evolution. First, we examine methods of integrating external knowledge into LLMs to enhance factual accuracy, reasoning capabilities, and interpretability, including incorporating knowledge into training objectives, instruction tuning, retrieval-augmented inference, and knowledge prompting. Second, we discuss model collaboration strategies that leverage the complementary strengths of LLMs and smaller models to improve efficiency and domain-specific performance through techniques such as model merging, functional model collaboration, and knowledge injection. Third, we delve into model co-evolution, in which multiple models collaboratively evolve by sharing knowledge, parameters, and learning strategies to adapt to dynamic environments and tasks, thereby enhancing their adaptability and continual learning. We illustrate how the integration of these techniques advances AI capabilities in science, engineering, and society—particularly in hypothesis development, problem formulation, problem-solving, and interpretability across various domains. We conclude by outlining future pathways for further advancement and applications.

Graphical abstract

Keywords

Artificial intelligence / Large language models / Knowledge empowerment / Model collaboration / Model co-evolution

Cite this article

Download citation ▾
Fei Wu, Tao Shen, Thomas Bäck, Jingyuan Chen, Gang Huang, Yaochu Jin, Kun Kuang, Mengze Li, Cewu Lu, Jiaxu Miao, Yongwei Wang, Ying Wei, Fan Wu, Junchi Yan, Hongxia Yang, Yi Yang, Shengyu Zhang, Zhou Zhao, Yueting Zhuang, Yunhe Pan. Knowledge-Empowered, Collaborative, and Co-Evolving AI Models: The Post-LLM Roadmap. Engineering, 2025, 44(1): 87‒100 https://doi.org/10.1016/j.eng.2024.12.008

References

[1]
Pan Y. 2018 special issue on artificial intelligence 2.0: theories and applications. Front Inform Technol Electron Eng 2018; 19(1):1-2.
[2]
Lyu YG. Artificial intelligence: enabling technology to empower society. Engineering 2020; 6(3):205-206.
[3]
Lyu YG, Wu F. Toward a more general empowering artificial intelligence. Engineering 2023; 25:1-2.
[4]
Lyu YG, Wu F. Further empowering humans in specific fields and rethinking AGI testing. Engineering 2024; 34:1-2.
[5]
Li DF, Xu F. Synergizing knowledge graphs with large language models: a comprehensive review and future prospects. 2024. arXiv: 2407.18470.
[6]
Pan S, Luo L, Wang Y, Chen C, Wang J, Wu X. Unifying large language models and knowledge graphs: a roadmap. IEEE Trans Knowl Data Eng 2024; 36(7):3580-3599.
[7]
Kau A, He X, Nambissan A, Astudillo A, Yin H, Aryani A. Combining knowledge graphs and large language models. 2024. arXiv: 2407.06564.
[8]
Yuan B, Chen Y, Zhang Y, Jiang W. Hide and seek in noise labels: noise-robust collaborative active learning with LLMs-powered assistance. In: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics; 2024 Aug 11–16; Bangkok, Thailand. Stroudsburg: Association for Computational Linguistics (ACL); 2024. p. 10977–1011.
[9]
Hao Z, Jiang H, Jiang S, Ren J, Cao T. Hybrid SLM and LLM for edge-cloud collaborative inference. In: Proceedings of the Workshop on Edge and Mobile Foundation Models; 2024 Jun 3–7; Tokyo, Japan. New York City: Association for Computing Machinery (ACM); 2024. p. 36–41.
[10]
Zhang K, Wang J, Ding N, Qi B, Hua E, Lv X, et al. Fast and slow generating: an empirical study on large and small language models collaborative decoding. 2024. arXiv: 2406.12295.
[11]
McClenny LD, Braga-Neto UM. Self-adaptive physics-informed neural networks. J Comput Phys 2023; 474:111722.
[12]
Sharma P, Chung WT, Akoush B, Ihme M. A review of physics-informed machine learning in fluid mechanics. Energies 2023; 16(5):2343.
[13]
Zhou C, Liu P, Xu P, Iyer S, Sun J, Mao Y, et al. LIMA: less is more for alignment. In: Proceedings of the Advances in Neural Information Processing Systems 36 (NeurIPS 2023); 2023 Dec 10–16; New Orleans, LA, USA. Trier: NeurIPS Proceedings; 2024.
[14]
Akyürek E, Bolukbasi T, Liu F, Xiong B, Tenney I, Andreas J, et al. Towards tracing factual knowledge in language models back to the training data. 2022. arXiv: 2205.11482.
[15]
Shen T, Mao Y, He P, Long G, Trischler A, Chen W. Exploiting structured knowledge in text via graph-guided representation learning. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP); 2020 Nov 16–20; online. Stroudsburg: Association for Computational Linguistics (ACL); 2020. p. 8980–94.
[16]
Zhang D, Yuan Z, Liu Y, Zhuang F, Chen H, Xiong H. E-BERT: a phrase and product knowledge enhanced language model for E-commerce. 2020. arXiv: 2009.02835.
[17]
Tian H, Gao C, Xiao X, Liu H, He B, Wu H, et al. SKEP: sentiment knowledge enhanced pre-training for sentiment analysis. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics; 2020 Jul 5–10; online. Stroudsburg: Association for Computational Linguistics (ACL); 2020. p. 4067–76.
[18]
Gao T. Knowledge authoring and question answering with KALM. 2019. arXiv: 1905.00840.
[19]
Wang X, Gao T, Zhu Z, Zhang Z, Liu Z, Li J, et al. KEPLER: a unified model for knowledge embedding and pre-trained language representation. Trans Assoc Comput Linguist 2021; 9:176-194.
[20]
Li S, Li X, Shang L, Sun C, Liu B, Ji Z, et al. Pre-training language models with deterministic factual knowledge. In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing; 2022 Dec 7–11; Abu Dhabi, UAE. Stroudsburg: Association for Computational Linguistics (ACL); 2022. p. 11118–31.
[21]
Xiong W, Du J, Wang WY, Stoyanov V. Pretrained encyclopedia: weakly supervised knowledge-pretrained language model. 2019. arXiv: 1912.09637.
[22]
Ji J, Wang K, Qiu T, Chen B, Zhou J, Li C, et al. Language models resist alignment. 2024. arXiv: 2406.06144.
[23]
Zhang S, Dong L, Li X, Zhang S, Sun X, Wang S, et al. Instruction tuning for large language models: a survey. 2023. arXiv: 2308.10792.
[24]
Gekhman Z, Yona G, Aharoni R, Eyal M, Feder A, Reichart R, et al. Does fine-tuning LLMs on new knowledge encourage hallucinations? 2024. arXiv:2405.05904.
[25]
Wang J, Huang W, Qiu M, Shi Q, Wang H, Li X, et al. Knowledge prompting in pre-trained language model for natural language understanding. 2022. arXiv: 2210.08536.
[26]
Ye H, Zhang N, Deng S, Chen X, Xiong F, Chen X, et al. Ontology-enhanced prompt-tuning for few-shot learning. In: Proceedings of the ACM Web Conference 2022; 2022 Apr 25–29; online. New York City: Association for Computing Machinery (ACM); 2022. p. 778–87.
[27]
Luo H, Tang Z, Peng S, Guo Y, Zhang W, Ma C, et al. ChatKBQA: a generate-then-retrieve framework for knowledge base question answering with fine-tuned large language models. 2023. arXiv: 2310.08975.
[28]
Luo L, Li YF, Haffari G, Pan S. Reasoning on graphs: faithful and interpretable large language model reasoning. 2023. arxiv:2310.01061.
[29]
Ovadia O, Brief M, Mishaeli M, Elisha O. Fine-tuning or retrieval? Comparing knowledge injection in LLMs. 2023. arXiv: 2312.05934.
[30]
Yang D, Rao J, Chen K, Guo X, Zhang Y, Yang J, et al. IM-RAG: multi-round retrieval-augmented generation through learning inner monologues. In: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval; 2024 Jul 14–18; Washington, DC, USA. New York City: Association for Computing Machinery (ACM); 2024. p. 730–40.
[31]
Mussmann S, Ermon S. Learning and inference via maximum inner product search. In: Proceedings of the International Conference on Machine Learning; 2016 Jun 20–22; New York City, NY, USA. Birmingham: Proceedings of Machine Learning Research; 2016. p. 2587–96.
[32]
Lewis P, Perez E, Piktus A, Petroni F, Karpukhin V, Goyal N, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks. In: Proceedings of the 34th International Conference on Neural Information Processing Systems; 2020 Dec 6–12; Vancouver, BC, Canada. New York City: Association for Computing Machinery (ACM); 2020. p. 9459–74.
[33]
Wu Y, Zhao Y, Hu B, Minervini P, Stenetorp P, Riedel S. An efficient memory-augmented transformer for knowledge-intensive NLP tasks. 2022. arXiv: 2210.16773.
[34]
Guu K, Lee K, Tung Z, Pasupat P, Chang MW. REALM: retrieval augmented language model pre-training. In: Proceedings of the International Conference on Machine Learning; 2020 Jul 13–18; online. Birmingham: Proceedings of Machine Learning Research; 2020. p. 3929–38.
[35]
Logan R, Liu NF, Peters ME, Gardner M, Singh S. Barack’s wife Hillary: using knowledge graphs for fact–aware language modeling. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics; 2019 Jul 28–Aug 2; Florence, Italy. Stroudsburg: Association for Computational Linguistics (ACL); 2019. p. 5962–71
[36]
Zhang Y, Li H, Zhang S, Wang R, He B, Dou H, et al. LLMCO4MR: LLMs-aided neural combinatorial optimization for ancient manuscript restoration from fragments with case studies on Dunhuang. In: Leonardis A, Ricci E, Roth S, Russakovsky O, Sattler T, Varol G, editors. Computer vision—ECCV 2024. Cham: Springer; 2024.
[37]
Sun Y, Wang S, Feng S, Ding S, Pang C, Shang J, et al.ERNIE 3.0: large-scale knowledge enhanced pre-training for language understanding and generation. 2021. arXiv:2107.02137.
[38]
Sun T, Shao Y, Qiu X, Guo Q, Hu Y, Huang X, et al. CoLAKE: contextualized language and knowledge embedding. In: Proceedings of the 28th International Conference on Computational Linguistics; 2023 Dec 8–13; Barcelona, Spain. Stroudsburg: Association for Computational Linguistics (ACL); 2020. p. 3660–70.
[39]
Zhang T, Wang C, Hu N, Qiu M, Tang C, He X, et al. DKPLM: decomposable knowledge-enhanced pre-trained language model for natural language understanding. Proc Conf AAAI Artif Intell 2022; 36(10):11703-11711.
[40]
Yu W, Zhu C, Fang Y, Yu D, Wang S, Xu Y, et al. Dict-BERT: enhancing language model pre-training with dictionary. 2021. arXiv: 2110.06490.
[41]
Li S, Gao Y, Jiang H, Yin Q, Li Z, Yan X, et al. Graph reasoning for question answering with triplet retrieval. 2023. arXiv: 2305.18742.
[42]
Luo L, Ju J, Xiong B, Li YF, Haffari G, Pan S. ChatRule: mining logical rules with large language models for knowledge graph reasoning. 2023. arXiv: 2309.01538.
[43]
Wang J, Sun Q, Chen N, Li X, Gao M. Boosting language models reasoning with chain-of-knowledge prompting. 2023. arXiv: 2306.06427.
[44]
Shazeer N, Mirhoseini A, Maziarz K, Davis A, Le Q, Hinton G, et al. Outrageously large neural networks: the sparsely-gated mixture-of-experts layer. 2017. arXiv: 1701.06538.
[45]
Wei J, Wang X, Schuurmans D, Bosma M, Ichter B, Xia F, et al. Chain-of-thought prompting elicits reasoning in large language models. In: Proceedings of the 36th International Conference on Neural Information Processing Systems; 2022 Nov 28–Dec 9; New Orleans, LA, USA. Red Hook: Curran Associates Inc.; 2022.
[46]
Kraaijenbrink J, Wijnhoven F. Managing heterogeneous knowledge: a theory of external knowledge integration. Knowl Manag Res Pract 2008; 6(4):274-286.
[47]
Dogan A, Birant D. A weighted majority voting ensemble approach for classification. In: Proceedings of the 2019 4th International Conference on Computer Science and Engineering (UBMK); 2019 4th International Conference on Computer Science and Engineering (UBMK 2019); 2019 Sep 11–15; Samsun, Türkiye. New York City: IEEE; 2019. p. 1–6.
[48]
Kwon H, Park J, Lee Y. Stacking ensemble technique for classifying breast cancer. Healthc Inform Res 2019; 25(4):283-288.
[49]
Du N, Huang Y, Dai AM, Tong S, Lepikhin D, Xu Y, et al. GLaM: efficient scaling of language models with mixture-of-experts. In: Proceedings of the 39th International Conference on Machine Learning; 2022 Jul 17–23; Baltimore, MD, USA. Birmingham: Proceedings of Machine Learning Research; 2022. p. 5547–69.
[50]
Wang K, Xu Y, Wu Z, Luo S. LLM as prompter: low-resource inductive reasoning on arbitrary knowledge graphs. 2024. arXiv: 2402.11804.
[51]
Touvron H, Martin L, Stone K, Albert P, Almahairi A, Babaei Y, et al. Llama 2: open foundation and fine-tuned chat models. 2023. arXiv: 2307.09288.
[52]
Nayak A, Timmapathini HP. LLM2KB: constructing knowledge bases using instruction tuned context aware large language models. 2023. arXiv: 2308.13207.
[53]
Wang H, Li R, Jiang H, Tian J, Wang Z, Luo C, et al. BlendFilter: advancing retrieval-augmented large language models via query generation blending and knowledge filtering. 2024. arXiv: 2402.11129.
[54]
Parisi A, Zhao Y, Fiedel N. TALM: tool augmented language models. 2022. arXiv: 2205.12255.
[55]
Schick T, Dwivedi-Yu J, Raileanu R, Lomeli M, Hambro E, et al. Toolformer: language models can teach themselves to use tools. In: Proceedings of the Thirty-Seventh Conference on Neural Information Processing Systems; 2023 Dec 10; New Orleans, LU, USA. New York City: Association for Computing Machinery (ACM); 2023.
[56]
Shen Y, Song K, Tan X, Li D, Lu W, Zhuang Y. HuggingGPT: solving AI tasks with ChatGPT and its friends in hugging face. 2023. arXiv:2303.17580v4.
[57]
Yao S, Yu D, Zhao J, Shafran I, Griffiths T, Cao Y, et al. Tree of thoughts: deliberate problem solving with large language models. In: Proceedings of the Thirty-Seventh Conference on Neural Information Processing Systems; 2023 Dec 10; New Orleans, LU, USA. New York City: Association for Computing Machinery (ACM); 2023.
[58]
Besta M, Blach N, Kubicek A, Gerstenberger R, Podstawski M, Gianinazzi L, et al. Graph of thoughts: solving elaborate problems with large language models. 2024. arXiv:2308.09687v4.
[59]
Rabby G, Auer S, D’Souza J, Oelen A. Fine-tuning and prompt engineering with cognitive knowledge graphs for scholarly knowledge organization. 2024. arXiv:2409.06433.
[60]
Ein-Dor L, Toledo-Ronen O, Spector A, Greta S, Dankin L, Halfon A, et al. Conversational prompt engineering. 2024. arXiv: 2408.04560.
[61]
Yu Z, Ouyang X, Shao Z, Wang M, Yu J. Prophet: prompting large language models with complementary answer heuristics for knowledge-based visual question answering. 2023. arXiv: 2303.01903.
[62]
Lu X, Liao Y, Liu C, Lio P, Hui P. Heterogeneous model fusion federated learning mechanism based on model mapping. IEEE Internet Things J 2022; 9(8):6058-6068.
[63]
Wu TH, Lian L, Gonzalez JE, Li B, Darrell T. Self-correcting LLM-controlled diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2024 Jun 16–22; Seattle, WA, USA. New York City: IEEE; 2024. p. 6327–36.
[64]
Wang Y, Zhu S, Fu F, Miao X, Zhang J, Zhu J, et al. Efficient multi-task large model training via data heterogeneity-aware model management. 2024. arXiv: 2409.03365.
[65]
Sachin DN, Annappa B, Hegde S, Abhijit CS, Ambesange S. FedCure: a heterogeneity-aware personalized federated learning framework for intelligent healthcare applications in IoMT environments. IEEE Access 2024; 12:15867-15883.
[66]
Haller M, Lenz C, Nachtigall R, Awayshehl FM, Alawadi S. Handling non-IID data in federated learning: an experimental evaluation towards unified metrics. In: Proceedings of the 2023 IEEE International Conference on Dependable, Autonomic and Secure Computing (DASC); 2023 Nov 14–17; Abu Dhabi, UAE. New York City: IEEE; 2023. p. 0762–70.
[67]
Ding K, Dong X, He Y, Cheng L, Fu C, Huan Z, et al. MSSM: a multiple-level sparse sharing model for efficient multi-task learning. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval; 2021 Jul 11–15; online. New York City: Association for Computing Machinery (ACM); 2021. p. 2237–41.
[68]
Wang Z, Panda R, Karlinsky L, Feris R, Sun H, Kim Y. Multitask prompt tuning enables parameter-efficient transfer learning. 2023. arXiv: 2303.02861.
[69]
Zhang W, Zhai G, Wei Y, Yang X, Ma K. Blind image quality assessment via vision-language correspondence: a multitask learning perspective. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2023 Jun 18–22; Vancouver, BC, Canada. New York City: IEEE; 2023. p. 14071–81.
[70]
Chen Q, Chen X, Wang J, Zhang S, Yao K, Feng H, et al. Group DETR: fast DETR training with group-wise one-to-many assignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision; 2023 Oct 2–6; Paris, France. New York City: IEEE; 2023. p. 6633–42.
[71]
Ghosh A, Chung J, Yin D, Ramchandran K. An efficient framework for clustered federated learning. In: Proceedings of the 34th International Conference on Neural Information Processing Systems; 2020 Dec 6–10; Vancouver, BC, Canada. Red Hook: Curran Associates Inc.; 2020.
[72]
Ye R, Wang W, Chai J, Li D, Li Z, Xu Y, et al. OpenFedLLM: training large language models on decentralized private data via federated learning. In: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining; 2024 Aug 25–29; Barcelona, Spain. New York City: Association for Computing Machinery (ACM); 2024. p. 6137–47.
[73]
Yang C, An Z, Zhou H, Zhuang F, Xu Y, Zhang Q. Online knowledge distillation via mutual contrastive learning for visual recognition. IEEE Trans Pattern Anal Mach Intell 2023; 45(8):10212-10227.
[74]
Ni J, Tang H, Shang Y, Duan B, Yan Y. Adaptive cross-architecture mutual knowledge distillation. In: Proceedings of the 2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition (FG); 2024 May 27–31; Istanbul, Türkiye. New York City: IEEE; 2024. p. 1–5.
[75]
Miao Z, Zhang W, Su J, Li X, Luan J, Chen Y, et al. Exploring all-in-one knowledge distillation framework for neural machine translation. In: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing; 2023 Dec 6–10; Singapore. Stroudsburg: Association for Computational Linguistics (ACL); 2023. p. 2929–40.
[76]
Zhao J, Zhao W, Drozdov A, Rozonoyer B, Sultan MA, Lee JY, et al. Multistage collaborative knowledge distillation from a large language model for semi-supervised sequence generation. In: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics; 2024 Aug 11–16; Bangkok, Thailand. Stroudsburg: Association for Computational Linguistics (ACL); 2024. p. 14201–14.
[77]
Starodubcev N, Fedorov A, Babenko A, Baranchuk D. Your student is better than expected: adaptive teacher–student collaboration for text-conditional diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2024 Jun 16–22; Seattle, WA, USA. New York City: IEEE; 2024. p. 9275–85.
[78]
Shao J, Wu F, Zhang J. Selective knowledge sharing for privacy-preserving federated distillation without a good teacher. Nat Commun 2024; 15:349.
[79]
Wan F, Huang X, Cai D, Quan X, Bi W, Shi S. Knowledge fusion of large language models. 2024. arXiv: 2401.10491.
[80]
Wang Y, Agarwal S, Mukherjee S, Liu X, Gao J, Awadallah AH, et al. AdaMix: mixture-of-adaptations for parameter-efficient model tuning. 2022. arXiv: 2205.12410.
[81]
Wortsman M, Ilharco G, Gadre SY, Roelofs R, Gontijo-Lopes R, Morcos AS, et al. Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. In: Proceedings of the International Conference on Machine Learning; 2022 Jul 17–23; Baltimore, MD, USA. Seattle: Proceedings of Machine Learning Research; 2022. p. 23965–98.
[82]
Arpit D, Wang H, Zhou Y, Xiong C. Ensemble of averages: improving model selection and boosting performance in domain generalization. 2022. arXiv: 2110.10832.
[83]
Jin X, Ren X, Preotiuc-Pietro D, Cheng P. Dataless knowledge fusion by merging weights of language models. 2022. arXiv: 2212.09849.
[84]
Perin G, Chen X, Liu S, Kailkhura B, Wang Z, Gallagher B. RankMean: module-level importance score for merging fine-tuned LLM models. In: Proceedings of the Findings of the Association for Computational Linguistics; 2024 Aug 11–16; Bangkok, Thailand. Stroudsburg: Association for Computational Linguistics (ACL); 2024. p. 1776–82.
[85]
Yu L, Bi K, Ni S, Guo J. Contextual dual learning algorithm with listwise distillation for unbiased learning to rank. 2024. arXiv: 2408.09817.
[86]
Park S, Van P Hentenryck. Self-supervised primal-dual learning for constrained optimization. Proc Conf AAAI Artif Intell 2023; 37(4):4052-4060.
[87]
Fei H, Wu S, Ren Y, Zhang M. Matching structure for dual learning. In: Proceedings of the International Conference on Machine Learning; 2022 Jul 17–23; Baltimore, MD, USA. Seattle: Proceedings of Machine Learning Research; 2022. p. 6373–91.
[88]
Ji W, Wang R, Tian Y, Wang X. An attention based dual learning approach for video captioning. Appl Soft Comput 2022; 117:108332.
[89]
Li J, Xia Y, Yan R, Sun H, Zhao D, Liu T, et al. Stylized dialogue generation with multi-pass dual learning. In: Proceedings of the 35th International Conference on Neural Information Processing Systems; 2021 Sep 6–14; online. Red Hook: Curran Associates Inc.; 2021.
[90]
Chen A, Lou L, Chen K, Bai X, Xiang Y, Yang M, et al. DUAL-REFLECT: enhancing large language models for reflective translation through dual learning feedback mechanisms. 2024. arXiv: 2406.07232.
[91]
Dong J, Zhang M, Zhang Z, Chen X, Liu D, Qu X, et al. Dual learning with dynamic knowledge distillation for partially relevant video retrieval. In: Proceedings of the IEEE/CVF International Conference on Computer Vision; 2023 Oct 4–6; Paris, France. New York City: IEEE; 2023. p. 11302–12.
[92]
Wang Y, Sun T, Li S, Yuan X, Ni W, Hossain E, et al. Adversarial attacks and defenses in machine learning-empowered communication systems and networks: a contemporary survey. IEEE Comm Surv and Tutor 2023; 25(4):2245-2298.
[93]
Cheng P, Yang Y, Li J, Dai Y, Hu T, Cao P, et al. Adversarial preference optimization: enhancing your alignment via RM-LLM game. In: Proceedings of the Findings of the Association for Computational Linguistics; 2024 Aug 11–16; Bangkok, Thailand. Stroudsburg: Association for Computational Linguistics (ACL); 2024. p. 3705–16.
[94]
Tan K, Luo K, Lan Y, Yuan Z, Shu J. An LLM-enhanced adversarial editing system for lexical simplification. 2024. arXiv: 2402.14704.
[95]
Sheshadri A, Ewart A, Guo P, Lynch A, Wu C, Hebbar V, et al. Targeted latent adversarial training improves robustness to persistent harmful behaviors in LLMs. 2024. arXiv: 2407.15549.
[96]
Hu X, Chen PY, Ho TY. RADAR: robust AI-text detection via adversarial learning. In: Proceedings of the 37th International Conference on Neural Information Processing Systems; 2023 Dec 10–16; New Orleans, LA, USA. Red Hook: Curran Associates Inc.; 2023. p. 15077–95.
[97]
Thota S, Vangoor VKR, Reddy AK, Ravi CS. Federated learning: privacy-preserving collaborative machine learning. DLBSAR 2019; 5:168-190.
[98]
Goddard C, Siriwardhana S, Ehghaghi M, Meyers L, Karpukhin V, Benedict B, et al. Arcee’s mergekit: a toolkit for merging large language models. 2024. arXiv: 2403.13257.
[99]
Yang E, Wang Z, Shen L, Liu S, Guo G, Wang X, et al. AdaMerging: adaptive model merging for multi-task learning. 2024. arXiv: 2310.02575.
[100]
Matena M, Raffel C. Merging models with fisher-weighted averaging. In: Proceedings of the 36th International Conference on Neural Information Processing Systems; 2022 Nov 28–Dec 9; New Orleans, LA, USA. Red Hook: Curran Associates Inc.; 2022. p. 17703–16.
[101]
Yadav P, Tam D, Choshen L, Raffel C, Bansal M. TIES-MERGING: resolving interference when merging models. In: Proceedings of the 37th International Conference on Neural Information Processing Systems; 2023 Dec 10–16; New Orleans, LA, USA. Red Hook: Curran Associates Inc.; 2023.
[102]
Yu L, Yu B, Yu H, Huang F, Li Y. Language models are super Mario: absorbing abilities from homologous models as a free lunch. 2023. arXiv: 2311.03099.
[103]
Lu Z, Fan C, Wei W, Qu X, Chen D, Cheng Y. Twin-merging: dynamic integration of modular expertise in model merging. 2024. arXiv: 2406.15479.
[104]
Tang A, Shen L, Luo Y, Yin N, Zhang L, Tao D. Merging multi-task models via weight-ensembling mixture of experts. 2024. arXiv: 2402.00433.
[105]
Yang E, Shen L, Wang Z, Guo G, Chen X, Wang X, et al. Representation surgery for multi-task model merging. In: Proceedings of the 41st International Conference on Machine Learning; 2024 Jul 21–27; Vienna, Austria. Seattle: Proceedings of Machine Learning Research; 2024.
[106]
Zhang J, Yang HF, Li A, Guo X, Wang P, Wang H, et al. MLLM-FL: multimodal large language model assisted federated learning on heterogeneous and long-tailed data. 2024. arXiv: 2409.06067.
[107]
Bai J, Chen D, Qian B, Yao L, Li J. Federated fine-tuning of large language models under heterogeneous language tasks and client resources. 2024. arXiv: 2402.11505.
[108]
Fan T, Ma G, Kang Y, Gu H, Song Y, Fan L, et al. FedMKT: federated mutual knowledge transfer for large and small language models. 2024. arXiv: 2406.02224.
[109]
Li H, Zhao X, Guo D, Gu H, Zeng Z, Han Y, et al. Federated domain-specific knowledge transfer on large language models using synthetic data. 2024. arXiv: 2405.14212.
[110]
Fan T, Kang Y, Chen W, Gu H, Song Y, Fan L, et al. PDSS: a privacy-preserving framework for step-by-step distillation of large language models. 2024. arXiv: 2406.12403.
[111]
Gholami M, Akbari M, Hu C, Masrani V, Wang J, Zhang Y. GOLD: generalized knowledge distillation via out-of-distribution-guided language data generation. 2024. arXiv: 2403.19754.
[112]
Li X, Fang Y, Liu M, Ling Z, Tu Z, Su H. Distilling large vision-language model with out-of-distribution generalizability. In: Proceedings of the IEEE/CVF International Conference on Computer Vision; 2023 Oct 4–6; Paris, France. New York City: IEEE; 2023. p. 2492–503.
[113]
Agarwal R, Vieillard N, Zhou Y, Stanczyk P, Ramos S, Geist M, et al. On-policy distillation of language models: learning from self-generated mistakes. In: Proceedings of the Twelfth International Conference on Learning Representations; 2024 May 7–11; Vienna, Austria. London: ICLR; 2024.
[114]
Chen Z, Wang W, Zhao Z, Su F, Men A, Meng H. PracticalDG: perturbation distillation on vision-language models for hybrid domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2024 Jul 16–22; Seattle, WA, USA. New York City: IEEE; 2024. p. 23501–11.
[115]
Feng S, Sun H, Yan X, Zhu H, Zou Z, Shen S, et al. Dense reinforcement learning for safety validation of autonomous vehicles. Nature 2023; 615(7953):620-627.
[116]
Bi K, Xie L, Zhang H, Chen X, Gu X, Tian Q. Accurate medium-range global weather forecasting with 3D neural networks. Nature 2023; 619(7970):533-538.
[117]
Chen K, Han T, Gong J, Bai L, Ling F, Luo JJ, et al. FengWu: pushing the skillful global medium-range weather forecast beyond 10 days lead. 2023. arXiv: 2304.02948.
[118]
Zhong X, Chen L, Liu J, Lin C, Qi Y, Li H. FuXi-extreme: improving extreme rainfall and wind forecasts with diffusion model. 2023. arXiv: 2310.19822.
[119]
Yue M, Mifdal W, Zhang Y, Suh J, Yao Z. MathVC: an LLM-simulated multi-character virtual classroom for mathematics education. 2024. arXiv: 2404.06711.
[120]
Müller J, Zeinhofer M. Achieving high accuracy with PINNs via energy natural gradient descent. In: Proceedings of the International Conference on Machine Learning; 2023 Jul 23–29; Honolulu, HI, USA. New York City: IEEE; 2023.
[121]
Aymerich E, Pisano F, Cannas B, Sias G, Fanni A, Gao Y, et al. Physics informed neural networks towards the real-time calculation of heat fluxes at W7-X. Nucl Mater Energy 2023; 34:101401.
[122]
Yang K, Swope A, Gu A, Chalamala R, Song P, Yu S, et al. LeanDojo: theorem proving with retrieval-augmented language models. In: Proceedings of the 37th International Conference on Neural Information Processing Systems; 2023 Dec 10–16; New Orleans, LA, USA. Red Hook: Curran Associates Inc.; 2024.
[123]
Zhan B. AUTO2, a saturation-based heuristic prover for higher-order logic. In: Proceedings of Interactive Theorem Proving; 2016 Aug 22–25; Nancy, France; 2016.
[124]
Steen A, Sutcliffe G, Scholl T, Benzmüller C. Solving modal logic problems by translation to higher-order logic. In: Proceedings of the International Conference on Logic and Argumentation; 2023 Sep 10–12; Hangzhou, China. Cham: Springer Nature Switzerland; 2023. p. 25–43.
[125]
Foulis DJ, Randall CH. The empirical logic approach to the physical sciences. A. Hartkämper, H. Neumann (Eds.), Foundations of quantum mechanics and ordered linear spaces, Advanced Study Institute, Marburg 1973; 230-249.
[126]
Xin H, Ren ZZ, Song J, Shao Z, Zhao W, Wang H, et al. DeepSeek-prover-V1. 5: harnessing proof assistant feedback for reinforcement learning and Monte-Carlo tree search. 2024. arXiv: 2408.08152.
[127]
Zhou JP, Staats C, Li W, Szegedy C, Weinberger KQ, Wu Y. Don’t trust: verify-grounding LLM quantitative reasoning with autoformalization. 2024. arXiv: 2403.18120.
[128]
Hong S, Zheng X, Chen J, Cheng Y, Wang J, Zhang C, et al. MetaGPT: meta programming for multi-agent collaborative framework. 2023. arXiv: 2308.00352.
[129]
Qian C, Liu W, Liu H, Chen N, Dang Y, Li J, et al. ChatDev: communicative agents for software development. In: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistic; 2024 Aug 11–16; Bangkok, Thailand. Stroudsburg: Association for Computational Linguistics (ACL); 2024. p. 15174–86.
[130]
Fang Y, Zhang Q, Zhang N, Chen Z, Zhuang X, Shao X, et al. Knowledge graph-enhanced molecular contrastive learning with functional prompt. Nat Mach Intell 2023; 5(5):542-553.
[131]
Li Y, Cardoso-Silva J, Kelly JM, Delves MJ, Furnham N, Papageorgiou LG, et al. Optimisation-based modelling for explainable lead discovery in malaria. Artif Intell Med 2024; 147:102700.
[132]
Poli M, Massaroli S, Nguyen E, Fu DY, Dao T, Baccus S, et al. Hyena hierarchy: towards larger convolutional language models. In: Proceedings of the International Conference on Machine Learning; 2023 Jul 23–29; Honolulu, HI, USA. Seattle: Proceedings of Machine Learning Research; 2023. p. 28043–78.
[133]
Gu A, Dao T. Mamba: linear-time sequence modeling with selective state spaces. 2023. arXiv: 2312.00752.
[134]
Sun Y, Dong L, Huang S, Ma S, Xia Y, Xue J, et al. Retentive network: a successor to transformer for large language models. 2023. arXiv: 2307.08621.
[135]
Tang Z, Lv Z, Zhang S, Wu F, Kuang K. ModelGPT: unleashing LLM’s capabilities for tailored model generation. 2024. arXiv: 2402.12408.
AI Summary AI Mindmap
PDF(1447 KB)

Accesses

Citations

Detail

Sections
Recommended

/