Turning Waste into Valuable Products: Sunlight-Driven Hydrogen from Polystyrene via Porous Tungsten Oxide Photoanodes

Love Kumar Dhandole , Jun-Tae Kim , Hyoung-il Kim , Sang Hoon Kim , Ji-Young Kim , Jonghun Lim , Gun-hee Moon

Engineering ›› 2025, Vol. 54 ›› Issue (11) : 346 -354.

PDF (3128KB)
Engineering ›› 2025, Vol. 54 ›› Issue (11) : 346 -354. DOI: 10.1016/j.eng.2024.12.009
Article

Turning Waste into Valuable Products: Sunlight-Driven Hydrogen from Polystyrene via Porous Tungsten Oxide Photoanodes

Author information +
History +
PDF (3128KB)

Abstract

The photochemical conversion of plastic waste into valuable resources under ambient conditions is challenging. Achieving efficient photocatalytic conversion necessitates intimate contact between the photocatalyst and plastic substrate, as water molecules are readily oxidized by photogenerated holes, potentially bypassing the plastic as the electron donor. This study demonstrated a novel strategy for depositing polystyrene (PS) waste onto a photoanode by leveraging its solubility in specific organic solvents, including acetone and chloroform, thus enhancing the interface contact. We used an anodization technique to fabricate a skeleton-like porous tungsten oxide (WO3) structure, which exhibited higher durability against detachment from a conductive substrate than the WO3 photoanode fabricated using the doctor blade method. Upon illumination, the photogenerated holes were transferred from WO3 to PS, promoting the oxidative degradation of plastic waste under ambient conditions. Consequently, the oxidative degradation of PS on the anode side generated carbon dioxide, while the cathodic process produced hydrogen gas through water reduction. Our findings pave the way for sunlight-driven plastic waste treatment technologies that concurrently generate valuable fuels or chemicals and offer the dual benefits of cost savings and environmental protection.

Keywords

Tungsten oxide / Photoanode / Plastic waste / Solar light / Hydrogen-evolution / Polystyrene-degradation / Resource recovery

Cite this article

Download citation ▾
Love Kumar Dhandole, Jun-Tae Kim, Hyoung-il Kim, Sang Hoon Kim, Ji-Young Kim, Jonghun Lim, Gun-hee Moon. Turning Waste into Valuable Products: Sunlight-Driven Hydrogen from Polystyrene via Porous Tungsten Oxide Photoanodes. Engineering, 2025, 54(11): 346-354 DOI:10.1016/j.eng.2024.12.009

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement
Love Kumar Dhandole:. Jun-Tae Kim: Validation, Methodology. Hyoung-il Kim: Validation, Methodology. Sang Hoon Kim: Validation, Methodology. Ji-Young Kim:. Jonghun Lim: Writing - review & editing, Visualization, Conceptualization. Gun-hee Moon: Writing - review & editing, Supervision, Conceptualization.
Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]

R. Geyer, J.R. Jambeck, K.L. Law. Production, use, and fate of all plastics ever made. Sci Adv, 3 (7) ( 2017), Article e1700782

[2]

M. Chu, W. Tu, S. Yang, C. Zhang, Q. Li, Q. Zhang, et al.. Sustainable chemical upcycling of waste polyolefins by heterogeneous catalysis. SusMat, 2 (2) ( 2022), pp. 161-185

[3]

J. Gong, X. Chen, T. Tang. Recent progress in controlled carbonization of (waste) polymers. Prog Polym Sci, 94 ( 2019), pp. 1-32

[4]

D. Hoornweg, P. Bhada-Tata, C. Kennedy. Environment: waste production must peak this century. Nature, 502 (7473) ( 2013), pp. 615-617

[5]

J.R. Jambeck, R. Geyer, C. Wilcox, T.R. Siegler, M. Perryman, A. Andrady, et al.. Plastic waste inputs from land into the ocean. Science, 347 (6223) ( 2015), pp. 768-771

[6]

N. Simon, K. Raubenheimer, N. Urho, S. Unger, D. Azoulay, T. Farrelly, et al.. A binding global agreement to address the life cycle of plastics. Science, 373 (6550) ( 2021), pp. 43-47

[7]

Y.G. Yu, C.G. Chae, M.J. Kim, H.B. Seo, R.H. Grubbs, J.S. Lee. Precise synthesis of bottlebrush block copolymers from ω-end-norbornyl polystyrene and poly(4-tert-butoxystyrene) via living anionic polymerization and ring-opening metathesis polymerization. Macromolecules, 51 (2) ( 2018), pp. 447-455

[8]

R. Cao, M.Q. Zhang, C. Hu, D. Xiao, M. Wang, D. Ma. Catalytic oxidation of polystyrene to aromatic oxygenates over a graphitic carbon nitride catalyst. Nat Commun, 13 (1) ( 2022), p. 4809

[9]

Z. Huang, M. Shanmugam, Z. Liu, A. Brookfield, E.L. Bennett, R. Guan, et al.. Chemical recycling of polystyrene to valuable chemicals via selective acid-catalyzed aerobic oxidation under visible light. J Am Chem Soc, 144 (14) ( 2022), pp. 6532-6542

[10]

J.M. Garcia, M.L. Robertson. The future of plastics recycling. Science, 358 (6365) ( 2017), pp. 870-872

[11]

L.T.J. Korley, T.H. Epps III, B.A. Helms, A.J. Ryan. Toward polymer upcycling—adding value and tackling circularity. Science, 373 (6550) ( 2021), pp. 66-69

[12]

I.A. Ignatyev, W. Thielemans, B.B. Vander. Recycling of polymers: a review. ChemSusChem, 7 (6) ( 2014), pp. 1579-1593

[13]

T.S. Tofa, K.L. Kunjali, S. Paul, J. Dutta. Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environ Chem Lett, 17 (3) ( 2019), pp. 1341-1346

[14]

B. Ohtani, S. Adzuma, S. Nishimoto, T. Kagiya. Photocatalytic degradation of polyethylene film by incorporated extra fine particles of titanium dioxide. Polym Degrad Stabil, 35 (1) ( 1992), pp. 53-60

[15]

T. Uekert, H. Kasap, E. Reisner. Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst. J Am Chem Soc, 141 (38) ( 2019), pp. 15201-15210

[16]

H. Zhou, Y. Ren, Z. Li, M. Xu, Y. Wang, R. Ge, et al.. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat Commun, 12 ( 2021), p. 4679

[17]

M.F. Kuehnel, E. Reisner. Solar hydrogen generation from lignocellulose. Angew Chem Int Ed, 57 (13) ( 2018), pp. 3290-3296

[18]

A.V. Puga. Photocatalytic production of hydrogen from biomass-derived feedstocks. Coord Chem Rev, 315 ( 2016), pp. 1-66

[19]

T. Kawai, T. Sakata. Photocatalytic hydrogen production from water by the decomposition of poly-vinylchloride, protein, algae, dead insects, and excrement. Chem Lett, 10 (1) ( 1981), pp. 81-84

[20]

T. Uekert, M.F. Kuehnel, D.W. Wakerley, E. Reisner. Plastic waste as a feedstock for solar-driven H2 generation. Energy Environ Sci, 11 (10) ( 2018), p. 2853

[21]

W.T. Chen, K. Jin, N.H. Linda Wang. Use of supercritical water for the liquefaction of polypropylene into oil. ACS Sustain Chem& Eng, 7 (4) ( 2019), pp. 3749-3758

[22]

D.W. Wakerley, M.F. Kuehnel, K.L. Orchard, K.H. Ly, T.E. Rosser, E. Reisner. Solar-driven reforming of lignocellulose to H2 a CdS/CdOx photocatalyst. Nat Energy, 2 (4) ( 2017), p. 17021

[23]

X.M.C. Ta, R. Daiyan, T.K.A. Nguyen, R. Amal, T. Tran-Phu, A. Tricoli. Alternatives to water photooxidation for photoelectrochemical solar energy conversion and green H2 production. Adv Energy Mater, 12 (42) ( 2022), Article 2201358

[24]

M.G. Sendeku, T.A. Shifa, F.T. Dajan, K.B. Ibrahim, B. Wu, Y. Yang, et al.. Frontiers in photoelectrochemical catalysis: a focus on valuable product synthesis. Adv Mater, 36 (21) ( 2024), Article 2308101

[25]

B. Zhang, H. Zhang, Y. Pan, J. Shao, X. Wang, Y. Jiang, et al.. Photoelectrochemical conversion of plastic waste into high-value chemicals coupling hydrogen production. Chem Eng J, 462 ( 2023), Article 142247

[26]

H. Kim, H. Kim, S. Weon, G. Moon, J.H. Kim, W. Choi. Robust co-catalytic performance of nanodiamonds loaded on WO3 for the decomposition of volatile organic compounds under visible light. ACS Catal, 6 (12) ( 2016), pp. 8350-8360

[27]

L. Wang, C.S. Tsang, W. Liu, X. Zhang, K. Zhang, E. Ha, et al.. Disordered layers on WO3 nanoparticles enable photochemical generation of hydrogen from water. J Mater Chem A Mater Energy Sustain, 7 (1) ( 2019), pp. 221-227

[28]

M.J. Craig, G. Coulter, E. Dolan, J. Soriano-López, E. Mates-Torres, W. Schmitt, et al.. Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential. Nat Commun, 10 (1) ( 2019), p. 4993

[29]

K. Dang, T. Wang, C. Li, J. Zhang, S. Liu, J. Gong. Improved oxygen evolution kinetics and surface states passivation of Ni-Bi co-catalyst for a hematite photoanode. Engineering, 3 (3) ( 2017), pp. 285-289

[30]

C. Shao, A.S. Malik, J. Han, D. Li, M. Dupuis, X. Zong, et al.. Oxygen vacancy engineering with flame heating approach towards enhanced photoelectrochemical water oxidation on WO3 photoanode. Nano Energy, 77 ( 2020), Article 105190

[31]

W. Lin, Y. Yu, Y. Fang, J. Liu, X. Li, J. Wang, et al.. Oxygen vacancy-enhanced photoelectrochemical water splitting of WO3/NiFe-layered double hydroxide photoanodes. Langmuir, 37 (21) ( 2021), pp. 6490-6497

[32]

M.P. Thi, G. Velasco. Raman study of WO3 thin films. Solid State Ion, 14 (3) ( 1984), pp. 217-220

[33]

M. Mazilu, A.C. De Luca, A. Riches, C.S. Herrington, K. Dholakia. Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy. Opt Express, 18 (11) ( 2010), pp. 11382-11395

[34]

D.B. Seo, S. Yoo, V. Dongquoc, T.N. Trung, E.T. Kim. Facile synthesis and efficient photoelectrochemical reaction of WO3/WS2 core@shell nanorods utilizing WO3?0.33H2O phase. J Alloys Compd, 888 ( 2021), Article 161587

[35]

A. Jaryal, V.R. Battula, K. Kailasam. Oxygen deficient WO3-x nanorods and g-CN nanosheets heterojunctions: a 1D-2D interface with engineered band structure for cyclohexanol oxidation in visible light. ACS Appl Energy Mater, 3 (5) ( 2020), pp. 4669-4676

[36]

J. Fang, Y. Xuan, Q. Li. Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals. Sci China Technol Sci, 53 (11) ( 2010), pp. 3088-3093

[37]

A.A. Oketola, N. Torto. Synthesis and characterization of poly(styrene-co-acrylamide) polymers prior to electrospinning. Adv Nanopart, 2 (2) ( 2013), pp. 87-93

[38]

J. Lee, U. von Gunten, J.H. Kim. Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environ Sci Technol, 54 (6) ( 2020), pp. 3064-3081

[39]

T.H. Jeon, D. Monllor-Satoca, G. Moon, W. Kim, H. Kim, D.W. Bahnemann, et al.. Ag(I) ions working as a hole-transfer mediator in photoelectrocatalytic water oxidation on WO3 film. Nat Commun, 11 (1) ( 2020), p. 967

[40]

Y. Guo, X. Quan, N. Lu, H. Zhao, S. Chen. High photocatalytic capability of self-assembled nanoporous WO3 with preferential orientation of (002) planes. Environ Sci Technol, 41 (12) ( 2007), pp. 4422-4427

[41]

C. Piao, J. Tang, Y. Lin, Z. Liu, X. Liu, D. Fang, et al.. A high-efficiency Z-scheme Er3+: YAlO3@(Au/SrTiO3)-Au-WO3 photocatalyst for solar light induced photocatalytic conversion of Cr(VI). J Mol Struct, 1243 ( 2021), Article 130773

[42]

I. Aslam, C. Cao, M. Tanveer, M.H. Farooq, M. Tahir, S. Khalid, et al.. A facile one-step fabrication of novel WO3/Fe2(WO4)3·10.7H2O porous microplates with remarkable photocatalytic activities. CrystEngComm, 17 (26) ( 2015), pp. 4809-4817

[43]

J.Y. Hwang, G. Moon, B. Kim, T. Tachikawa, T. Majima, S. Hong, et al.. Crystal phase-dependent generation of mobile OH radicals on TiO2: revisiting the photocatalytic oxidation mechanism of anatase and rutile. Appl Catal B, 286 ( 2021), Article 119905

[44]

R. de Levie, L. Pospí?il. On the coupling of interfacial and diffusional impedances, and on the equivalent circuit of an electrochemical cell. J Electroanal Chem Interfacial Electrochem, 22 (3) ( 1969), pp. 277-290

[45]

P. Dias, T. Lopes, L. Meda, L. Andrade, A. Mendes. Photoelectrochemical water splitting using WO3 photoanodes: the substrate and temperature roles. Phys Chem Chem Phys, 18 (7) ( 2016), pp. 5232-5243

[46]

J.W. Wackerly, J.F. Dunne. Synthesis of polystyrene and molecular weight determination by 1H NMR end-group analysis. J Chem Educ, 94 (11) ( 2017), pp. 1790-1793

[47]

Z. Peng, R. Chen, H. Li. Heterogeneous photocatalytic oxidative cleavage of polystyrene to aromatics at room temperature. ACS Sustain Chem& Eng, 11 (29) ( 2023), pp. 10688-10697

[48]

W. Kim, T. Tachikawa, G. Moon, T. Majima, W. Choi. Molecular-level understanding of the photocatalytic activity difference between anatase and rutile nanoparticles. Angew Chem Int Ed, 53 (51) ( 2014), pp. 14036-14041

[49]

H. Park, H. Kim, G. Moon, W. Choi. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy Environ Sci, 9 (2) ( 2016), pp. 411-433

[50]

L. Sun, Y. Wang, F. Raziq, Y. Qu, L. Bai, L. Jing. Enhanced photoelectrochemical activities for water oxidation and phenol degradation on WO3 nanoplates by transferring electrons and trapping holes. Sci Rep, 7 (1) ( 2017), p. 1303

[51]

X. Shi, Q. Wu, C. Cui. Modulating WO3 crystal orientation to suppress hydroxyl radicals for sustainable solar water oxidation. ACS Catal, 13 (2) ( 2023), pp. 1470-1476

[52]

R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Pérez De Lara, P. Jarillo-Herrero, R.V. Gorbachev, et al.. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem Soc Rev, 47 (1) ( 2018), pp. 53-68

AI Summary AI Mindmap
PDF (3128KB)

Supplementary files

SI

12957

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/