Metamaterials: The Art in Materials Science

Jingbo Sun, Ji Zhou

Engineering ›› 2025, Vol. 44 ›› Issue (1) : 145-161.

PDF(5828 KB)
PDF(5828 KB)
Engineering ›› 2025, Vol. 44 ›› Issue (1) : 145-161. DOI: 10.1016/j.eng.2024.12.011
Research
Review

Metamaterials: The Art in Materials Science

Author information +
History +

Abstract

Composed of natural materials but constructed using artificial structures through ingenious design, metamaterials possess properties beyond nature. Unlike traditional materials studies, metamaterials research requires great human creativity in order to realize the desired properties and thereby the required functionalities through design. Such properties and functionalities are not necessarily available in nature, and their design can break through the existing materials ideology. This paper reviews progress in metamaterials research over the past 20 years in terms of the materials innovations that have achieved the designation of “meta.” In particular, we discuss future trends in metamaterials in the fields of both fundamental science and engineering.

Graphical abstract

Keywords

Metamaterials / Metasurface / Artificial intelligence / Origami / Kirigami / Artistry

Cite this article

Download citation ▾
Jingbo Sun, Ji Zhou. Metamaterials: The Art in Materials Science. Engineering, 2025, 44(1): 145‒161 https://doi.org/10.1016/j.eng.2024.12.011

References

[1]
Ziolkowski RW. Metamaterials: the early years in the USA. EPJ Appl Metamat 2014; 1:5.
[2]
Decree of the Praesidium of the Supreme Soviet of the USSR on the award of the Order of Lenin to the Academy of Sciences of the USSR. Russ Math Surv 1974;29(3):1.
[3]
Pendry JB, Holden AJ, Robbins DJ, Stewart WJ. Low frequency plasmons in thin-wire structures. J Phys Condens Matter 1998; 10(22):4785-4809.
[4]
Pendry JB, Holden AJ, Robbins DJ, Stewart WJ. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech 1999; 47(11):2075-2084.
[5]
Smith DR, Kroll N. Negative refractive index in left-handed materials. Phys Rev Lett 2000; 85(14):2933-2936.
[6]
Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science 2001; 292(5514):77-79.
[7]
Silveirinha M, Engheta N. Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media. Phys Rev B 2007; 75(7):075119.
[8]
Mahmoud AM, Engheta N. Wave–matter interactions in epsilon-and-mu-near-zero structures. Nat Commun 2014; 5:5638.
[9]
Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt Express 2008; 16(10):7181.
[10]
Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006; 314(5801):977-980.
[11]
Chen H, Chan CT, Sheng P. Transformation optics and metamaterials. Nat Mater 2010; 9(5):387-396.
[12]
Leonhardt U. Optical conformal mapping. Science 2006; 312(5781):1777-1780.
[13]
McCall M, Pendry JB, Galdi V, Lai Y, Horsley SAR, Li J, et al. Roadmap on transformation optics. J Opt 2018; 20(6):063001.
[14]
Schurig D, Pendry JB, Smith DR. Calculation of material properties and ray tracing in transformation media. Opt Express 2006; 14(21):9794.
[15]
Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science 2006; 312(5781):1780-1782.
[16]
Valentine J, Li J, Zentgraf T, Bartal G, Zhang X. An optical cloak made of dielectrics. Nat Mater 2009; 8(7):568-571.
[17]
Cai W, Chettiar UK, Kildishev AV, Shalaev VM. Optical cloaking with metamaterials. Nat Photonics 2007; 1(4):224-227.
[18]
Shalaev DM, Cai W, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, et al. Negative index of refraction in optical metamaterials. Opt Lett 2005; 30(24):3356-3358.
[19]
Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 2008; 455(7211):376-379.
[20]
Soukoulis CM, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photonics 2011; 5(9):523-530.
[21]
Jiao P, Mueller J, Raney JR, Zheng X, Alavi AH. Mechanical metamaterials and beyond. Nat Commun 2023; 14:6004.
[22]
Surjadi JU, Gao L, Du H, Li X, Xiong X, Fang NX, et al. Mechanical metamaterials and their engineering applications. Adv Eng Mater 2019; 21(3):1800864.
[23]
Lu C, Hsieh M, Huang Z, Zhang C, Lin Y, Shen Q, et al. Architectural design and additive manufacturing of mechanical metamaterials: a review. Engineering 2022; 17:44-63.
[24]
Yu X, Zhou J, Liang H, Jiang Z, Wu L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review. Prog Mater Sci 2018; 94:114-173.
[25]
Lu Q, Li X, Zhang X, Lu M, Chen Y. Perspective: acoustic metamaterials in future engineering. Engineering 2022; 17:22-30.
[26]
Ma G, Sheng P. Acoustic metamaterials: from local resonances to broad horizons. Sci Adv 2016; 2(2):e1501595.
[27]
Craster RV, Guenneau S.Acoustic metamaterials: negative refraction, imaging, lensing and cloaking. Springer, Dordrecht (2013).
[28]
Cummer SA, Christensen J, Al Aù. Controlling sound with acoustic metamaterials. Nat Rev Mater 2016; 1(3):16001.
[29]
Gao N, Zhang Z, Deng J, Guo X, Cheng B, Hou H. Acoustic metamaterials for noise reduction: a review. Adv Mater Technol 2022; 7(6):2100698.
[30]
Wegener M. Metamaterials beyond optics. Science 2013; 342(6161):939-940.
[31]
Wang J, Dai G, Huang J. Thermal metamaterial: fundamental, application, and outlook. iScience 2020; 23(10):101637.
[32]
Li Y, Li W, Han T, Zheng X, Li J, Li B, et al. Transforming heat transfer with thermal metamaterials and devices. Nat Rev Mater 2021; 6(6):488-507.
[33]
Ju R, Xu G, Xu L, Qi M, Wang D, Cao P, et al. Convective thermal metamaterials: exploring high-efficiency, directional, and wave-like heat transfer. Adv Mater 2023; 35(23):2209123.
[34]
Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett 2000; 85(18):3966-3969.
[35]
Lee SH, Park CM, Seo YM, Kim CK. Reversed Doppler effect in double negative metamaterials. Phys Rev B 2010; 81(24):241102.
[36]
Ziemkiewicz D, Zieli Sńska-Raczyńska. Complex Doppler effect in left-handed metamaterials. J Opt Soc Am B 2015; 32(3):363.
[37]
Duan Z, Wu BI, Lu J, Kong JA, Chen M. Cherenkov radiation in anisotropic double-negative metamaterials. Opt Express 2008; 16(22):18479.
[38]
Duan Z, Tang X, Wang Z, Zhang Y, Chen X, Chen M, et al. Observation of the reversed Cherenkov radiation. Nat Commun 2017; 8:14901.
[39]
Al Aù, Salandrino A, Engheta N. Negative effective permeability and left-handed materials at optical frequencies. Opt Express 2006; 14(4):1557.
[40]
Zhou J, Economon EN, Koschny T, Soukoulis CM. Unifying approach to left-handed material design. Opt Lett 2006; 31(24):3620.
[41]
Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis CM, Economou EN. Left-handed metamaterials: the fishnet structure and its variations. Phys Rev B 2007; 75(23):235114.
[42]
Bai Y, Chen H, Zhang J, Luo Y, Li B, Ran L, et al. Left-handed material based on ferroelectric medium. Opt Express 2007; 15(13):8284-8289.
[43]
Zhang X, Liu Z. Superlenses to overcome the diffraction limit. Nat Mater 2008; 7(6):435-441.
[44]
Haxha S, AbdelMalek F, Ouerghi F, Charlton MDB, Aggoun A, Fang X. Metamaterial superlenses operating at visible wavelength for imaging applications. Sci Rep 2018; 8:16119.
[45]
Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science 2005; 308(5721):534-537.
[46]
Konstantinidis K, Feresidis AP. Broadband near-zero index metamaterials. J Opt 2015; 17(10):105104.
[47]
Kinsey N, DeVault C, Boltasseva A, Shalaev VM. Near-zero-index materials for photonics. Nat Rev Mater 2019; 4(12):742-760.
[48]
Turpin JP, Wu Q, Werner DH, Martin B, Bray M, Lier E. Near-zero-index metamaterial lens combined with AMC metasurface for high-directivity low-profile antennas. IEEE Trans Antennas Propag 2014; 62(4):1928-1936.
[49]
Liu Y, Dong T, Qin X, Luo W, Leng N, He Y, et al. High-permittivity ceramics enabled highly homogeneous zero-index metamaterials for high-directivity antennas and beyond. eLight 2024; 4:4.
[50]
Moitra P, Yang Y, Anderson Z, Kravchenko II, Briggs DP, Valentine J. Realization of an all-dielectric zero-index optical metamaterial. Nat Photonics 2013; 7(10):791-795.
[51]
Dong T, Liang J, Camayd-Muñoz S, Liu Y, Tang H, Kita S, et al. Ultra-low-loss on-chip zero-index materials. Light Sci Appl 2021; 10(1):10.
[52]
Li Y, Chan CT, Mazur E. Dirac-like cone-based electromagnetic zero-index metamaterials. Light Sci Appl 2021; 10(1):203.
[53]
Liu R, Cheng Q, Hand T, Mock JJ, Cui TJ, Cummer SA, et al. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies. Phys Rev Lett 2008; 100(2):023903.
[54]
Silveirinha M, Engheta N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys Rev Lett 2006; 97(15):157403.
[55]
Xue X, Lin C, Wu F, Li Z, Liao J. Lattice structures with negative Poisson’s ratio: a review. Mater Today Commun 2023; 34:105132.
[56]
Milton GW. Composite materials with Poisson’s ratios close to −1. J Mech Phys Solids 1992; 40(5):1105-1137.
[57]
Almgren RF. An isotropic three-dimensional structure with Poisson’s ratio = −1. J Elast 1985; 15(4):427-430.
[58]
Silberschmidt VV, Matveenko VP, editors. Mechanics of advanced materials: analysis of properties and performance. Cham: Springer International Publishing; 2015.
[59]
Grima JN, Gatt R, Zammit V, Williams JJ, Evans KE, Alderson A, et al. Natrolite: a zeolite with negative Poisson’s ratios. J Appl Phys 2007; 101(8):086102.
[60]
Lakes R. Foam structures with a negative Poisson’s ratio. Science 1987; 235(4792):1038-1040.
[61]
Miller W, Ren Z, Smith CW, Evans KE. A negative Poisson’s ratio carbon fibre composite using a negative Poisson’s ratio yarn reinforcement. Compos Sci Technol 2012; 72(7):761-766.
[62]
Jin S, Korkolis YP, Li Y. Shear resistance of an auxetic chiral mechanical metamaterial. Int J Solids Struct, 174–175 2019; 28-37.
[63]
Zhang W, Ma Z, Hu P. Mechanical properties of a cellular vehicle body structure with negative Poisson’s ratio and enhanced strength. J Reinf Plast Compos 2014; 33(4):342-349.
[64]
Yuan R, Zhou Y, Fan X, Lu Q. Negative-Poisson-ratio polyimide aerogel fabricated by tridirectional freezing for high- and low-temperature and impact-resistant applications. Chem Eng J 2022; 433:134404.
[65]
Hai H, Chen C, Wang W, Xu W. Impact resistance of a double re-entrant negative Poisson’s ratio honeycomb structure. Phys Scr 2024; 99(2):025919.
[66]
Alderson KL, Fitzgerald A, Evans KE. The strain dependent indentation resilience of auxetic microporous polyethylene. J Mater Sci 2000; 35(16):4039-4047.
[67]
Ren X, Shen J, Tran P, Ngo TD, Xie YM. Auxetic nail: design and experimental study. Compos Struct 2018; 184:288-298.
[68]
Ma H, Wang K, Zhao H, Shi W, Xue J, Zhou Y, et al. Energy dissipation and shock isolation using novel metamaterials. Int J Mech Sci 2022; 228:107464.
[69]
Ma H, Wang K, Zhao H, Hong Y, Zhou Y, Xue J, et al. Energy dissipation in multistable auxetic mechanical metamaterials. Compos Struct 2023; 304:116410.
[70]
Ji JC, Luo Q, Ye K. Vibration control based metamaterials and origami structures: a state-of-the-art review. Mech Syst Signal Process 2021; 161:107945.
[71]
Saddek AA, Lin TK, Chang WK, Chen CH, Chang KC. Metamaterials of auxetic geometry for seismic energy absorption. Materials 2023; 16(15):5499.
[72]
Liu Y, Zhao C, Xu C, Ren J, Zhong J. Auxetic meta-materials and their engineering applications: a review. Eng Res Express 2023; 5(4):042003.
[73]
Nguy Hễn, Fangueiro R, Ferreira F, Nguy Qễn. Auxetic materials and structures for potential defense applications: an overview and recent developments. Text Res J 2023; 93(23–24):5268-5306.
[74]
Balan PM, Mertens AJ, Bahubalendruni MVAR. Auxetic mechanical metamaterials and their futuristic developments: a state-of-art review. Mater Today Commun 2023; 34:105285.
[75]
Wallbanks M, Khan MF, Bodaghi M, Triantaphyllou A, Serjouei A. On the design workflow of auxetic metamaterials for structural applications. Smart Mater Struct 2022; 31(2):023002.
[76]
Gholikord M, Etemadi E, Imani M, Hosseinabadi M, Hu H. Design and analysis of novel negative stiffness structures with significant energy absorption. Thin-Walled Struct 2022; 181:110137.
[77]
Sun M, Zhang K, Guo X, Zhang Z, Chen Y, Zhang G, et al. A novel negative stiffness metamaterials: discrete assembly and enhanced design capabilities. Smart Mater Struct 2023; 32(9):095036.
[78]
Cai C, Zhou J, Wu L, Wang K, Xu D, Ouyang H. Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps. Compos Struct 2020; 236:111862.
[79]
Liu W, Zhang Q, Wu L, Sun J, Zhou J. Design of quasi-zero stiffness metamaterials with high reliability via metallic architected materials. Thin-Walled Struct 2024; 198:111686.
[80]
Zhang Q, Guo D, Hu G. Tailored mechanical metamaterials with programmable quasi-zero-stiffness features for full-band vibration isolation. Adv Funct Mater 2021; 31(33):2101428.
[81]
Khajehtourian R, Kochmann DM. Soft adaptive mechanical metamaterials. Front Robot AI 2021; 8:673478.
[82]
Rafsanjani A, Bertoldi K, Studart AR. Programming soft robots with flexible mechanical metamaterials. Sci Robot 2019; 4(29):eaav7874.
[83]
Zhang Z, Xu Z, Emu L, Wei P, Chen S, Zhai Z, et al. Active mechanical haptics with high-fidelity perceptions for immersive virtual reality. Nat Mach Intell 2023; 5(6):643-655.
[84]
Wu L, Wang Y, Zhai Z, Yang Y, Krishnaraju D, Lu J, et al. Mechanical metamaterials for full-band mechanical wave shielding. Appl Mater Today 2020; 20:100671.
[85]
Tudi A, Han S, Yang Z, Pan S. Potential optical functional crystals with large birefringence: recent advances and future prospects. Coord Chem Rev 2022; 459:214380.
[86]
Zelmon DE, Small DL, Jundt D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol% magnesium oxide-doped lithium niobate. J Opt Soc Am B 1997; 14(12):3319.
[87]
DeVore JR. Refractive indices of rutile and sphalerite. J Opt Soc Am 1951; 41(6):416.
[88]
Dodge MJ. Refractive properties of magnesium fluoride. Appl Opt 1984; 23(12):1980.
[89]
Ghosh G. Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Opt Commun 1999; 163(1–3):95-102.
[90]
Luo HT, Tkaczyk T, Dereniak EL, Oka K, Sampson R. High birefringence of the yttrium vanadate crystal in the middle wavelength infrared. Opt Lett 2006; 31(5):616.
[91]
Zhou G, Xu J, Chen X, Zhong H, Wang S, Xu K, et al. Growth and spectrum of a novel birefringent α-BaB2O4 crystal. J Cryst Growth 1998; 191(3):517-519.
[92]
Hoffman AJ, Alekseyev L, Howard SS, Franz KJ, Wasserman D, Podolskiy VA, et al. Negative refraction in semiconductor metamaterials. Nat Mater 2007; 6(12):946-950.
[93]
Bang S, So S, Rho J. Realization of broadband negative refraction in visible range using vertically stacked hyperbolic metamaterials. Sci Rep 2019; 9:14093.
[94]
Gric T, Hess O. Investigation of hyperbolic metamaterials. Appl Sci 2018; 8(8):1222.
[95]
Yan R, Wang T, Wang H, Yue X, Wang L, Wang Y, et al. Effective excitation of bulk plasmon-polaritons in hyperbolic metamaterials for high-sensitivity refractive index sensing. J Mater Chem C 2022; 10(13):5200-5209.
[96]
Lee YU, Nie Z, Li S, Lambert CH, Zhao J, Yang F, et al. Ultrathin layered hyperbolic metamaterial-assisted illumination nanoscopy. Nano Lett 2022; 22(14):5916-5921.
[97]
Liu Y, Bartal G, Zhang X. All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region. Opt Express 2008; 16(20):15439.
[98]
Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, et al. Optical negative refraction in bulk metamaterials of nanowires. Science 2008; 321(5891):930.
[99]
Shekhar P, Atkinson J, Jacob Z. Hyperbolic metamaterials: fundamentals and applications. Nano Converg 2014; 1(1):14.
[100]
Smith DR, Schurig D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys Rev Lett 2003; 90(7):077405.
[101]
Jacob Z, Alekseyev LV, Narimanov E. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt Express 2006; 14:8247-8256.
[102]
Smith DR, Kolinko P, Schurig D. Negative refraction in indefinite media. J Opt Soc Am B 2004; 21(5):1032.
[103]
Sun J, Kang L, Wang R, Liu L, Sun L, Zhou J. Low loss negative refraction metamaterial using a close arrangement of split-ring resonator arrays. New J Phys 2010; 12(8):083020.
[104]
Liu Z, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 2007; 315(5819):1686.
[105]
Sun J, Litchinitser NM. Toward practical, subwavelength, visible-light photolithography with hyperlens. ACS Nano 2018; 12(1):542-548.
[106]
Sun J, Shalaev MI, Litchinitser NM. Experimental demonstration of a non-resonant hyperlens in the visible spectral range. Nat Commun 2015; 6:7201.
[107]
Sun J, Litchinitser NM. The route to visible light photolithography using hyperlens. J Opt 2018; 20(4):044008.
[108]
Sun J, Xu T, Litchinitser NM. Experimental demonstration of demagnifying hyperlens. Nano Lett 2016; 16(12):7905-7909.
[109]
Liu L, Liu K, Zhao Z, Wang C, Gao P, Luo X. Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer. RSC Adv 2016; 6(98):95973-95978.
[110]
Prelog V. Chirality in chemistry. Science 1976; 193(4247):17-24.
[111]
Botta O, Bada JL, Gomes-Elvira J, Javaux E, Selsis F, Summons R.Strategies of life detection. Springer, New York City (2008).
[112]
Stachelek P, MacKenzie L, Parker D, Pal R. Circularly polarised luminescence laser scanning confocal microscopy to study live cell chiral molecular interactions. Nat Commun 2022; 13:553.
[113]
Jia S, Tao T, Xie Y, Yu L, Kang X, Zhang Y, et al. Chirality supramolecular systems: helical assemblies, structure designs, and functions. Small 2024; 20(11):2307874.
[114]
Li Q, Huang Y, Duan J, Wu L, Tang G, Zhu Y, et al. Sucrose as chiral selector for determining enantiomeric composition of metalaxyl by UV–vis spectroscopy and PLS regression. Spectrochim Acta A 2013; 101:349-355.
[115]
Song Z, Liu X, Yang C, Wu Q, Guo X, Liu G, et al. Methanol-induced crystallization of chiral hybrid manganese(II) chloride single crystals for achieving circularly polarized luminescence and second harmonic generation. Adv Opt Mater 2024; 12(2):2301272.
[116]
Yang S, Zhao L, Yu C, Zhou X, Tang J, Yuan P, et al. On the origin of helical mesostructures. J Am Chem Soc 2006; 128(32):10460-10466.
[117]
Manabe K, Tsai SY, Kuretani S, Kometani S, Ando K, Agata Y, et al. Chiral silica with preferred-handed helical structure via chiral transfer. JACS Au 2021; 1(4):375-379.
[118]
Wang X, Tang Z. Circular dichroism studies on plasmonic nanostructures. Small 2017; 13(1):1601115.
[119]
Ma X, Huang C, Pu M, Pan W, Wang Y, Luo X. Circular dichroism and optical rotation in twisted Y-shaped chiral metamaterial. Appl Phys Express 2013; 6(2):022001.
[120]
Oh SS, Hess O. Chiral metamaterials: enhancement and control of optical activity and circular dichroism. Nano Converg 2015; 2(1):24.
[121]
Rogacheva AV, Fedotov VA, Schwanecke AS, Zheludev NI. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys Rev Lett 2006; 97(17):177401.
[122]
Gansel JK, Wegener M, Burger S, Linden S. Gold helix photonic metamaterials: a numerical parameter study. Opt Express 2010; 18(2):1059.
[123]
Zhao R, Koschny T, Economou EN, Soukoulis CM. Comparison of chiral metamaterial designs for repulsive Casimir force. Phys Rev B 2010; 81(23):235126.
[124]
Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ. Perfect metamaterial absorber. Phys Rev Lett 2008; 100(20):207402.
[125]
Watts CM, Liu X, Padilla WJ. Metamaterial electromagnetic wave absorbers. Adv Mater 2012; 24(23):OP98-OP120.
[126]
Wang B, Xu C, Duan G, Xu W, Pi F. Review of broadband metamaterial absorbers: from principles, design strategies, and tunable properties to functional applications. Adv Funct Mater 2023; 33(14):2213818.
[127]
Boyd RW.Nonlinear optics. (3rd ed.), Academic Press, Cambridge (2008).
[128]
Wen Y, Zhou J. Artificial nonlinearity generated from electromagnetic coupling metamolecule. Phys Rev Lett 2017; 118(16):167401.
[129]
Klein MW, Enkrich C, Wegener M, Linden S. Second-harmonic generation from magnetic metamaterials. Science 2006; 313(5786):502-504.
[130]
Wen Y, Giorgianni F, Ilyakov I, Quan B, Kovalev S, Wang C, et al. A universal route to efficient non-linear response via Thomson scattering in linear solids. Natl Sci Rev 2023; 10:nwad136.
[131]
Sun J, Liu L, Dong G, Zhou J. An extremely broad band metamaterial absorber based on destructive interference. Opt Express 2011; 19(22):21155.
[132]
Song K, Li D, Liu T, Zhang C, Xie YM, Liao W. Crystal-twinning inspired lattice metamaterial for high stiffness, strength, and toughness. Mater Des 2022; 221:110916.
[133]
Berger J. A mechanical metamaterial with extreme stiffness and strength. TechConnect Br 2017; 1:237-240.
[134]
Zhong H, Das R, Gu J, Qian M. Low-density, high-strength metal mechanical metamaterials beyond the Gibson–Ashby model. Mater Today 2023; 68:96-107.
[135]
Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 2006; 440(7083):508-511.
[136]
Lin J, Mueller JPB, Wang Q, Yuan G, Antoniou N, Yuan XC, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 2013; 340(6130):331-334.
[137]
Takayama O, Artigas D, Torner L. Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves. Nat Nanotechnol 2014; 9(6):419-424.
[138]
Martín-Sánchez J, Duan J, Taboada-Guti Jérrez, Voronin KV, Prieto I, et al. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas. Sci Adv 2021; 7(41):eabj0127.
[139]
Li Y, Sun J, Wen Y, Xiong X, Zhou L, Zhou J. Spin photonics-based on a twinning hyperbolic metamaterial. Adv Funct Mater. In press.
[140]
Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011; 334(6054):333-337.
[141]
Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 2016; 352(6290):1190-1194.
[142]
Shalaev MI, Sun J, Tsukernik A, Pandey A, Nikolskiy K, Litchinitser NM. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett 2015; 15(9):6261-6266.
[143]
Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography. Nat Commun 2016; 7:12533.
[144]
Zhang J, Zhang L, Xu W. Surface plasmon polaritons: physics and applications. J Phys D Appl Phys 2012; 45(11):113001.
[145]
Zayats AV, Smolyaninov II, Maradudin AA. Nano-optics of surface plasmon polaritons. Phys Rep 2005; 408(3–4):131-314.
[146]
Berini P. Long-range surface plasmon polaritons. Adv Opt Photonics 2009; 1(3):484.
[147]
Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature 2003; 424(6950):824-830.
[148]
Nguyen H, Park J, Kang S, Kim M. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 2015; 15(5):10481-10510.
[149]
Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 2008; 108(2):462-493.
[150]
Zhou L, Zhang N, Hsu CC, Singer M, Zeng X, Li Y, et al. Super-resolution displacement spectroscopic sensing over a surface “rainbow”. Engineering 2022; 17:75-81.
[151]
Yang S, Ni X, Yin X, Kante B, Zhang P, Zhu J, et al. Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution. Nat Nanotechnol 2014; 9(12):1002-1006.
[152]
Yang S, Wang Y, Zhang X. Curvature sculptured growth of plasmonic nanostructures by supramolecular recognition. Phys Rev Mater 2019; 3(11):116002.
[153]
Yang S, Wang Y, Ni X, Zhang X. Optical modulation of aqueous metamaterial properties at large scale. Opt Express 2015; 23(22):28736.
[154]
D I’yakonov. New type of electromagnetic wave propagating at an interface. Sov Phys JETP 1988; 67:714-716.
[155]
Qu Y, Chen N, Teng H, Hu H, Sun J, Yu R, et al. Tunable planar focusing based on hyperbolic phonon polaritons in α-MoO3. Adv Mater 2022; 34(23):2105590.
[156]
Wang H, Kumar A, Dai S, Lin X, Jacob Z, Oh SH, et al. Planar hyperbolic polaritons in 2D van der Waals materials. Nat Commun 2024; 15:69.
[157]
Li P, Dolado I, Alfaro-Mozaz FJ, Casanova F, Hueso LE, Liu S, et al. Infrared hyperbolic metasurface based on nanostructured van der Waals material. Science 2018; 359(6378):892-896.
[158]
Takayama O, Crasovan L, Artigas D, Torner L. Observation of Dyakonov surface waves. Phys Rev Lett 2009; 102(4):043903.
[159]
Li Y, Sun J, Wen Y, Zhou J. Controllable selective coupling of Dyakonov surface waves at a liquid-crystal-based interface. Phys Rev Applied 2020; 13(2):024024.
[160]
Dyakonov M. From Dyakonov–Cherenkov radiation to Dyakonov surface optics. Light Sci Appl 2022; 11:10.
[161]
Li Y, Sun J, Wen Y, Zhou J. Spin-dependent visible Dyakonov surface waves in a thin hyperbolic metamaterial film. Nano Lett 2022; 22(2):801-807.
[162]
Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014; 13(2):139-150.
[163]
Buchnev O, Podoliak N, Kaczmarek M, Zheludev NI, Fedotov VA. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch. Adv Opt Mater 2015; 3(5):674-679.
[164]
Staude I, Miroshnichenko AE, Decker M, Fofang NT, Liu S, Gonzales E, et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 2013; 7(9):7824-7832.
[165]
Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014; 345(6194):295-298.
[166]
Ni X, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 2013; 4:2807.
[167]
Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress. Rep Prog Phys 2015; 78(2):024401.
[168]
Ni X, Wong ZJ, Mrejen M, Wang Y, Zhang X. An ultrathin invisibility skin cloak for visible light. Science 2015; 349(6254):1310-1314.
[169]
Ding X, Monticone F, Zhang K, Zhang L, Gao D, Burokur SN, et al. Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency. Adv Mater 2015; 27(7):1195-1200.
[170]
Sun J, Wang X, Xu T, Kudyshev ZA, Cartwright AN, Litchinitser NM. Spinning light on the nanoscale. Nano Lett 2014; 14(5):2726-2729.
[171]
Zhao Q, Zhou J, Zhang F, Lippens D. Mie resonance-based dielectric metamaterials. Mater Today 2009; 12(12):60-69.
[172]
Liu Z, Guo T, Tan Q, Hu Z, Sun Y, Fan H, et al. Phase interrogation sensor based on all-dielectric BIC metasurface. Nano Lett 2023; 23(22):10441-10448.
[173]
Wang B, Liu W, Zhao M, Wang J, Zhang Y, Chen A, et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat Photonics 2020; 14(10):623-628.
[174]
Zhen B, Hsu CW, Lu L, Stone AD, Solja Mčić. Topological nature of optical bound states in the continuum. Phys Rev Lett 2014; 113(25):257401.
[175]
Hu H, Lu W, Antonov A, Bert Ré, Maier SA, Tittl A. Environmental permittivity-asymmetric BIC metasurfaces with electrical reconfigurability. Nat Commun 2024; 15:7050.
[176]
Alitalo P, Tretyakov S. Electromagnetic cloaking with metamaterials. Mater Today 2009; 12(3):22-29.
[177]
Shin D, Urzhumov Y, Jung Y, Kang G, Baek S, Choi M, et al. Broadband electromagnetic cloaking with smart metamaterials. Nat Commun 2012; 3:1213.
[178]
Zigoneanu L, Popa BI, Cummer SA. Three-dimensional broadband omnidirectional acoustic ground cloak. Nat Mater 2014; 13(4):352-355.
[179]
Basiri Z, Fakheri MH, Abdolali A, Shen C. Non-closed acoustic cloaking devices enabled by sequential-step linear coordinate transformations. Sci Rep 2021; 11:1845.
[180]
Xue Y, Zhang X. Self-adaptive acoustic cloak enabled by soft mechanical metamaterials. Extreme Mech Lett 2021; 46:101347.
[181]
Bi Y, Jia H, Lu W, Ji P, Yang J. Design and demonstration of an underwater acoustic carpet cloak. Sci Rep 2017; 7:705.
[182]
Dede EM, Zhou F, Schmalenberg P, Nomura T. Thermal metamaterials for heat flow control in electronics. J Electron Packag 2018; 140(1):010904.
[183]
Br Sûlé, Javelaud EH, Enoch S, Guenneau S. Experiments on seismic metamaterials: molding surface waves. Phys Rev Lett 2014; 112(13):133901.
[184]
Br Sûlé, Enoch S, Guenneau S. Emergence of seismic metamaterials: current state and future perspectives. Phys Lett A 2020; 384(1):126034.
[185]
Zangeneh-Nejad F, Fleury R. Zero-index Weyl metamaterials. Phys Rev Lett 2020; 125(5):054301.
[186]
Yin X, Ye Z, Rho J, Wang Y, Zhang X. Photonic spin Hall effect at metasurfaces. Science 2013; 339:1405-1407.
[187]
Chern RL, Shen YJ, Yu YZ. Photonic topological insulators in bianisotropic metamaterials. Opt Express 2022; 30(6):9944.
[188]
Wu Z, Zheng Y. Moiré metamaterials and metasurfaces. Adv Opt Mater 2018; 6(3):1701057.
[189]
Li W, LaMountain J, Simmons E, Clabeau A, Bekele RY, Myers JD, et al. Nano-focusing of vortex beams with hyperbolic metamaterials. 2024. arXiv: 2406.05016.
[190]
Takayama O, Sukham J, Malureanu R, Lavrinenko AV, Puentes G. Photonic spin Hall effect in hyperbolic metamaterials at visible wavelengths. Opt Lett 2018; 43(19):4602.
[191]
Sheng L, Chen Y, Yuan S, Liu X, Zhang Z, Jing H, et al. Photonic spin Hall effect: physics, manipulations, and applications. Prog Quantum Electron, 91–92 (2023), Article 100484.
[192]
Bliokh KY, Smirnova D, Nori F. Quantum spin Hall effect of light. Science 2015; 348(6242):1448-1451.
[193]
Droulias S, Katsantonis I, Kafesaki M, Soukoulis CM, Economou EN. Chiral metamaterials with PT symmetry and beyond. Phys Rev Lett 2019; 122(21):213201.
[194]
Zhao H, Feng L. Parity–time symmetric photonics. Natl Sci Rev 2018; 5(2):183-199.
[195]
Feng L, El-Ganainy R, Ge L. Non-Hermitian photonics based on parity–time symmetry. Nat Photonics 2017; 11(12):752-762.
[196]
Feng L, Wong ZJ, Ma RM, Wang Y, Zhang X. Single-mode laser by parity–time symmetry breaking. Science 2014; 346(6212):972-975.
[197]
Miao P, Zhang Z, Sun J, Walasik W, Longhi S, Litchinitser NM, et al. Orbital angular momentum microlaser. Science 2016; 353(6298):464-467.
[198]
Huang C, Song Q. Guiding flow of light with supersymmetry. Light Sci Appl 2022; 11(1):290.
[199]
Yim J, Chandra N, Feng X, Gao Z, Wu S, Wu T, et al. Broadband continuous supersymmetric transformation: a new paradigm for transformation optics. eLight 2022; 2:16.
[200]
Zhang S, Genov DA, Wang Y, Liu M, Zhang X. Plasmon-induced transparency in metamaterials. Phys Rev Lett 2008; 101(4):047401.
[201]
Ndukaife TA, Yang S. Slot driven dielectric electromagnetically induced transparency metasurface. Opt Express 2023; 31(17):27324.
[202]
Krishnamoorthy HNS, Dubrovkin AM, Adamo G, Soci C. Topological insulator metamaterials. Chem Rev 2023; 123(8):4416-4442.
[203]
Westström A, Ojanen T. Designer curved-space geometry for relativistic fermions in Weyl metamaterials. Phys Rev X 2017; 7(4):041026.
[204]
Tokura Y, Kanazawa N. Magnetic skyrmion materials. Chem Rev 2021; 121(5):2857-2897.
[205]
Nahas Y, Prokhorenko S, Louis L, Gui Z, Kornev I, Bellaiche L. Discovery of stable skyrmionic state in ferroelectric nanocomposites. Nat Commun 2015; 6:8542.
[206]
Silva A, Monticone F, Castaldi G, Galdi V, Al Aù, Engheta N. Performing mathematical operations with metamaterials. Science 2014; 343(6167):160-163.
[207]
Mohammadi N Estakhri, Edwards B, Engheta N. Inverse-designed metastructures that solve equations. Science 2019; 363(6433):1333-1338.
[208]
Nikkhah V, Pirmoradi A, Ashtiani F, Edwards B, Aflatouni F, Engheta N. Inverse-designed low-index-contrast structures on a silicon photonics platform for vector–matrix multiplication. Nat Photon 2024; 18(5):501-508.
[209]
Cui TJ, Qi MQ, Wan X, Zhao J, Cheng Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl 2014; 3(10):e218.
[210]
Li L, Zhao H, Liu C, Li L, Cui TJ. Intelligent metasurfaces: control, communication and computing. eLight 2022; 2:7.
[211]
Zhang L, Chen XQ, Liu S, Zhang Q, Zhao J, Dai JY, et al. Space-time-coding digital metasurfaces. Nat Commun 2018; 9:4334.
[212]
Fu X, Wang P, Liu Y, Fu Y, Cai Q, Wang Y, et al. Fundamentals and applications of millimeter-wave and terahertz programmable metasurfaces. J Materiomics 2025; 11(1):100904.
[213]
Ma Q, Cui TJ. Information metamaterials: bridging the physical world and digital world. PhotoniX 2020; 1:1.
[214]
Wu H, Bai GD, Liu S, Li L, Wan X, Cheng Q, et al. Information theory of metasurfaces. Natl Sci Rev 2020; 7(3):561-571.
[215]
Cui TJ, Liu S, Zhang L. Information metamaterials and metasurfaces. J Mater Chem C 2017; 5(15):3644-3668.
[216]
John LK, Swartzlander EE. Memristor-based computing. IEEE Micro 2018; 38(5):5-6.
[217]
Wang T, Meng J, Zhou X, Liu Y, He Z, Han Q, et al. Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat Commun 2022; 13:7432.
[218]
Xiao Y, Jiang B, Zhang Z, Ke S, Jin Y, Wen X, et al. A review of memristor: material and structure design, device performance, applications and prospects. Sci Technol Adv Mater 2023; 24(1):2162323.
[219]
Goi E, Zhang Q, Chen X, Luan H, Gu M. Perspective on photonic memristive neuromorphic computing. PhotoniX 2020; 1:3.
[220]
Liu J, Ou H, Zeng R, Zhou J, Long K, Wen G, et al. Fabrication, dynamic properties and multi-objective optimization of a metal origami tube with Miura sheets. Thin-Walled Struct 2019; 144:106352.
[221]
Ionov L. Polymer origami: programming the folding with shape. E-Polymers 2014; 14(2):109-114.
[222]
Tokura Y, Jiang Y, Welle A, Stenzel MH, Krzemien KM, Michaelis J, et al. Bottom-up fabrication of nanopatterned polymers on DNA origami by in situ atom-transfer radical polymerization. Angew Chem Int Ed 2016; 55(19):5692-5697.
[223]
Hannewald N, Winterwerber P, Zechel S, Ng DYW, Hager MD, Weil T, et al. DNA origami meets polymers: a powerful tool for the design of defined nanostructures. Angew Chem Int Ed 2021; 60(12):6218-6229.
[224]
Wang P, Gaitanaros S, Lee S, Bathe M, Shih WM, Ke Y. Programming self-assembly of DNA origami honeycomb two-dimensional lattices and plasmonic metamaterials. J Am Chem Soc 2016; 138(24):7733-7740.
[225]
Kang J, Kim H, Santangelo CD, Hayward RC. Enabling robust self-folding origami by pre-biasing vertex buckling direction. Adv Mater 2019; 31(39):0193006.
[226]
Blees MK, Barnard AW, Rose PA, Roberts SP, McGill KL, Huang PY, et al. Graphene kirigami. Nature 2015; 524(7564):204-207.
[227]
Lyu S, Qin B, Deng H, Ding X. Origami-based cellular mechanical metamaterials with tunable Poisson’s ratio: construction and analysis. Int J Mech Sci 2021; 212:106791.
[228]
Yang Y, Vallecchi A, Shamonina E, Stevens CJ, You Z. A new class of transformable kirigami metamaterials for reconfigurable electromagnetic systems. Sci Rep 2023; 13:1219.
[229]
Lv C, Krishnaraju D, Konjevod G, Yu H, Jiang H. Origami based mechanical metamaterials. Sci Rep 2014; 4:5979.
[230]
Zhai Z, Wang Y, Jiang H. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness. Proc Natl Acad Sci USA 2018; 115(9):2032-2037.
[231]
Zhang H, Paik J. Kirigami design and modeling for strong, lightweight metamaterials. Adv Funct Mater 2022; 32(21):2107401.
[232]
Dudte LH, Vouga E, Tachi T, Mahadevan L. Programming curvature using origami tessellations. Nat Mater 2016; 15(5):583-588.
[233]
Bertoldi K, Vitelli V, Christensen J, Van M Hecke. Flexible mechanical metamaterials. Nat Rev Mater 2017; 2(11):17066.
[234]
Zhai Z, Wang Y, Lin K, Wu L, Jiang H. In situ stiffness manipulation using elegant curved origami. Sci Adv 2020; 6:eabe2000.
[235]
Harris JA, McShane GJ. Impact response of metallic stacked origami cellular materials. Int J Impact Eng 2021; 147:103730.
[236]
Liu Z, Du H, Li J, Lu L, Li ZY, Fang NX. Nano-kirigami with giant optical chirality. Sci Adv 2018; 4(7):eaat4436.
[237]
Guo X, Ni X, Li J, Zhang H, Zhang F, Yu H, et al. Designing mechanical metamaterials with kirigami-inspired, hierarchical constructions for giant positive and negative thermal expansion. Adv Mater 2021; 33(3):2004919.
[238]
Silverberg JL, Na JH, Evans AA, Liu B, Hull TC, Santangelo CD, et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat Mater 2015; 14(4):389-393.
[239]
Lin Z, Novelino LS, Wei H, Alderete NA, Paulino GH, Espinosa HD, et al. Folding at the microscale: enabling multifunctional 3D origami-architected metamaterials. Small 2020; 16(35):2002229.
[240]
Xia K, Liu J, Li W, Jiao P, He Z, Wei Y, et al. A self-powered bridge health monitoring system driven by elastic origami triboelectric nanogenerator. Nano Energy 2023; 105:107974.
[241]
Silverberg JL, Evans AA, McLeod L, Hayward RC, Hull T, Santangelo CD, et al. Using origami design principles to fold reprogrammable mechanical metamaterials. Science 2014; 345:647-650.
[242]
Li F, Anzel P, Yang J, Kevrekidis PG, Daraio C. Granular acoustic switches and logic elements. Nat Commun 2014; 5:5311.
[243]
Tan T, Yan Z, Zou H, Ma K, Liu F, Zhao L, et al. Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of Things. Appl Energy 2019; 254:113717.
[244]
Song Z, Ma T, Tang R, Cheng Q, Wang X, Krishnaraju D, et al. Origami lithium-ion batteries. Nat Commun 2014; 5:3140.
[245]
Song Z, Wang X, Lv C, An Y, Liang M, Ma T, et al. Kirigami-based stretchable lithium-ion batteries. Sci Rep 2015; 5:10988.
[246]
Zhang K, Jung YH, Mikael S, Seo JH, Kim M, Mi H, et al. Origami silicon optoelectronics for hemispherical electronic eye systems. Nat Commun 2017; 8:1782.
[247]
Gao B, Elbaz A, He Z, Xie Z, Xu H, Liu S, et al. Bioinspired kirigami fish-based highly stretched wearable biosensor for human biochemical–physiological hybrid monitoring. Adv Mater Technol 2018; 3(4):1700308.
[248]
Bukauskas A, Koronaki A, Lee TU, Ott D, Al MW Asali, Jalia A, et al. Curved-crease origami face shields for infection control. PLoS One 2021; 16(2):e0245737.
[249]
Li S, Vogt DM, Rus D, Wood RJ. Fluid-driven origami-inspired artificial muscles. Proc Natl Acad Sci USA 2017; 114(50):13132-13137.
[250]
Mintchev S, Shintake J, Floreano D. Bioinspired dual-stiffness origami. Sci Robot 2018; 3(20):eaau0275.
[251]
Sareh P, Chermprayong P, Emmanuelli M, Nadeem H, Kovac M. Rotorigami: a rotary origami protective system for robotic rotorcraft. Sci Robot 2018; 3(22):eaah5228.
[252]
Baek SM, Yim S, Chae SH, Lee DY, Cho KJ. Ladybird beetle-inspired compliant origami. Sci Robot 2020; 5(41):eaaz6262.
[253]
Rafsanjani A, Zhang Y, Liu B, Rubinstein SM, Bertoldi K. Kirigami skins make a simple soft actuator crawl. Sci Robot 2018; 3(15):eaar7555.
[254]
Wu L, Lu Y, Li P, Wang Y, Xue J, Tian X, et al. Mechanical metamaterials for handwritten digits recognition. Adv Sci 2024; 11(10):2308137.
[255]
Meng Z, Chen W, Mei T, Lai Y, Li Y, Chen CQ. Bistability-based foldable origami mechanical logic gates. Extreme Mech Lett 2021; 43:101180.
[256]
Treml B, Gillman A, Buskohl P, Vaia R. Origami mechanologic. Proc Natl Acad Sci USA 2018; 115(27):6916-6921.
[257]
Li Y, Yu S, Qing H, Hong Y, Zhao Y, Qi F, et al. Reprogrammable and reconfigurable mechanical computing metastructures with stable and high-density memory. Sci Adv 2024; 10(26):eado6476.
[258]
Freitas GMF, Rego SL, Vasconcelos CFL. Design of metamaterials using artificial neural networks. In: Proceedings of the 2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference; 2011 Oct 29–Nov 1; Natal, Brazil. New York City: IEEE; 2011. p. 541–5.
[259]
Chen WT, Zhu AY, Sisler J, Bharwani Z, Capasso F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat Commun 2019; 10:355.
[260]
Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol 2018; 13(3):220-226.
[261]
Wang S, Wu PC, Su VC, Lai YC, Chen MK, Kuo HY, et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 2018; 13(3):227-232.
[262]
Fan CY, Su GDJ. Time-effective simulation methodology for broadband achromatic metalens using deep neural networks. Nanomaterials 2021; 11(8):1966.
[263]
Ren H, Jang J, Li C, Aigner A, Plidschun M, Kim J, et al. An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nat Commun 2022; 13:4183.
[264]
Fan ZB, Qiu HY, Zhang HL, Pang XN, Zhou LD, Liu L, et al. A broadband achromatic metalens array for integral imaging in the visible. Light Sci Appl 2019; 8(1):67.
[265]
Liu Z, Zhu D, Rodrigues SP, Lee KT, Cai W. Generative model for the inverse design of metasurfaces. Nano Lett 2018; 18(10):6570-6576.
[266]
An S, Fowler C, Zheng B, Shalaginov MY, Tang H, Li H, et al. A deep learning approach for objective-driven all-dielectric metasurface design. ACS Photonics 2019; 6(12):3196-3207.
[267]
Wang F, Zhao S, Wen Y, Sun J, Zhou J. High efficiency visible achromatic metalens design via deep learning. Adv Opt Mater 2023; 11(18):2300394.
[268]
Wang F, Geng G, Wang X, Li J, Bai Y, Li J, et al. Visible achromatic metalens design based on artificial neural network. Adv Opt Mater 2022; 10(3):2101842.
[269]
Khatib O, Ren S, Malof J, Padilla WJ. Deep learning the electromagnetic properties of metamaterials—a comprehensive review. Adv Funct Mater 2021; 31(31):2101748.
[270]
Ghorbani F, Beyraghi S, Shabanpour J, Oraizi H, Soleimani H, Soleimani M. Deep neural network-based automatic metasurface design with a wide frequency range. Sci Rep 2021; 11:7102.
[271]
Ma W, Cheng F, Liu Y. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano 2018; 12(6):6326-6334.
[272]
Cheng J, Li R, Wang Y, Yuan Y, Wang X, Chang S. Inverse design of generic metasurfaces for multifunctional wavefront shaping based on deep neural networks. Opt Laser Technol 2023; 159:109038.
[273]
Du Z, Bian T, Ren X, Jia Y, Tang S, Cui T, et al. Inverse design of mechanical metamaterial achieving a prescribed constitutive curve. Theor Appl Mech Lett 2024; 14(1):100486.
[274]
Ha CS, Yao D, Xu Z, Liu C, Liu H, Elkins D, et al. Rapid inverse design of metamaterials based on prescribed mechanical behavior through machine learning. Nat Commun 2023; 14:5765.
[275]
Campbell SD, Sell D, Jenkins RP, Whiting EB, Fan JA, Werner DH. Review of numerical optimization techniques for meta-device design. Opt Mater Express 2019; 9(4):1842.
[276]
Zhu R, Qiu T, Wang J, Sui S, Hao C, Liu T, et al. Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning. Nat Commun 2021; 12:2974.
[277]
Hu S, Xu J, Li M, Cui T, Li L. Language-controllable programmable metasurface empowered by large language models. Nanophoton 2023; 13(12):2213-2222.
[278]
Devlin J, Chang M, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies; 2019 Jun 2–7; Minneapolis, MN, USA. Stroudsburg: Association for Computational Linguistics; 2019. p. 4171–86.
[279]
Ray PP. ChatGPT: a comprehensive review on background applications, key challenges, bias, ethics, limitations and future scope. Internet Things Cyber-Phys Syst 2023; 3:121-154.
[280]
Padilla WJ. Fine-tuned large language models for predicting electromagnetic spectra in metamaterials. In: Engheta N, Noginov MA, Zheludev NI, editors. Proceedings volume PC13109, Metamaterials, Metadevices, and Metasystems 2024; 2024 Aug 18–22; San Diego, CA, USA. Bellingham: Society of Photo-Optical Instrumentation Engineers; 2024. p. PC131091K.
[281]
Hsueh TC, Fainman Y, Lin B. ChatGPT at the speed of light: monolithic photonic–electronic linear-algebra accelerators for large language models. In: Ni X, Cai W, editors. Proceedings volume PC13113, Photonic Computing: From Materials and Devices to Systems and Applications; 2024 Aug 18–23; San Diego, CA, USA. Bellingham: Society of Photo-Optical Instrumentation Engineers; 2024. p. PC131130I.
[282]
Stelzer EL, Schmit JL, Tufte ON. Mercury cadmium telluride as an infrared detector material. IEEE Trans Electron Dev 1969; 16(10):880-884.
[283]
Wen Y, Zhou J. Metamaterial route to direct photoelectric conversion. Mater Today 2019; 23:37-44.
[284]
Jood P, Ohta M, Yamamoto A, Kanatzidis MG. Excessively doped PbTe with Ge-induced nanostructures enables high-efficiency thermoelectric modules. Joule 2018; 2(7):1339-1355.
[285]
Jiang Y, Su B, Yu J, Han Z, Hu H, Zhuang HL, et al. Exceptional figure of merit achieved in boron-dispersed GeTe-based thermoelectric composites. Nat Commun 2024; 15:5915.
[286]
Zhou C, Lee YK, Yu Y, Byun S, Luo ZZ, Lee H, et al. Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat Mater 2021; 20(10):1378-1384.
[287]
Tan G, Zhao LD, Kanatzidis MG. Rationally designing high-performance bulk thermoelectric materials. Chem Rev 2016; 116(19):12123-12149.
[288]
Pendry J, Zhou J, Sun J. Metamaterials: from engineered materials to engineering materials. Engineering 2022; 17:1-2.
[289]
kymetacorp.com [Internet]. Redmond: Kymeta Corporation; [cited 2024 Oct 7]. Available from: https://www.kymetacorp.com/.
[290]
Chi Z, Yi Y, Wang Y, Wu M, Wang L, Zhao X, et al. Adaptive cylindrical wireless metasurfaces in clinical magnetic resonance imaging. Adv Mater 2021; 33(40):202102469.
[291]
tsingmeta.com [Internet]. Bejing: TsingMeta Ltd.; c2024 [cited 2024 Oct 7]. Available from: https://www.tsingmeta.com.
[292]
Metamaterials market 2024 regional growth with industry size, share and demand—developments by 2032 [Internet]. Norfolk: News Channel Nebraska; 2024 Jul 8 [cited 2024 Oct 7]. Available from: https://www.newschannelnebraska.com/story/51000739/Metamaterials-Market.
AI Summary AI Mindmap
PDF(5828 KB)

Accesses

Citations

Detail

Sections
Recommended

/