Strategies and Advances in the Biomimetic Synthesis of Natural Products

Li-Jun Hu, Zhi-Zhang Duan, Ying Wang, Wen-Cai Ye, Chun-Tao Che

Engineering ›› 2025, Vol. 44 ›› Issue (1) : 30-36.

PDF(1518 KB)
PDF(1518 KB)
Engineering ›› 2025, Vol. 44 ›› Issue (1) : 30-36. DOI: 10.1016/j.eng.2024.12.013
Research
Perspective

Strategies and Advances in the Biomimetic Synthesis of Natural Products

Author information +
History +

Abstract

Natural products, with their remarkable structural and biological diversity, have historically served as a vital bridge between chemistry, the life sciences, and medicine. They not only provide essential scaffolds for drug discovery but also inspire innovative strategies in drug development. The biomimetic synthesis of natural products employs principles from biomimicry, applying inspiration from biogenetic processes to design synthetic strategies that mimic biosynthetic processes. Biomimetic synthesis is a highly efficient approach in synthetic chemistry, as it addresses critical challenges in the synthesis of structurally complex natural products with significant biological and medicinal importance. It has gained widespread attention from researchers in chemistry, biology, pharmacy, and related fields, underscoring its interdisciplinary impact. In this perspective, we present recent advances and challenges in the biomimetic synthesis of natural products, along with the significance and prospects of this field, highlighting the transformative potential of biomimetic synthesis strategies for both chemical and biosynthetic approaches to natural product synthesis in the pursuit of novel therapeutic agents.

Graphical abstract

Keywords

Natural products / Natural product synthesis / Biomimetic synthesis / Biomimetic synthesis strategy

Cite this article

Download citation ▾
Li-Jun Hu, Zhi-Zhang Duan, Ying Wang, Wen-Cai Ye, Chun-Tao Che. Strategies and Advances in the Biomimetic Synthesis of Natural Products. Engineering, 2025, 44(1): 30‒36 https://doi.org/10.1016/j.eng.2024.12.013

References

[1]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 2020; 83(3):770-803.
[2]
Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 2021; 20(3):200-216.
[3]
Liu XY, Qin Y. Industrial total synthesis of natural medicines. Nat Prod Rep 2023; 40(11):1694-1700.
[4]
Helf MJ, Buntin K, Klan Ačar, Rust M, Petersen F, Pistorius D, et al. Scaling up for success: from bioactive natural products to new medicines. Nat Prod Rep (2024).
[5]
Corey EJ, Cheng XM. Logic of chemical synthesis. New York City: Wiley; 1995..
[6]
Nicolaou KC, Vourloumis D, Winssinger N, Baran PS. The art and science of total synthesis at the dawn of the twenty-first century. Angew Chem Int Ed 2000; 39(1):44-122.
[7]
Zhang F, Qu G, Sun Z, Ma J. From chemical synthesis to biosynthesis: trends toward total synthesis of natural products. Synth Biol J 2021; 2(05):674-696.
[8]
Tian DS, Zhang X, Cox RJ. Comparing total chemical synthesis and total biosynthesis routes to fungal specialized metabolites. Nat Prod Rep (2024).
[9]
Robinson R. LXIII—a synthesis of tropinone. J Chem Soc Trans 1917; 111:762-768.
[10]
Medley JW, Movassaghi M. Robinson’s landmark synthesis of tropinone. Chem Commun 2013; 49(92):10775.
[11]
Poupon E, Nay B. Biomimetic organic synthesis. Wiley-VCH, Weinheim (2011).
[12]
Bulger PG, Bagal SK, Marquez R. Recent advances in biomimetic natural product synthesis. Nat Prod Rep 2008; 25(2):254-297.
[13]
Shakour N, Mohadeszadeh M, Iranshahi M. Biomimetic synthesis of biologically active natural products: an updated review. Mini Rev Med Chem 2024; 24(1):3-25.
[14]
China’s Discipline and Frontier Field Development Strategy Research (2021–2035) Project Team. Development strategy for China’s synthetic science 2035. Beijing: Science Press; 2023. Chinese.
[15]
Claisen L, Hori E. Ueber eine synthese der aconitsäure. Ber Dtsch Chem Ges 1891; 24(1):120-127.
[16]
Collie JN. Derivatives of the multiple keten group. J Chem Soc Trans 1907; 91:1806-1813.
[17]
Robinson R. The structural relations of natural products. AIBS Bull 1955; 5(5):11.
[18]
Stork G, Burgstahler AW. The stereochemistry of polyene cyclization. J Am Chem Soc 1955; 77(19):5068-5077.
[19]
Eschenmoser A, Ruzicka L, Jeger O, Arigoni D. Zur kenntnis der triterpene. 190. mitteilung. eine stereochemische interpretation der biogenetischen isoprenregel bei den triterpenen. Helv Chim Acta 1955; 38(7):1890-1904.
[20]
Johnson WS, Gravestock MB, McCarry BE. Acetylenic bond participation in biogenetic-like olefinic cyclizations. II. Synthesis of dl-progesterone. J Am Chem Soc 1971; 93(17):4332-4334.
[21]
Corey EJ, Luo G, Lin LS. A simple enantioselective synthesis of the biologically active tetracyclic marine sesterterpene scalarenedial. J Am Chem Soc 1997; 119(41):9927-9928.
[22]
Heathcock CH. The enchanting alkaloids of yuzuriha. Angew Chem Int Ed 1992; 31(6):665-681.
[23]
Luo N, Turberg M, Leutzsch M, Mitschke B, Brunen S, Wakchaure VN, et al. The catalytic asymmetric polyene cyclization of homofarnesol to ambrox. Nature 2024; 632(8026):795-801.
[24]
Barrett AGM, Ma TK, Mies T. Recent developments in polyene cyclizations and their applications in natural product synthesis. Synthesis 2019; 51(1):67-82.
[25]
Carson MC, Kozlowski MC. Recent advances in oxidative phenol coupling for the total synthesis of natural products. Nat Prod Rep 2024; 41(2):208-227.
[26]
Barton DHR, Deflorin AM, Edwards OE. The synthesis of usnic acid. J Chem Soc 1956; 530-534.
[27]
Chapman OL, Engel MR, Springer JP, Clardy JC. Total synthesis of carpanone. J Am Chem Soc 1971; 93(24):6696-6698.
[28]
Keylor MH, Matsuura BS, Griesser M, Chauvin JPR, Harding RA, Kirillova MS, et al. Synthesis of resveratrol tetramers via a stereoconvergent radical equilibrium. Science 2016; 354(6317):1260-1265.
[29]
de TV Castro, Huang DM, Sumby CJ, Lawrence AL, George JH. A bioinspired, one-step total synthesis of peshawaraquinone. Chem Sci 2023; 14(4):950-954.
[30]
Zheng X, Li Y, Guan M, Guan M, Wang L, Wei S, et al. Biomimetic total synthesis of the spiroindimicin family of natural products. Angew Chem Int Ed 2022; 61(38):e202208802.
[31]
Lachkar D, Denizot N, Bernadat G, Ahamada K, Beniddir MA, Dumontet V, et al. Unified biomimetic assembly of voacalgine A and bipleiophylline via divergent oxidative couplings. Nat Chem 2017; 9(8):793-798.
[32]
Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G. The Diels–Alder reaction in total synthesis. Angew Chem Int Ed 2002; 41:1668-1698.
[33]
Vosburg DA, Vanderwal CD, Sorensen EJ. A synthesis of (+)-FR182877, featuring tandem transannular Diels−Alder reactions inspired by a postulated biogenesis. J Am Chem Soc 2002; 124(17):4552-4553.
[34]
Layton ME, Morales CA, Shair MD. Biomimetic synthesis of (−)-longithorone A. J Am Chem Soc 2002; 124(5):773-775.
[35]
Gao L, Ding Q, Lei X. Hunting for the intermolecular Diels–Alderase. Acc Chem Res 2024; 57(15):2166-2183.
[36]
Nicolaou KC, Zipkin RE, Petasis NA. The endiandric acid cascade. Electrocyclizations in organic synthesis. 3. “Biomimetic” approach to endiandric acids A–G. Synthesis of precursors. J Am Chem Soc 1982; 104(20):5558-5560.
[37]
Nicolaou KC, Petasis NA, Zipkin RE. The endiandric acid cascade. Electrocyclizations in organic synthesis. 4. “Biomimetic” approach to endiandric acids A–G. Total synthesis and thermal studies. J Am Chem Soc 1982; 104(20):5560-5562.
[38]
Lu Z, Li Y, Deng J, Li A. Total synthesis of the Daphniphyllum alkaloid daphenylline. Nat Chem 2013; 5(8):679-684.
[39]
Ba M, He F, Ren L, Whittingham WG, Yang P, Li A. Scalable total synthesis of acremolactone B. Angew Chem Int Ed 2024; 63(29):e202314800.
[40]
Inoue M. Convergent strategies for syntheses of trans-fused polycyclic ethers. Chem Rev 2005; 105(12):4379-4405.
[41]
Nakata T. Total synthesis of marine polycyclic ethers. Chem Rev 2005; 105(12):4314-4347.
[42]
Nakanishi K. The chemistry of brevetoxins: a review. Toxicon 1985; 23(3):473-479.
[43]
Lee MS, Qin G, Nakanishi K, Zagorski MG. Biosynthetic studies of brevetoxins, potent neurotoxins produced by the dinoflagellate Gymnodinium breve. J Am Chem Soc 1989; 111(16):6234-6241.
[44]
Vilotijevic I, Jamison TF. Epoxide-opening cascades promoted by water. Science 2007; 317(5842):1189-1192.
[45]
Li FX, Ren SJ, Li PF, Yang P, Qu J. An endo-selective epoxide-opening cascade for the fast assembly of the polycyclic core structure of marine ladder polyethers. Angew Chem Int Ed 2020; 59:18473-18478.
[46]
Xiao JX, Li FX, Ren SJ, Qu J. Studies on the biomimetic synthesis of marine ladder polyethers via endo-selective epoxide-to-epoxonium ring-opening cascades. Angew Chem Int Ed 2024; 63(30):e202403597.
[47]
Yokoshima S. Synthesis of polycyclic natural products through skeletal rearrangement. Synlett 2020; 31(20):1967-1975.
[48]
Xie J, Dong G. Cyclopropylcarbinyl cation chemistry in synthetic method development and natural product synthesis: cyclopropane formation and skeletal rearrangement. Org Chem Front 2023; 10(9):2346-2358.
[49]
Shenvi RA, Guerrero CA, Shi J, Li CC, Baran PS. Synthesis of (+)-cortistatin A. J Am Chem Soc 2008; 130(23):7241-7243.
[50]
Li X, Zhang Z, Fan H, Miao Y, Tian H, Gu Y, et al. Concise synthesis of 9,11-secosteroids pinnigorgiols B and E. J Am Chem Soc 2021; 143(13):4886-4890.
[51]
Ning Y, Wang Y, Gui J. Bioinspired two-phase synthesis of gibbosterol A. J Am Chem Soc Au 2024; 4(2):635-641.
[52]
Strych S, Journot G, Pemberton RP, Wang SC, Tantillo DJ, Trauner D. Biomimetic total synthesis of santalin Y. Angew Chem Int Ed 2015; 54(17):5079-5083.
[53]
Zhang H, Novak AJE, Jamieson CS, Xue XS, Chen S, Trauner D, et al. Computational exploration of the mechanism of critical steps in the biomimetic synthesis of preuisolactone A, and discovery of new ambimodal (5 + 2)/(4 + 2) cycloadditions. J Am Chem Soc 2021; 143(17):6601-6608.
[54]
Qi C, Qin T, Suzuki D, Porco JA. Total synthesis and stereochemical assignment of (±)-sorbiterrin A. J Am Chem Soc 2014; 136(9):3374-3377.
[55]
Wen S, Boyce JH, Kandappa SK, Sivaguru J, Porco JA. Regiodivergent photocyclization of dearomatized acylphloroglucinols: asymmetric syntheses of (−)-nemorosone and (−)-6-epi-garcimultiflorone A. J Am Chem Soc 2019; 141(28):11315-11321.
[56]
Lam HC, Pepper HP, Sumby CJ, George JH. Biomimetic total synthesis of (±)-verrubenzospirolactone. Angew Chem Int Ed 2017; 56(29):8532-8535.
[57]
Franov LJ, Hart JD, Pullella GA, Sumby CJ, George JH. Bioinspired total synthesis of erectones A and B, and the revised structure of hyperelodione D. Angew Chem Int Ed 2022; 61(19):e202200420.
[58]
Bao R, Zhang H, Tang Y. Biomimetic synthesis of natural products: a journey to learn, to mimic, and to be better. Acc Chem Res 2021; 54(19):3720-3733.
[59]
Fischbach MA, Clardy J. One pathway, many products. Nat Chem Biol 2007; 3(7):353-355.
[60]
Chen K, Baran PS. Total synthesis of eudesmane terpenes by site-selective C–H oxidations. Nature 2009; 459(7248):824-828.
[61]
Wilde NC, Isomura M, Mendoza A, Baran PS. Two-phase synthesis of (−)-taxuyunnanine D. J Am Chem Soc 2014; 136(13):4909-4912.
[62]
Kawamura S, Chu H, Felding J, Baran PS. Nineteen-step total synthesis of (+)-phorbol. Nature 2016; 532(7597):90-93.
[63]
Long X, Ding Y, Deng J. Total synthesis of asperchalasines A, D, E, and H. Angew Chem Int Ed 2018; 57(43):14221-14224.
[64]
Long X, Wu H, Ding Y, Qu C, Deng J. Biosynthetically inspired divergent syntheses of merocytochalasans. Chem 2021; 7(1):212-223.
[65]
Chakrabarty S, Romero EO, Pyser JB, Yazarians JA, Narayan ARH. Chemoenzymatic total synthesis of natural products. Acc Chem Res 2021; 54(6):1374-1384.
[66]
Dong H, Guo N, Hu D, Hong B, Liao D, Zhu HJ, et al. Chemoenzymatic total synthesis of alchivemycin A. Nat Synth 2024; 3(9):1124-1133.
[67]
Li J, Li F, King-Smith E, Renata H. Merging chemoenzymatic and radical-based retrosynthetic logic for rapid and modular synthesis of oxidized meroterpenoids. Nat Chem 2020; 12(2):173-179.
[68]
Hong B, Luo T, Lei X. Late-stage diversification of natural products. ACS Cent Sci 2020; 6(5):622-635.
[69]
Castellino NJ, Montgomery AP, Danon JJ, Kassiou M. Late-stage functionalization for improving drug-like molecular properties. Chem Rev 2023; 123(13):8127-8153.
[70]
Deng LM, Hu LJ, Bai YTZ, Wang J, Qin GQ, Song QY, et al. Rhodomentosones A and B: two pairs of enantiomeric phloroglucinol trimers from Rhodomyrtus tomentosa and their asymmetric biomimetic synthesis. Org Lett 2021; 23(11):4499-4504.
[71]
Deng LM, Hu LJ, Tang W, Liu JX, Huang XJ, Li YY, et al. A biomimetic synthesis-enabled stereochemical assignment of rhodotomentones A and B, two unusual caryophyllene-derived meroterpenoids from Rhodomyrtus tomentosa. Org Chem Front 2021; 8(20):5728-5735.
[72]
Wang J, Song J, Zhong D, Duan Z, Peng Z, Tang W, et al. Biomimetic synthesis of an antiviral cinnamoylphloroglucinol collection from Cleistocalyx operculatus: a synthetic strategy based on biogenetic building blocks. Angew Chem Int Ed 2023; 62(50):e202312568.
[73]
Zheng S, Zeng T, Li C, Chen B, Coley CW, Yang Y, et al. Deep learning driven biosynthetic pathways navigation for natural products with BioNavi-NP. Nat Commun 2022; 13(1):3342.
[74]
Kim T, Lee S, Kwak Y, Choi M, Park J, Hwang SJ, et al. READRetro: natural product biosynthesis predicting with retrieval-augmented dual-view retrosynthesis. New Phytol 2024; 243(6):2512-2527.
AI Summary AI Mindmap
PDF(1518 KB)

Accesses

Citations

Detail

Sections
Recommended

/