Astrocytic G Protein-Coupled Receptors in Drug Addiction

Alexander K. Zinsmaier, Eric J. Nestler, Yan Dong

Engineering ›› 2025, Vol. 44 ›› Issue (1) : 256-265.

PDF(619 KB)
PDF(619 KB)
Engineering ›› 2025, Vol. 44 ›› Issue (1) : 256-265. DOI: 10.1016/j.eng.2024.12.016
Research
Review

Astrocytic G Protein-Coupled Receptors in Drug Addiction

Author information +
History +

Abstract

Understanding the cellular mechanisms of drug addiction remains a key task in current brain research. While neuron-based mechanisms have been extensively explored over the past three decades, recent evidence indicates a critical involvement of astrocytes, the main type of non-neuronal cells in the brain. In response to extracellular stimuli, astrocytes modulate the activity of neurons, synaptic transmission, and neural network properties, collectively influencing brain function. G protein-coupled receptors (GPCRs) expressed on astrocyte surfaces respond to neuron- and environment-derived ligands by activating or inhibiting astrocytic signaling, which in turn regulates adjacent neurons and their circuitry. In this review, we focus on the dopamine D1 receptors (D1R) and metabotropic glutamate receptor 5 (mGLUR5 or GRM5)—two GPCRs that have been critically implicated in the acquisition and maintenance of addiction-related behaviors. Positioned as an introductory-level review, this article briefly discusses astrocyte biology, outlines earlier discoveries about the role of astrocytes in substance-use disorders (SUDs), and provides detailed discussion about astrocytic D1Rs and mGLUR5s in regulating synapse and network functions in the nucleus accumbens (NAc)—a brain region that mediates addiction-related emotional and motivational responses. This review serves as a stepping stone for readers of Engineering to explore links between astrocytic GPCRs and drug addiction and other psychiatric disorders.

Graphical abstract

Keywords

Astrocyte / GPCR / Nucleus accumbens / Addiction / mGLUR5 / Dopamine

Cite this article

Download citation ▾
Alexander K. Zinsmaier, Eric J. Nestler, Yan Dong. Astrocytic G Protein-Coupled Receptors in Drug Addiction. Engineering, 2025, 44(1): 256‒265 https://doi.org/10.1016/j.eng.2024.12.016

References

[1]
Olds J, Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 1954; 47(6):419-427.
[2]
Crow T. A map of the rat mesencephalon for electrical self-stimulation. Brain Res 1972; 36(2):265-273.
[3]
Stein L. Self-stimulation of the brain and the central stimulant action of amphetamine. Fed Proc 1964; 23:836-850.
[4]
Di G Chiara, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 1988; 85(14):5274-5278.
[5]
Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 1993; 18(3):247-291.
[6]
Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychol Rev 1987; 94(4):469-492.
[7]
Nutt DJ, Lingford-Hughes A, Erritzoe D, Stokes PR. The dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci 2015; 16(5):305-312.
[8]
Scofield M, Heinsbroek J, Gipson C, Kupchik Y, Spencer S, Smith A, et al. The nucleus accumbens: mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis. Pharmacol Rev 2016; 68(3):816-871.
[9]
Zinsmaier AK, Dong Y, Huang YH. Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens. Mol Psychiatry 2022; 27(1):669-686.
[10]
Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology 2010; 35(1):217-238.
[11]
Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat Rev Neurosci 2007; 8(11):844-858.
[12]
Lüscher C, Malenka RC. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 2011; 69(4):650-663.
[13]
Wolf ME. Addiction: making the connection between behavioral changes and neuronal plasticity in specific pathways. Mol Interv 2002; 2(3):146-157.
[14]
White FJ, Kalivas PW. Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend 1998; 51(1–2):141-153.
[15]
Wolf M, White FJ, Hu XT. Behavioral sensitization to mk-801 (dizocilpine): neurochemical and electrophysiological correlates in the mesoaccumbens dopamine system. Behav Pharmacol 1993; 4(4):429-442.
[16]
Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 2009; 10(8):561-572.
[17]
Kelley AE. Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 2004; 44(1):161-179.
[18]
Testen A, Sepulveda-Orengo MT, Gaines CH, Reissner KJ. Region-specific reductions in morphometric properties and synaptic colocalization of astrocytes following cocaine self-administration and extinction. Front Cell Neurosci 2018; 12:246.
[19]
Shaham Y, Shalev U, Lu L, De H Wit, Stewart J. The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology 2003; 168(1–2):3-20.
[20]
Shalev U, Grimm JW, Shaham Y. Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol Rev 2002; 54(1):1-42.
[21]
Reissner KJ, Gipson CD, Tran PK, Knackstedt LA, Scofield MD, Kalivas PW. Glutamate transporter GLT-1 mediates N-acetylcysteine inhibition of cocaine reinstatement. Addict Biol 2015; 20(2):316-323.
[22]
Roberts-Wolfe DJ, Kalivas PW. Glutamate transporter GLT-1 as a therapeutic target for substance use disorders. CNS Neurol Disord Drug Targets 2015; 14(6):745-756.
[23]
Baker DA, McFarland K, Lake RW, Shen H, Tang XC, Toda S, et al. Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat Neurosci 2003; 6(7):743-749.
[24]
Kruyer A, Kalivas PW. Astrocytes as cellular mediators of cue reactivity in addiction. Curr Opin Pharmacol 2021; 56:1-6.
[25]
Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, et al. Localization of neuronal and glial glutamate transporters. Neuron 1994; 13(3):713-725.
[26]
Danbolt N. Glutamate uptake. Prog Neurobiol 2001; 65(1):1-105.
[27]
Bergles DE, Jahr CE. Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 1997; 19(6):1297-1308.
[28]
Bergles DE, Jahr CE. Glial contribution to glutamate uptake at schaffer collateral–commissural synapses in the hippocampus. J Neurosci 1998; 18(19):7709-7716.
[29]
Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996; 16(3):675-686.
[30]
Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 1997; 276(5319):1699-1702.
[31]
Lehre KP, Danbolt NC. The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 1998; 18(21):8751-8757.
[32]
Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW. The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 2002; 22(20):9134-9141.
[33]
Kupferschmidt DA, Lovinger DM. Inhibition of presynaptic calcium transients in cortical inputs to the dorsolateral striatum by metabotropic GABA(B) and mGlu2/3 receptors. J Physiol 2015; 593(10):2295-2310.
[34]
Moran MM, McFarland K, Melendez RI, Kalivas PW, Seamans JK. Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. J Neurosci 2005; 25(27):6389-6393.
[35]
Kupchik YM, Moussawi K, Tang XC, Wang X, Kalivas BC, Kolokithas R, et al. The effect of N-acetylcysteine in the nucleus accumbens on neurotransmission and relapse to cocaine. Biol Psychiatry 2012; 71(11):978-986.
[36]
Scofield MD, Li H, Siemsen BM, Healey KL, Tran PK, Woronoff N, et al. Cocaine self-administration and extinction leads to reduced glial fibrillary acidic protein expression and morphometric features of astrocytes in the nucleus accumbens core. Biol Psychiatry 2016; 80(3):207-215.
[37]
Piet R, Vargová L, Syková E, Poulain DA, Oliet SH. Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci USA 2004; 101(7):2151-2155.
[38]
Mitchell SJ, Silver RA. Glutamate spillover suppresses inhibition by activating presynaptic mGluRs. Nature 2000; 404(6777):498-502.
[39]
Vogt KE, Nicoll RA. Glutamate and γ-aminobutyric acid mediate a heterosynaptic depression at mossy fiber synapses in the hippocampus. Proc Natl Acad Sci USA 1999; 96(3):1118-1122.
[40]
Henneberger C, Bard L, Panatier A, Reynolds JP, Kopach O, Medvedev NI, et al. LTP induction boosts glutamate spillover by driving withdrawal of perisynaptic astroglia. Neuron 2020; 108(5):919-936.
[41]
Smith AC, Scofield MD, Heinsbroek JA, Gipson CD, Neuhofer D, Roberts-Wolfe DJ, et al. Accumbens nNOS interneurons regulate cocaine relapse. J Neurosci 2017; 37(4):742-756.
[42]
Shen H, Scofield MD, Boger H, Hensley M, Kalivas PW. Synaptic glutamate spillover due to impaired glutamate uptake mediates heroin relapse. J Neurosci 2014; 34(16):5649-5657.
[43]
LaCrosse AL, O SM’Donovan, Sepulveda-Orengo MT, McCullumsmith RE, Reissner KJ, Schwendt M, et al. Contrasting the role of xCT and GLT-1 upregulation in the ability of ceftriaxone to attenuate the cue-induced reinstatement of cocaine seeking and normalize AMPA receptor subunit expression. J Neurosci 2017; 37(24):5809-5821.
[44]
Moussawi K, Pacchioni A, Moran M, Olive MF, Gass JT, Lavin A, et al. N-acetylcysteine reverses cocaine-induced metaplasticity. Nat Neurosci 2009; 12(2):182-189.
[45]
Reichel CM, Moussawi K, Do PH, Kalivas PW, See RE. Chronic N-acetylcysteine during abstinence or extinction after cocaine self-administration produces enduring reductions in drug seeking. J Pharmacol Exp Ther 2011; 337(2):487-493.
[46]
Echevarria MAN, Reis TA, Capatti GR, Soares VS, da DX Silveira, Fidalgo TM. N-acetylcysteine for treating cocaine addiction—a systematic review. Psychiatry Res 2017; 251:197-203.
[47]
LaRowe SD, Kalivas PW, Nicholas JS, Randall PK, Mardikian PN, Malcolm RJ. A double-blind placebo-controlled trial of N-acetylcysteine in the treatment of cocaine dependence. Am J Addict 2013; 22(5):443-452.
[48]
Berke JD, Hyman SE. Addiction, dopamine, and the molecular mechanisms of memory. Neuron 2000; 25(3):515-532.
[49]
Hyman SE. Addiction: a disease of learning and memory. Am J Psychiatry 2005; 162(8):1414-1422.
[50]
Robbins TW, Ersche KD, Everitt BJ. Drug addiction and the memory systems of the brain. Ann N Y Acad Sci 2008; 1141(1):1-21.
[51]
Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 2006; 29(1):565-598.
[52]
Hyman SE, Malenka RC. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2001; 2(10):695-703.
[53]
Sesack SR, Grace AA. Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 2010; 35(1):27-47.
[54]
Floresco SB. The nucleus accumbens: an interface between cognition, emotion, and action. Annu Rev Psychol 2015; 66(1):25-52.
[55]
Di G Chiara. Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 2002; 137(1–2):75-114.
[56]
Wright WJ, Graziane NM, Neumann PA, Hamilton PJ, Cates HM, Fuerst L, et al. Silent synapses dictate cocaine memory destabilization and reconsolidation. Nat Neurosci 2020; 23(1):32-46.
[57]
Wright WJ, Dong Y. Silent synapses in cocaine-associated memory and beyond. J Neurosci 2021; 41(45):9275-9285.
[58]
Dong Y, Nestler EJ. The neural rejuvenation hypothesis of cocaine addiction. Trends Pharmacol Sci 2014; 35(8):374-383.
[59]
Huang YH, Schlüter OM, Dong Y. Silent synapses speak up: updates of the neural rejuvenation hypothesis of drug addiction. Neuroscientist 2015; 21(5):451-459.
[60]
Wang J, Holt LM, Huang HH, Sesack SR, Nestler EJ, Dong Y. Astrocytes in cocaine addiction and beyond. Mol Psychiatry 2022; 27(1):652-668.
[61]
Wang J, Li KL, Shukla A, Beroun A, Ishikawa M, Huang X, et al. Cocaine triggers astrocyte-mediated synaptogenesis. Biol Psychiatry 2021; 89(4):386-397.
[62]
Iruela-Arispe ML, Liska DJ, Sage EH, Bornstein P. Differential expression of thrombospondin 1, 2, and 3 during murine development. Dev Dyn 1993; 197(1):40-56.
[63]
Spencer S, Brown RM, Quintero GC, Kupchik YM, Thomas CA, Reissner KJ, et al. α2δ-1 signaling in nucleus accumbens is necessary for cocaine-induced relapse. J Neurosci 2014; 34(25):8605-8611.
[64]
Baldwin KT, Murai KK, Khakh B. Astrocyte morphology. Trends Cell Biol 2024; 34(7):547-565.
[65]
Verkhratsky A, Nedergaard M. Physiology of astroglia. Physiol Rev 2018; 98(1):239-389.
[66]
Zhou B, Zuo YX, Jiang RT. Astrocyte morphology: diversity, plasticity, and role in neurological diseases. CNS Neurosci Ther 2019; 25(6):665-673.
[67]
Torres-Ceja B, Olsen ML. A closer look at astrocyte morphology: development, heterogeneity, and plasticity at astrocyte leaflets. Curr Opin Neurobiol 2022; 74:102550.
[68]
Aten S, Kiyoshi CM, Arzola EP, Patterson JA, Taylor AT, Du Y, et al. Ultrastructural view of astrocyte arborization, astrocyte–astrocyte and astrocyte–synapse contacts, intracellular vesicle-like structures, and mitochondrial network. Prog Neurobiol 2022; 213:102264.
[69]
Kosaka T, Hama K. Three-dimensional structure of astrocytes in the rat dentate gyrus. J Comp Neurol 1986; 249(2):242-260.
[70]
Octeau JC, Chai H, Jiang R, Bonanno SL, Martin KC. Khakh BS An optical neuron-astrocyte proximity assay at synaptic distance scales. Neuron 2018; 98(1):49-66.
[71]
Bushong EA, Martone ME, Jones YZ, Ellisman M. Protoplasmic astrocytes in ca1 stratum radiatum occupy separate anatomical domains. J Neurosci 2002; 22(1):183-192.
[72]
Wilhelmsson U, Bushong EA, Price DL, Smarr BL, Phung V, Terada M, et al. Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci USA 2006; 103(46):17513-17518.
[73]
Hayashi MK, Sato K, Sekino Y. Neurons induce tiled astrocytes with branches that avoid each other. Int J Mol Sci 2022; 23(8):4161.
[74]
Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, et al. Uniquely hominid features of adult human astrocytes. J Neurosci 2009; 29(10):3276-3287.
[75]
Sosunov AA, Wu X, Tsankova NM, Guilfoyle E, McKhann GM II, Goldman JE. Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human brain. J Neurosci 2014; 34(6):2285-2298.
[76]
Krencik R, van JV Asperen, Ullian EM. Human astrocytes are distinct contributors to the complexity of synaptic function. Brain Res Bull 2017; 129:66-73.
[77]
McNeill J, Rudyk C, Hildebrand ME, Salmaso N. Ion channels and electrophysiological properties of astrocytes: implications for emergent stimulation technologies. Front Cell Neurosci 2021; 15:644126.
[78]
Xu G, Wang W, Kimelberg HK, Zhou M. Electrical coupling of astrocytes in rat hippocampal slices under physiological and simulated ischemic conditions. Glia 2010; 58(4):481-493.
[79]
Zhou M, Kiyoshi CM. Astrocyte syncytium: a functional reticular system in the brain. Neural Regen Res 2019; 14(4):595-596.
[80]
Ma B, Buckalew R, Du Y, Kiyoshi CM, Alford CC, Wang W, et al. Gap junction coupling confers isopotentiality on astrocyte syncytium. Glia 2016; 64(2):214-226.
[81]
Nimmerjahn A, Bergles DE. Large-scale recording of astrocyte activity. Curr Opin Neurobiol 2015; 32:95-106.
[82]
Nedergaard M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 1994; 263(5154):1768-1771.
[83]
Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 1990; 247(4941):470-473.
[84]
Kofuji P, Araque A. G-protein-coupled receptors in astrocyte–neuron communication. Neuroscience 2021; 45:671-684.
[85]
Lalo U, Pankratov Y, Parpura V, Verkhratsky A. Ionotropic receptors in neuronal–astroglial signalling: what is the role of “excitable” molecules in non-excitable cells. Biochim Biophys Acta 2011; 1813(5):992-1002.
[86]
Fiacco TA, McCarthy KD. Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions. J Neurosci 2018; 38(1):3-13.
[87]
Savtchouk I, Volterra A. Gliotransmission: beyond black-and-white. J Neurosci 2018; 38(1):14-25.
[88]
Porter JT, McCarthy KD. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 1996; 16(16):5073-5081.
[89]
Kirischuk S, Kirchhoff F, Matyash V, Kettenmann H, Verkhratsky A. Glutamate-triggered calcium signalling in mouse bergmann glial cells in situ: role of inositol-1, 4, 5-trisphosphate-mediated intracellular calcium release. Neuroscience 1999; 92(3):1051-1059.
[90]
Perea G, Araque A. Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 2005; 25(9):2192-2203.
[91]
Wang X, Lou N, Xu Q, Tian GF, Peng WG, Han X, et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 2006; 9(6):816-823.
[92]
Khakh BS, McCarthy K. Astrocyte calcium signaling: from observations to functions and the challenges therein. Cold Spring Harb Perspect Biol 2015; 7(4):a020404.
[93]
Sherwood MW, Arizono M, Panatier A, Mikoshiba K, Oliet SHR. Astrocytic IP3Rs: beyond IP3R2. Front Cell Neurosci 2021; 15:695817.
[94]
Volterra A, Liaudet N, Savtchouk I. Astrocyte Ca2+ signalling: an unexpected complexity. Nat Rev Neurosci 2014; 15(5):327-335.
[95]
Bazargani N, Attwell D. Astrocyte calcium signaling: the third wave. Nat Neurosci 2016; 19(2):182-189.
[96]
Lia A, Henriques VJ, Zonta M, Chiavegato A, Carmignoto G, Gómez-Gonzalo M, et al. Calcium signals in astrocyte microdomains, a decade of great advances. Front Cell Neurosci 2021; 15:673433.
[97]
Goenaga J, Araque A, Kofuji P, Herrera D Moro Chao. Calcium signaling in astrocytes and gliotransmitter release. Front Synaptic Neurosci 2023; 15:1138577.
[98]
Semyanov A, Verkhratsky A. Astrocytic processes: from tripartite synapses to the active milieu. Trends Neurosci 2021; 44(10):781-792.
[99]
Ahrens MB, Khakh BS, Poskanzer K. Astrocyte calcium signaling. Cold Spring Harb Perspect Biol 2024; 16(10):a041353.
[100]
Srinivasan R, Huang BS, Venugopal S, Johnston AD, Chai H, Zeng H, et al. Ca2+ signaling in astrocytes from Ip3r2−/− mice in brain slices and during startle responses in vivo. Nat Neurosci 2015; 18(5):708-717.
[101]
Ding F, O J’Donnell, Thrane AS, Zeppenfeld D, Kang H, Xie L, et al. α1-adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 2013; 54(6):387-394.
[102]
Nimmerjahn A, Mukamel EA, Schnitzer MJ. Motor behavior activates bergmann glial networks. Neuron 2009; 62(3):400-412.
[103]
Paukert M, Agarwal A, Cha J, Doze VA, Kang JU, Bergles DE. Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron 2014; 82(6):1263-1270.
[104]
Mu Y, Bennett DV, Rubinov M, Narayan S, Yang CT, Tanimoto M, et al. Glia accumulate evidence that actions are futile and suppress unsuccessful behavior. Cell 2019; 178(1):27-43.
[105]
Otsu Y, Couchman K, Lyons DG, Collot M, Agarwal A, Mallet JM, et al. Calcium dynamics in astrocyte processes during neurovascular coupling. Nat Neurosci 2015; 18(2):210-218.
[106]
Nagai J, Yu X, Papouin T, Cheong E, Freeman MR, Monk KR, et al. Behaviorally consequential astrocytic regulation of neural circuits. Neuron 2021; 109(4):576-596.
[107]
Durkee CA, Araque A. Diversity and specificity of astrocyte–neuron communication. Neuroscience 2019; 396:73-78.
[108]
Adamsky A, Goshen I. Astrocytes in memory function: pioneering findings and future directions. Neuroscience 2018; 370:14-26.
[109]
Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A. Gliotransmitters travel in time and space. Neuron 2014; 81(4):728-739.
[110]
Corkrum M, Covelo A, Lines J, Bellocchio L, Pisansky M, Loke K, et al. Dopamine-evoked synaptic regulation in the nucleus accumbens requires astrocyte activity. Neuron 2020; 105(6):1036-1047.
[111]
Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, et al. Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 2007; 9(8):945-953.
[112]
Chen J, Tan Z, Zeng L, Zhang X, He Y, Gao W, et al. Heterosynaptic long-term depression mediated by ATP released from astrocytes. Glia 2013; 61(2):178-191.
[113]
Martin-Fernandez M, Jamison S, Robin LM, Zhao Z, Martin ED, Aguilar J, et al. Synapse-specific astrocyte gating of amygdala-related behavior. Nat Neurosci 2017; 20(11):1540-1548.
[114]
Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, et al. Astrocytic purinergic signaling coordinates synaptic networks. Science 2005; 310(5745):113-116.
[115]
Serrano A, Haddjeri N, Lacaille JC, Robitaille R. Gabaergic network activation of glial cells underlies hippocampal heterosynaptic depression. J Neurosci 2006; 26(20):5370-5382.
[116]
Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T, et al. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 2009; 61(2):213-219.
[117]
Brockhaus J, Deitmer JW. Long-lasting modulation of synaptic input to Purkinje neurons by Bergmann glia stimulation in rat brain slices. J Physiol 2002; 545(2):581-593.
[118]
Newman EA. Glial cell inhibition of neurons by release of ATP. J Neurosci 2003; 23(5):1659-1666.
[119]
Panatier A, Vall Jée, Haber M, Murai KK, Lacaille JC, Robitaille R. Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 2011; 146(5):785-798.
[120]
Gordon GR, Baimoukhametova DV, Hewitt SA, Rajapaksha WKJ, Fisher TE, Bains JS. Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci 2005; 8(8):1078-1086.
[121]
Gordon GR, Iremonger KJ, Kantevari S, Ellis-Davies GC, MacVicar BA, Bains JS. Astrocyte-mediated distributed plasticity at hypothalamic glutamate synapses. Neuron 2009; 64(3):391-403.
[122]
Araque A, Parpura V, Sanzgiri RP, Haydon PG. Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 1998; 10(6):2129-2142.
[123]
Angulo MC, Kozlov AS, Charpak S, Audinat E. Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci 2004; 24(31):6920-6927.
[124]
Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 2004; 43(5):729-743.
[125]
Parpura V, Scemes E, Spray DC. Mechanisms of glutamate release from astrocytes: gap junction “hemichannels”, purinergic receptors and exocytotic release. Neurochem Int 2004; 45(2–3):259-264.
[126]
Araque A, Sanzgiri RP, Parpura V, Haydon PG. Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J Neurosci 1998; 18(17):6822-6829.
[127]
Kozlov A, Angulo M, Audinat E, Charpak S. Target cell-specific modulation of neuronal activity by astrocytes. Proc Natl Acad Sci USA 2006; 103(26):10058-10063.
[128]
Lee S, Yoon BE, Berglund K, Oh SJ, Park H, Shin HS, et al. Channel-mediated tonic GABA release from glia. Science 2010; 330(6005):790-796.
[129]
Le K Meur, Mendizabal-Zubiaga J, Grandes P, Audinat E. GABA release by hippocampal astrocytes. Front Comput Neurosci 2012; 6:59.
[130]
Gaidin SG, Zinchenko VP, Sergeev AI, Teplov IY, Mal VN’tseva, Kosenkov A. Activation of alpha-2 adrenergic receptors stimulates GABA release by astrocytes. Glia 2020; 68(6):1114-1130.
[131]
Yoon BE, Lee CJ. GABA as a rising gliotransmitter. Front Neural Circuits 2014; 8:141.
[132]
Oh SJ, Lee C. Distribution and function of the bestrophin-1 (best1) channel in the brain. Exp Neurobiol 2017; 26(3):113-121.
[133]
Koh W, Park M, Chun YE, Lee J, Shim HS, Park MG, et al. Astrocytes render memory flexible by releasing D-serine and regulating NMDA receptor tone in the hippocampus. Biol Psychiatry 2022; 91(8):740-752.
[134]
Robin LM, da JFO Cruz, Langlais VC, Martin-Fernandez M, Metna-Laurent M, Busquets-Garcia A, et al. Astroglial CB1 receptors determine synaptic D-serine availability to enable recognition memory. Neuron 2018; 98(5):935-944.
[135]
Henneberger C, Papouin T, Oliet SH, Rusakov DA. Long-term potentiation depends on release of D-serine from astrocytes. Nature 2010; 463(7278):232-236.
[136]
Covelo A, Araque A. Neuronal activity determines distinct gliotransmitter release from a single astrocyte. eLife 2018; 7:e32237.
[137]
Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG. Glutamate-mediated astrocyte–neuron signalling. Nature 1994; 369(6483):744-747.
[138]
Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhäuser C, Pilati E, et al. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 2004; 7(6):613-620.
[139]
Woo DH, Han KS, Shim JW, Yoon BE, Kim E, Bae JY, et al. Trek-1 and best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 2012; 151(1):25-40.
[140]
Okada M, Fukuyama K, Shiroyama T, Ueda Y. Brivaracetam prevents astroglial L-glutamate release associated with hemichannel through modulation of synaptic vesicle protein. Biomed Pharmacother 2021; 138:111462.
[141]
Yang J, Chen J, Liu Y, Chen KH, Baraban JM, Qiu Z. Ventral tegmental area astrocytes modulate cocaine reward by tonically releasing GABA. Neuron 2023; 111(7):1104-1117.
[142]
Malarkey EB, Parpura V. Mechanisms of glutamate release from astrocytes. Neurochem Int 2008; 52(1–2):142-154.
[143]
Zhang Q, Pangrsic T, Kreft M, Krzan M, Li N, Sul JY, et al. Fusion-related release of glutamate from astrocytes. J Biol Chem 2004; 279(13):12724-12733.
[144]
Bohmbach K, Schwarz MK, Schoch S, Henneberger C. The structural and functional evidence for vesicular release from astrocytes in situ. Brain Res Bull 2018; 136:65-75.
[145]
Mielnicka A, Michaluk P. Exocytosis in astrocytes. Biomolecules 2021; 11(9):1367.
[146]
Montana V, Ni Y, Sunjara V, Hua X, Parpura V. Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 2004; 24(11):2633-2642.
[147]
Xu J, Peng H, Kang N, Zhao Z, Lin JH, Stanton PK, et al. Glutamate-induced exocytosis of glutamate from astrocytes. J Biol Chem 2007; 282(33):24185-24197.
[148]
Zorec R, Verkhratsky A, Rodriguez J, Parpura V. Astrocytic vesicles and gliotransmitters: slowness of vesicular release and synaptobrevin2-laden vesicle nanoarchitecture. Neuroscience 2016; 323:67-75.
[149]
Chai H, Diaz-Castro B, Shigetomi E, Monte E, Octeau JC, Yu X, et al. Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 2017; 95(3):531-549.
[150]
de R Ceglia, Ledonne A, Litvin DG, Lind BL, Carriero G, Latagliata EC, et al. Specialized astrocytes mediate glutamatergic gliotransmission in the CNS. Nature 2023; 622(7981):120-129.
[151]
Khakh BS, Deneen B. The emerging nature of astrocyte diversity. Annu Rev Neurosci 2019; 42(1):187-207.
[152]
Endo F, Kasai A, Soto JS, Yu X, Qu Z, Hashimoto H, et al. Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science 2022; 378(6619):eadc9020.
[153]
Batiuk MY, Martirosyan A, Wahis J, de F Vin, Marneffe C, Kusserow C, et al. Identification of region-specific astrocyte subtypes at single cell resolution. Nat Commun 2020; 11(1):1220.
[154]
Bayraktar OA, Bartels T, Holmqvist S, Kleshchevnikov V, Martirosyan A, Polioudakis D, et al. Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nat Neurosci 2020; 23(4):500-509.
[155]
Scofield MD, Boger HA, Smith RJ, Li H, Haydon PG, Kalivas PW. Gq-DREADD selectively initiates glial glutamate release and inhibits cue-induced cocaine seeking. Biol Psychiatry 2015; 78(7):441-451.
[156]
Durkee CA, Covelo A, Lines J, Kofuji P, Aguilar J, Araque A. Gi/o protein-coupled receptors inhibit neurons but activate astrocytes and stimulate gliotransmission. Glia 2019; 67(6):1076-1093.
[157]
Siemsen B, Reichel C, Leong KC, Garcia-Keller C, Gipson C, Spencer S, et al. Effects of methamphetamine self-administration and extinction on astrocyte structure and function in the nucleus accumbens core. Neuroscience 2019; 406:528-541.
[158]
Bull C, Freitas KC, Zou S, Poland RS, Syed WA, Urban DJ, et al. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence. Neuropsychopharmacology 2014; 39(12):2835-2845.
[159]
Oldham WM, Hamm HE. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 2008; 9(1):60-71.
[160]
Downes G, Gautam N. The G protein subunit gene families. Genomics 1999; 62(3):544-552.
[161]
Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions. Physiol Rev 2005; 85(4):1159-1204.
[162]
Lee SH, Mak A, Verheijen MH. Comparative assessment of the effects of DREADDs and endogenously expressed GPCRs in hippocampal astrocytes on synaptic activity and memory. Front Cell Neurosci 2023; 17:1159756.
[163]
Adamsky A, Kol A, Kreisel T, Doron A, Ozeri-Engelhard N, Melcer T, et al. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell 2018; 174(1):59-71.
[164]
Van Y Den Herrewegen, Sanderson TM, Sahu S, De D Bundel, Bortolotto ZA, Smolders I. Side-by-side comparison of the effects of Gq- and Gi-DREADD-mediated astrocyte modulation on intracellular calcium dynamics and synaptic plasticity in the hippocampal CA1. Mol Brain 2021; 14(1):144.
[165]
Kol A, Adamsky A, Groysman M, Kreisel T, London M, Goshen I. Astrocytes contribute to remote memory formation by modulating hippocampal–cortical communication during learning. Nat Neurosci 2020; 23(10):1229-1239.
[166]
Masuho I, Kise R, Gainza P, Von E Moo, Li X, Tany R, et al. Rules and mechanisms governing G protein coupling selectivity of GPCRs. Cell Rep 2023; 42(10):113173.
[167]
Rosenbaum DM, Rasmussen SG, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature 2009; 459(7245):356-363.
[168]
Okashah N, Wan Q, Ghosh S, Sandhu M, Inoue A, Vaidehi N, et al. Variable G protein determinants of GPCR coupling selectivity. Proc Natl Acad Sci USA 2019; 116(24):12054-12059.
[169]
Sandhu M, Touma AM, Dysthe M, Sadler F, Sivaramakrishnan S, Vaidehi N. Conformational plasticity of the intracellular cavity of GPCR−G-protein complexes leads to G-protein promiscuity and selectivity. Proc Natl Acad Sci USA 2019; 116(24):11956-11965.
[170]
Masuho I, Ostrovskaya O, Kramer GM, Jones CD, Xie K, Martemyanov KA. Distinct profiles of functional discrimination among G proteins determine the actions of G protein–coupled receptors. Sci Signal 2015; 8(405):ra123.
[171]
Klein Herenbrink C, Sykes DA, Donthamsetti P, Canals M, Coudrat T, Shonberg J, et al. The role of kinetic context in apparent biased agonism at GPCRs. Nat Commun 2016; 7(1):10842.
[172]
Navarrete M, Araque A. Endocannabinoids mediate neuron-astrocyte communication. Neuron 2008; 57(6):883-893.
[173]
Navarrete M, Araque A. Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron 2010; 68(1):113-126.
[174]
Covelo A, Eraso-Pichot A, Fernandez-Moncada I, Serrat R, Marsicano G. CB1R-dependent regulation of astrocyte physiology and astrocyte-neuron interactions. Neuropharmacology 2021; 195:108678.
[175]
Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 2016; 89(1):37-53.
[176]
Sun W, McConnell E, Pare JF, Xu Q, Chen M, Peng W, et al. Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 2013; 339(6116):197-200.
[177]
Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 2008; 28(1):264-278.
[178]
Tanaka M, Shigetomi E, Parajuli B, Nagatomo H, Shinozaki Y, Hirayama Y, et al. Adenosine A2B receptor down-regulates metabotropic glutamate receptor 5 in astrocytes during postnatal development. Glia 2021; 69(11):2546-2558.
[179]
Jiang R, Diaz-Castro B, Looger LL, Khakh BS. Dysfunctional calcium and glutamate signaling in striatal astrocytes from Huntington’s disease model mice. J Neurosci 2016; 36(12):3453-3470.
[180]
Panatier A, Robitaille R. Astrocytic mGluR5 and the tripartite synapse. Neuroscience 2016; 323:29-34.
[181]
Heuser K, Enger R. Astrocytic Ca2+ signaling in epilepsy. Front Cell Neurosci 2021; 15:695380.
[182]
Ulas J, Satou T, Ivins K, Kesslak J, Cotman C, Balazs R. Expression of metabotropic glutamate receptor 5 is increased in astrocytes after kainate-induced epileptic seizures. Glia 2000; 30(4):352-361.
[183]
Umpierre AD, West PJ, White JA, Wilcox K. Conditional knock-out of mGluR5 from astrocytes during epilepsy development impairs high-frequency glutamate uptake. J Neurosci 2019; 39(4):727-742.
[184]
Aronica E, Van EA Vliet, Mayboroda OA, Troost D, Da FHL Silva, Gorter JA. Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy. Eur J Neurosci 2000; 12(7):2333-2344.
[185]
Lavialle M, Aumann G, Anlauf E, Pröls F, Arpin M, Derouiche A. Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors. Proc Natl Acad Sci USA 2011; 108(31):12915-12919.
[186]
Liu C, Yang TQ, Zhou YD, Shen Y. Reduced astrocytic mGluR5 in the hippocampus is associated with stress-induced depressive-like behaviors in mice. Neurosci Lett 2022; 784:136766.
[187]
Danjo Y, Shigetomi E, Hirayama YJ, Kobayashi K, Ishikawa T, Fukazawa Y, et al. Transient astrocytic mGluR5 expression drives synaptic plasticity and subsequent chronic pain in mice. J Exp Med 2022; 219(4):e20210989.
[188]
Zehnder T, Petrelli F, Romanos J, Figueiredo ECDO, Lewis TL, D Néglon, et al. Mitochondrial biogenesis in developing astrocytes regulates astrocyte maturation and synapse formation. Cell Rep 2021; 35(2):108952.
[189]
Morel L, Higashimori H, Tolman M, Yang Y. VGluT1+ neuronal glutamatergic signaling regulates postnatal developmental maturation of cortical protoplasmic astroglia. J Neurosci 2014; 34(33):10950-10962.
[190]
Li X, Peng XQ, Jordan CJ, Li J, Bi GH, He Y, et al. mGluR5 antagonism inhibits cocaine reinforcement and relapse by elevation of extracellular glutamate in the nucleus accumbens via a CB1 receptor mechanism. Sci Rep 2018; 8(1):3686.
[191]
Ahmadpour N, Kantroo M, Stobart MJ, Meza-Resillas J, Shabanipour S, Parra-Nuñez J, et al. Cortical astrocyte N-methyl-D-aspartate receptors influence whisker barrel activity and sensory discrimination in mice. Nat Commun 2024; 15(1):1571.
[192]
Serra I, Esparza J, Delgado L, Martín-Monteagudo C, Puigr Mòs, Podlesniy P, et al. Ca2+-modulated photoactivatable imaging reveals neuron-astrocyte glutamatergic circuitries within the nucleus accumbens. Nat Commun 2022; 13(1):5272.
[193]
Haustein MD, Kracun S, Lu XH, Shih T, Jackson-Weaver O, Tong X, et al. Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway. Neuron 2014; 82(2):413-429.
[194]
Lines J, Martin ED, Kofuji P, Aguilar J, Araque A. Astrocytes modulate sensory-evoked neuronal network activity. Nat Commun 2020; 11(1):3689.
[195]
Lines J, Baraibar A, Nanclares C, Martín ED, Aguilar J, Kofuji P, et al. A spatial threshold for astrocyte calcium surge. eLife 2024 Dec;RP90046.
[196]
D M’Ascenzo, Fellin T, Terunuma M, Revilla-Sanchez R, Meaney DF, Auberson YP, et al. mGluR5 stimulates gliotransmission in the nucleus accumbens. Proc Natl Acad Sci USA 2007; 104(6):1995-2000.
[197]
Cavaccini A, Durkee C, Kofuji P, Tonini R, Araque A. Astrocyte signaling gates long-term depression at corticostriatal synapses of the direct pathway. J Neurosci 2020; 40(30):5757-5768.
[198]
Kim SK, Hayashi H, Ishikawa T, Shibata K, Shigetomi E, Shinozaki Y, et al. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. J Clin Invest 2016; 126(5):1983-1997.
[199]
Mozafari R, Karimi-Haghighi S, Fattahi M, Kalivas P, Haghparast A. A review on the role of metabotropic glutamate receptors in neuroplasticity following psychostimulant use disorder. Prog Neuropsychopharmacol Biol Psychiatry 2023; 124:110735.
[200]
Niedzielska-Andres E, Pomierny-Chamio Lło, Andres M, Walczak M, Knackstedt LA, Filip M, et al. Cocaine use disorder: a look at metabotropic glutamate receptors and glutamate transporters. Pharmacol Ther 2021; 221:107797.
[201]
Petzold J, Szumlinski KK, London E. Targeting mGlu5 for methamphetamine use disorder. Pharmacol Ther 2021; 224:107831.
[202]
Caprioli D, Justinova Z, Venniro M, Shaham Y. Effect of novel allosteric modulators of metabotropic glutamate receptors on drug self-administration and relapse: a review of preclinical studies and their clinical implications. Biol Psychiatry 2018; 84(3):180-192.
[203]
Chiamulera C, Epping-Jordan MP, Zocchi A, Marcon C, Cottiny C, Tacconi S, et al. Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci 2001; 4(9):873-874.
[204]
Bird MK, Reid CA, Chen F, Tan HO, Petrou S, Lawrence AJ. Cocaine-mediated synaptic potentiation is absent in VTA neurons from mGlu5-deficient mice. Int J Neuropsychopharmacol 2010; 13(02):133-141.
[205]
Wang X, Moussawi K, Knackstedt L, Shen H, Kalivas P. Role of mGluR5 neurotransmission in reinstated cocaine-seeking. Addict Biol 2013; 18(1):40-49.
[206]
Knackstedt LA, Trantham-Davidson HL, Schwendt M. The role of ventral and dorsal striatum mGluR5 in relapse to cocaine-seeking and extinction learning. Addict Biol 2014; 19(1):87-101.
[207]
Bäckström P, Hyytiä P. Ionotropic and metabotropic glutamate receptor antagonism attenuates cue-induced cocaine seeking. Neuropsychopharmacology 2006; 31(4):778-786.
[208]
Kumaresan V, Yuan M, Yee J, Famous KR, Anderson SM, Schmidt HD, et al. Metabotropic glutamate receptor 5 (mGluR5) antagonists attenuate cocaine priming-and cue-induced reinstatement of cocaine seeking. Behav Brain Res 2009; 202(2):238-244.
[209]
Novak M, Halbout B, O EC’Connor, Rodriguez J Parkitna, Su T, Chai M, et al. Incentive learning underlying cocaine-seeking requires mGluR5 receptors located on dopamine D1 receptor-expressing neurons. J Neurosci 2010; 30(36):11973-11982.
[210]
Nagatomo K, Suga S, Saitoh M, Kogawa M, Kobayashi K, Yamamoto Y, et al. Dopamine D1 receptor immunoreactivity on fine processes of GFAP-positive astrocytes in the substantia nigra pars reticulata of adult mouse. Front Neuroanat 2017; 11:113.
[211]
Reuss B, Leung DS, Ohlemeyer C, Kettenmann H, Unsicker K. Regionally distinct regulation of astroglial neurotransmitter receptors by fibroblast growth factor-2. Mol Cell Neurosci 2000; 16(1):42-58.
[212]
Shibasaki K, Hosoi N, Kaneko R, Tominaga M, Yamada K. Glycine release from astrocytes via functional reversal of GlyT1. J Neurochem 2017; 140(3):395-403.
[213]
Oda S, Funato H. D1- and D2-type dopamine receptors are immunolocalized in pial and layer I astrocytes in the rat cerebral cortex. Front Neuroanat 2023; 17:1111008.
[214]
Pittolo S, Yokoyama S, Willoughby DD, Taylor CR, Reitman ME, Tse V, et al. Dopamine activates astrocytes in prefrontal cortex via α1-adrenergic receptors. Cell Rep 2022; 40(13):111426.
[215]
Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011; 63(1):182-217.
[216]
Jennings A, Tyurikova O, Bard L, Zheng K, Semyanov A, Henneberger C, et al. Dopamine elevates and lowers astroglial Ca2+ through distinct pathways depending on local synaptic circuitry. Glia 2017; 65(3):447-459.
[217]
Fischer T, Scheffler P, Lohr C. Dopamine-induced calcium signaling in olfactory bulb astrocytes. Sci Rep 2020; 10(1):631.
[218]
Gin Sés, Hillion J, Torvinen M, Le S Crom, Casadó V, Canela EI, et al. Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci USA 2000; 97(15):8606-8611.
[219]
Franco R, Lluis C, Canela E, Mallol J, Agnati L, Casadó V, et al. Receptor–receptor interactions involving adenosine A1 or dopamine D1 receptors and accessory proteins. J Neural Transm 2007; 114(1):93-104.
[220]
Ferr Sé, Sarasola LI, Quiroz C, Ciruela F. Presynaptic adenosine receptor heteromers as key modulators of glutamatergic and dopaminergic neurotransmission in the striatum. Neuropharmacology 2023; 223:109329.
[221]
Rebois RV, Maki K, Meeks JA, Fishman PH, H TEébert, Northup JK. D2-like dopamine and β-adrenergic receptors form a signaling complex that integrates Gs- and Gi-mediated regulation of adenylyl cyclase. Cell Signal 2012; 24(11):2051-2060.
[222]
Mitrano DA, Pare JF, Smith Y, Weinshenker D. D1-dopamine and α1-adrenergic receptors co-localize in dendrites of the rat prefrontal cortex. Neuroscience 2014; 258:90-100.
[223]
Guidolin D, Tortorella C, Marcoli M, Cervetto C, De R Caro, Maura G, et al. Modulation of neuron and astrocyte dopamine receptors via receptor–receptor interactions. Pharmaceuticals 2023; 16(10):1427.
[224]
O B’Donovan, Neugornet A, Neogi R, Xia M, Ortinski P. Cocaine experience induces functional adaptations in astrocytes: implications for synaptic plasticity in the nucleus accumbens shell. Addict Biol 2021; 26(6):e13042.
[225]
Galloway A, Adeluyi A, O B’Donovan, Fisher ML, Rao CN, Critchfield P, et al. Dopamine triggers CTCF-dependent morphological and genomic remodeling of astrocytes. J Neurosci 2018; 38(21):4846-4858.
[226]
Xia M, Anderson TL, Prantzalos ER, Hawkinson TR, Clarke HA, Keohane SB, et al. Voltage-gated potassium channels control extended access cocaine seeking: a role for nucleus accumbens astrocytes. Neuropsychopharmacology 2024; 49(3):551-560.
[227]
Corkrum M, Araque A. Astrocyte-neuron signaling in the mesolimbic dopamine system: the hidden stars of dopamine signaling. Neuropsychopharmacology 2021; 46(11):1864-1872.
AI Summary AI Mindmap
PDF(619 KB)

Accesses

Citations

Detail

Sections
Recommended

/