Enhancement Methods for Chiral Optical Signals by Tailoring Optical Fields and Nanostructures

Hanqing Cai, Liangliang Gu, Haifeng Hu, Qiwen Zhan

Engineering ›› 2025, Vol. 45 ›› Issue (2) : 25-43.

PDF(4364 KB)
PDF(4364 KB)
Engineering ›› 2025, Vol. 45 ›› Issue (2) : 25-43. DOI: 10.1016/j.eng.2024.12.022
Research
Review

Enhancement Methods for Chiral Optical Signals by Tailoring Optical Fields and Nanostructures

Author information +
History +

Abstract

The unique property of chirality is widely used in various fields. In the past few decades, a great deal of research has been conducted on the interactions between light and matter, resulting in significant technical advancements in the precise manipulation of light field wavefronts. In this review, which focuses on current chiral optics research, we introduce the fundamental theory of chirality and highlight the latest achievements in enhancing chiral signals through artificial nano-manufacturing technology, with a particular focus on mechanisms such as light scattering and Mie resonance used to amplify chiral signals. By providing an overview of enhanced chiral signals, this review aims to provide researchers with an in-depth understanding of chiral phenomena and its versatile applications in various domains.

Graphical abstract

Keywords

Mie scattering / Optical chirality / Circular dichroism / Orbital angular momentum / Bound states in the continuum / Nonlinear optics

Cite this article

Download citation ▾
Hanqing Cai, Liangliang Gu, Haifeng Hu, Qiwen Zhan. Enhancement Methods for Chiral Optical Signals by Tailoring Optical Fields and Nanostructures. Engineering, 2025, 45(2): 25‒43 https://doi.org/10.1016/j.eng.2024.12.022

References

[1]
Xiao L, An T, Wang L, Xu X, Sun H.Novel properties and applications of chiral inorganic nanostructures.Nano Today 2020; 30:100824.
[2]
Weis RM, McConnell HM.Two-dimensional chiral crystals of phospholipid.Nature 1984; 310(5972):47-49.
[3]
Govorov AO, Gun YK’ko, Slocik JM, G VAérard, Fan Z, Naik RR.Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects.Mater Chem 2011; 21(42):16806-16818.
[4]
Flack HD.Chiral and achiral crystal structures.Helv Chim Acta 2003; 86(4):905-921.
[5]
Hembury GA, Borovkov VV, Inoue Y.Chirality-sensing supramolecular systems.Chem Rev 2008; 108(1):1-73.
[6]
Schmitt M.Molecular light scattering and optical activity. (2nd ed.), Cambridge University Press, Cambridge (2005)
[7]
Berova N, Bari LD, Pescitelli G.Application of electronic circular dichroism in configurational and conformational analysis of organic compounds.Chem Soc Rev 2007; 36(6):914-931.
[8]
Schäferling M.Chiral nanophotonics: chiral optical properties of plasmonic systems.Sci Adv 2017; 3:1602735.
[9]
Kuznetsov AIAE, Miroshnichenko ML, Brongersma YS, Kivshar YS, Luk B’yanchuk.Optically resonant dielectric nanostructures.Science 2016; 354(6314):aag2472.
[10]
Tsakmakidis KL, Boyd RW, Yablonovitch E, Zhang X.Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers.Opt Express 2016; 24(16):17916-17927.
[11]
Tsakmakidis KL, Hess O, Boyd RW, Zhang X.Ultraslow waves on the nanoscale.Science 2017; 358(6361):eaan5196.
[12]
Wang B, Zhou J, Koschny T, Kafesaki M, Soukoulis CM.Chiral metamaterials: simulations and experiments.J Opt 2009; 11:114003.
[13]
Valev VK, Baumberg JJ, Sibilia C, Verbiest T.Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook.Adv Mater 2013; 25(18):2517-2534.
[14]
Luo Y, Chi C, Jiang M, Li R, Zu S, Li Y, et al.Plasmonic chiral nanostructures: chiroptical effects and applications.Adv Opt Mater 2017; 5(16):1700040.
[15]
Liu W, Li Z, Cheng H, Chen S.Dielectric resonance-based optical metasurfaces: from fundamentals to applications.iScience 2020; 23(12):101868.
[16]
Hentschel M, Schäferling M, Duan X, Giessen H, Liu N. Chiral plasmonics. Sci Adv, 3 (5) (2017), Article e1602735
[17]
Decker M, Ruther M, Kriegler CE, Zhou J, Soukoulis CM, Linden S, et al.Strong optical activity from twisted-cross photonic metamaterials.Opt Lett 2009; 34(16):2501-2503.
[18]
Kenanakis G, Zhao R, Stavrinidis A, Konstantinidis G, Katsarakis N, Kafesaki M, et al.Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs.Opt Mater Express 2012; 2(12):1702-1712.
[19]
Zhou J, Dong J, Wang B, Koschny T, Kafesaki M, Soukoulis CM.Negative refractive index due to chirality.Phys Rev B Condens Matter Mater Phys 2009; 79(12):121104.
[20]
Rogacheva AV, Fedotov VA, Schwanecke AS, Zheludev NI.Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure.Phys Rev Lett 2006; 97(17):177401.
[21]
Le KQ.X-shaped chiral plasmonic nanostructured metasurfaces: a numerical study.Opt Commun 2020; 456:124639.
[22]
Zhao Y, Askarpour AN, Sun L, Shi J, Li X, Al Aù.Chirality detection of enantiomers using twisted optical metamaterials.Nat Commun 2017; 8:14180.
[23]
Schäferling M, Dregely D, Hentschel M, Giessen H.Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures.Phys Rev X 2012; 2(3):031010.
[24]
Gansel JK, Wegener M, Burger S, Linden S.Gold helix photonic metamaterials: a numerical parameter study.Opt Express 2010; 18(2):1059-1069.
[25]
Mark AG, Gibbs JG, Lee TC, Fischer P.Hybrid nanocolloids with programmed three-dimensional shape and material composition.Nat Mater 2013; 12(9):802-807.
[26]
Esposito M, Tasco V, Todisco F, Cuscuna M, Benedetti A, Sanvitto D, et al.Triple-helical nanowires by tomographic rotatory growth for chiral photonics.Nat Commun 2015; 6:6484.
[27]
Ohnoutek L, Cho NH, Allen Murphy AW, Kim H, Rasadean DM, Pantos GD, et al.Single nanoparticle chiroptics in a liquid: optical activity in hyper-Rayleigh scattering from Au helicoids.Nano Lett 2020; 20(8):5792-5798.
[28]
Gibbs JG, Mark AG, Eslami S, Fischer P.Plasmonic nanohelix metamaterials with tailorable giant circular dichroism.Appl Phys Lett 2013; 103(21):213101.
[29]
Papakostas A, Potts A, Bagnall DM, Prosvirnin SL, Coles HJ, Zheludev NI.Optical manifestations of planar chirality.Phys Rev Lett 2003; 90(10):107404.
[30]
Kuwata-Gonokami M, Saito N, Ino Y, Kauranen M, Jefimovs K, Vallius T, et al.Giant optical activity in quasi-two-dimensional planar nanostructures.Phys Rev Lett 2005; 95(22):227401.
[31]
Bai B, Svirko Y, Turunen J, Vallius T.Optical activity in planar chiral metamaterials: theoretical study.Phys Rev A 2007; 76(2):023811.
[32]
Decker M, Klein MW, Wegener M, Linden S.Circular dichroism of planar chiral magnetic metamaterials.Opt Lett 2007; 32(7):856-858.
[33]
Zhu AY, Chen WT, Zaidi A, Huang YW, Khorasaninejad M, Sanjeev V, et al.Giant intrinsic chiro-optical activity in planar dielectric nanostructures.Light Sci Appl 2017; 7(2):17158.
[34]
Neubrech F, Pucci A, Cornelius TW, Karim S, García-Etxarri A, Aizpurua J.Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection.Phys Rev Lett 2008; 101(15):157403.
[35]
García-Etxarri A, Dionne JA.Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas.Phys Rev B Condens Matter Mater Phys 2013; 87(23):235409.
[36]
Li Z, Zhao R, Koschny T, Kafesaki M, Alici KB, Colak E, et al.Chiral metamaterials with negative refractive index based on four “U” split ring resonators.Appl Phys Lett 2010; 97(8):081901.
[37]
Decker M, Zhao R, Soukoulis CM, Linden S, Wegener M.Twisted split-ring-resonator photonic metamaterial with huge optical activity.Opt Lett 2010; 35(10):1593-1595.
[38]
Novitsky AV, Galynsky VM, Zhukovsky SV.Asymmetric transmission in planar chiral split-ring metamaterials: microscopic Lorentz-theory approach.Phys Rev B 2012; 86(7):075138.
[39]
Nouman MT, Hwang JH, Jang JH.Ultrathin terahertz quarter-wave plate based on split ring resonator and wire grating hybrid metasurface.Sci Rep 2016; 6:39062.
[40]
Bibi A, Khan MI, Hu B, Iqbal S, Khan I.Efficient asymmetric transmission for wide incidence angles using chiral split‐ring‐resonators.Int J RF Microw Comput Aided Eng 2022; 32(8):23224.
[41]
Wei Z, Zhao Y, Zhang Y, Cai W, Fan Y, Wang Z, et al.High-efficiency modulation of broadband polarization conversion with a reconfigurable chiral metasurface.Nanoscale Adv 2022; 4(20):4344-4350.
[42]
Ma X, Huang C, Pu M, Hu C, Feng Q, Luo X.Multi-band circular polarizer using planar spiral metamaterial structure.Opt Express 2012; 20(14):16050-16058.
[43]
Frank B, Yin X, Schäferling M, Zhao J, Hein SM, Braun PV, et al.Large-area 3D chiral plasmonic structures.ACS Nano 2013; 7(7):6321-6329.
[44]
Cui Y, Kang L, Lan S, Rodrigues S, Cai W.Giant chiral optical response from a twisted-arc metamaterial.Nano Lett 2014; 14(2):1021-1025.
[45]
Ma X, Huang C, Pan W, Zhao B, Cui J, Luo X.A dual circularly polarized horn antenna in Ku-band based on chiral metamaterial.IEEE Trans Antennas Propag 2014; 62(4):2307-2311.
[46]
Rodrigues SP, Lan S, Kang L, Cui Y, Cai W.Nonlinear imaging and spectroscopy of chiral metamaterials.Adv Mater 2014; 26(35):6157-6162.
[47]
Mohammadi E, Tsakmakidis KL, Askarpour AN, Dehkhoda P, Tavakoli A, Altug H.Nanophotonic platforms for enhanced chiral sensing.ACS Photonics 2018; 5(7):2669-2675.
[48]
Raziman TV, Godiksen RH, Müller MA, Curto AG.Conditions for enhancing chiral nanophotonics near achiral nanoparticles.ACS Photonics 2019; 6(10):2583-2589.
[49]
García-Guirado J, Svedendahl M, Puigdollers J, Quidant R.Enhanced chiral sensing with dielectric nanoresonators.Nano Lett 2020; 20(1):585-591.
[50]
Hentschel M, Schaferling M, Weiss T, Liu N, Giessen H.Three-dimensional chiral plasmonic oligomers.Nano Lett 2012; 12(5):2542-2547.
[51]
Ogier R, Fang Y, Svedendahl M, Johansson P, Käll M.Macroscopic layers of chiral plasmonic nanoparticle oligomers from colloidal lithography.ACS Photonics 2014; 1(10):1074-1081.
[52]
Banzer P, Wozniak P, Mick U, De Leon I, Boyd RW.Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection.Ncomms 2016; 7:13117.
[53]
Yao K, Liu Y.Enhancing circular dichroism by chiral hotspots in silicon nanocube dimers.Nanoscale 2018; 10(18):8779-8786.
[54]
Hu J, Xiao Y, Zhou LM, Jiang X, Qiu W, Fei W, et al.Ultra-narrow-band circular dichroism by surface lattice resonances in an asymmetric dimer-on-mirror metasurface.Opt Express 2022; 30(10):16020-16030.
[55]
Craig DP, Thirunamachandran T.New approaches to chiral discrimination in coupling between molecules.Theor Chem Acc 1999; 102(1–6):112-120.
[56]
Salam A.Molecular quantum electrodynamics: long-range intermolecular interactions. Wiley Publishing, New York City (2009)
[57]
Barron LD.True and false chirality and absolute enantioselection.Rend Fis Acc Lincei 2013; 24(3):179-189.
[58]
Harris RA.On the optical rotary dispersion of polymers.J Chem Phys 1965; 43:959-970.
[59]
Tang Y, Cohen AE.Optical chirality and its interaction with matter.Phys Rev Lett 2010; 104(16):163901.
[60]
Lipkin DM.Existence of a new conservation law in electromagnetic theory.J Math Phys 1964; 5(5):696-700.
[61]
Kong JA.Theorems of bianisotropic media.Proc IEEE 1972; 60(9):1036-1046.
[62]
Lindell I, Sihvola A, Tretyakov S, Viitanen AJ.Electromagnetic waves in chiral and bi-isotropic media. Artech House, London (1994)
[63]
Caloz C, Al Aù, Tretyakov S, Sounas D, Achouri K, Deck-L ZLéger.Electromagnetic Nonreciprocity.Phys Rev A 2018; 10(4):047001.
[64]
Fernandez-Corbaton I, Fruhnert M, Rockstuhl C.Objects of maximum electromagnetic chirality.Phys Rev X 2016; 6(3):031013.
[65]
Tang Y, Cohen AE.Enhanced enantioselectivity in excitation of chiral molecules by superchiral light.Science 2011; 332(6027):333-336.
[66]
Yang N, Tang Y, Cohen AE.Spectroscopy in sculpted fields.Nano Today 2009; 4(3):269-279.
[67]
Hendry E, Mikhaylovskiy RV, Barron LD, Kadodwala M, Davis TJ.Chiral electromagnetic fields generated by arrays of nanoslits.Nano Lett 2012; 12(7):3640-3644.
[68]
Yang N, Cohen AE.Local geometry of electromagnetic fields and its role in molecular multipole transitions.Phys Chem B 2011; 115(18):5304-5311.
[69]
Canaguier-Durand A, Genet C.Chiral near fields generated from plasmonic optical lattices.Phys Rev A 2014; 90(2):023842.
[70]
Van Kruining KC, Cameron RP, Götte JB.Superpositions of up to six plane waves without electric-field interference.Optica 2018; 5(9):1091.
[71]
Hu H, Gan Q, Zhan Q.Generation of a nondiffracting superchiral optical needle for circular dichroism imaging of sparse subdiffraction objects.Phys Rev Lett 2019; 122(22):223901.
[72]
Zhang S, Zhou J, Park YS, Rho J, Singh R, Nam S, et al.Photoinduced handedness switching in terahertz chiral metamolecules.Nat Commun 2012; 3:942.
[73]
Chen Y, Gao J, Yang X.Chiral metamaterials of plasmonic slanted nanoapertures with symmetry breaking.Nano Lett 2018; 18(1):520-527.
[74]
Wang W, Besteiro LV, Liu T, Wu C, Sun J, Yu P, et al.Generation of hot electrons with chiral metamaterial perfect absorbers: giant optical chirality for polarization-sensitive photochemistry.ACS Photonics 2019; 6(12):3241-3252.
[75]
Davis TJ, Hendry E.Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures.Phys Rev B 2013; 87(8):085405.
[76]
Vázquez-Guardado A, Chanda D.Superchiral light generation on degenerate achiral surfaces.Phys Rev Lett 2018; 120(13):137601.
[77]
Chen Y, Zhao C, Zhang Y, Qiu C.Integrated molar chiral sensing based on high-Q metasurface.Nano Lett 2020; 20(12):8696-8703.
[78]
Barkaoui H, Du K, Chen Y, Xiao S, Song Q.Merged bound states in the continuum for giant superchiral field and chiral mode splitting.Phys Rev B 2023; 107(4):045305.
[79]
Zhang H, Zhang W, Chen S, Duan P, Li J, Shi L, et al.Experimental observation of vector bound states in the continuum.Adv Opt Mater 2023; 11(12):2203118.
[80]
Pellegrini G, Finazzi M, Celebrano M, Du Lò, Biagioni P.Chiral surface waves for enhanced circular dichroism.Phys Rev B 2017; 95(24):241402.
[81]
Tullius R, Karimullah AS, Rodier M, Fitzpatrick B, Gadegaard N, Barron LD, et al.Superchiral spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures.J Am Chem Soc 2015; 137(26):8380-8383.
[82]
Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy RV, Lapthorn AJ, et al.Ultrasensitive detection and characterization of biomolecules using superchiral fields.Nat Nanotechnol 2010; 5(11):783-787.
[83]
Stiles PL, Dieringer JA, Shah NC, Van Duyne RP.Surface-enhanced Raman spectroscopy.Annu Rev Anal Chem 2008; 1(1):601-626.
[84]
Schäferling M, Yin X, Engheta N, Giessen H.Helical plasmonic nanostructures as prototypical chiral near-field sources.ACS Photonics 2014; 1(6):530-537.
[85]
Govorov AO, Fan Z, Hernandez P, Slocik JM, Naik RR.Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects.Nano Lett 2010; 10(4):1374-1382.
[86]
Govorov AO.Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. Application to various geometries.J Phys Chem C 2011; 115(16):7914-7923.
[87]
Abdulrahman NA, Fan Z, Tonooka T, Kelly SM, Gadegaard N, Hendry E, et al.Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures.Nano Lett 2012; 12(2):977-983.
[88]
Maoz BM, van der Weegen R, Fan Z, Govorov AO, Ellestad G, Berova N, et al.Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies.J Am Chem Soc 2012; 134(42):17807-17813.
[89]
Maoz BM, Chaikin Y, Tesler AB, Bar Elli O, Fan Z, Govorov AO, et al.Amplification of chiroptical activity of chiral biomolecules by surface plasmons.Nano Lett 2013; 13(3):1203-1209.
[90]
Lu F, Tian Y, Liu M, Su D, Zhang H, Govorov AO, et al.Discrete nanocubes as plasmonic reporters of molecular chirality.Nano Lett 2013; 13(7):3145.
[91]
Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller EM, Högele A, et al.DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response.Nature 2012; 483(7389):311-314.
[92]
Gu L, Shu R, Liu X, Hu H, Zhan Q.Enhanced diffractive circular dichroism from stereoscopic plasmonic molecule array.Nanomaterials 2023; 13(7):1175.
[93]
García-Guirado J, Svedendahl M, Puigdollers J, Quidant R.Enantiomer-selective molecular sensing using racemic nanoplasmonic arrays.Nano Lett 2018; 18(10):6279-6285.
[94]
Nesterov ML, Yin X, Schäferling M, Giessen H, Weiss T.The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy.ACS Photonics 2016; 3(4):578-583.
[95]
Gorkunov MV, Darinskii AN, Kondratov AV.Enhanced sensing of molecular optical activity with plasmonic nanohole arrays.J Opt Soc Am B 2017; 34(2):315-320.
[96]
Poulikakos LV, Thureja P, Stollmann A, De Leo E, Norris DJ.Chiral light design and detection inspired by optical antenna theory.Nano Lett 2018; 18(8):4633-4640.
[97]
Both S, Schaferling M, Sterl F, Muljarov EA, Giessen H, Weiss T.Nanophotonic chiral sensing: how does it actually work?.ACS Nano 2022; 16(2):2822-2832.
[98]
Mohammadi E, Tittl A, Tsakmakidis KL, Raziman TV, Curto AG.Dual nanoresonators for ultrasensitive chiral detection.ACS Photonics 2021; 8(6):1754-1762.
[99]
Yang Y, Bozhevolnyi SI.Nonradiating anapole states in nanophotonics: from fundamentals to applications.Nanotechnology 2019; 30(20):204001.
[100]
Zhao Q, Zhou J, Zhang F, Lippens D.Mie resonance-based dielectric metamaterials.Mater Today 2009; 12(12):60-69.
[101]
Vynck K, Felbacq D, Centeno E, Cabuz AI, Cassagne D, Guizal B.All-dielectric rod-type metamaterials at optical frequencies.Phys Rev Lett 2009; 102(13):133901.
[102]
García-Etxarri A, Gómez-Medina R, Froufe-P LSérez, López C, Chantada L, Scheffold F, et al.Strong magnetic response of submicron silicon particles in the infrared.Opt Express 2011; 19(6):4815-4826.
[103]
Zhang C, Xu Y, Liu J, Li J, Xiang J, Li H, et al.Lighting up silicon nanoparticles with Mie resonances.Nat Commun 2018; 9:2964.
[104]
Svyakhovskiy SE, Ternovski VV, Tribelsky MI.Anapole: its birth, life, and death.Opt Express 2019; 27(17):23894-23904.
[105]
Miroshnichenko AE, Evlyukhin AB, Yu YF, Bakker RM, Chipouline A, Kuznetsov AI, et al.Nonradiating anapole modes in dielectric nanoparticles.Nat Commun 2015; 6:8069.
[106]
Ho CS, García-Etxarri A, Zhao Y, Dionne J.Enhancing enantioselective absorption using dielectric nanospheres.ACS Photonics 2017; 4(2):197-203.
[107]
Ni J, Liu S, Wu D, Lao Z, Wang Z, Huang K, et al.Gigantic vortical differential scattering as a monochromatic probe for multiscale chiral structures.Proc Natl Acad Sci USA 2021; 118(2):e2020055118.
[108]
Hu H, Gan Q, Zhan Q.Achieving maximum scattering circular dichroism through the excitation of anapole states within chiral Mie nanospheres.Phys Rev B 2022; 105(24):245412.
[109]
Travis L, Mishchenko MI, Lacis AA.Scattering, absorption, and emission of light by small particles. Cambridge University Press, Cambridge (2002)
[110]
Gorodnichev EE, Rogozkin DB.Circular dichroism in the presence of resonant Mie scatterers.Quantum Electron 2019; 49(3):253-257.
[111]
Bauer T, Orlov S, Peschel U, Banzer P, Leuchs G.Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams.Nat Photonics 2014; 8(1):23-27.
[112]
Yoo S, Park QH.Enhancement of chiroptical signals by circular differential Mie scattering of nanoparticles.Sci Rep 2015; 5(1):14463.
[113]
Hu H, Zhan Q.Enhanced chiral Mie scattering by a dielectric sphere within a superchiral light field.Physics 2021; 3:747-756.
[114]
Caridad JM, Connaughton S, Ott C, Weber HB, Krstic V.An electrical analogy to Mie scattering.Nat Commun 2016; 7:12894.
[115]
Zhang S, Bao K, Halas NJ, Xu H, Nordlander P.Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed.Nano Lett 2011; 11(4):1657-1663.
[116]
Ullah K, Habib M, Huang L, Garcia-Camara B.Analysis of the substrate effect on the zero-backward scattering condition of a Cu2O nanoparticle under non-normal illumination.Nanomaterials 2019; 9(4):536.
[117]
Lerm Jé, Bonnet C, Broyer M, Cottancin E, Manchon D, Pellarin M.Optical properties of a particle above a dielectric interface: cross sections, benchmark calculations, and analysis of the intrinsic substrate effects.J Phys Chem C 2013; 117(12):6383-6398.
[118]
Ozzaim C.Plane wave scattering by a conducting cylinder located near an interface between two dielectric half-spaces: a perturbation method.IEEE Trans Antennas Propag 2017; 65(5):2754-2758.
[119]
Wan T, Li MZ, Li LF.Direct solution of finite element-boundary integral system for electromagnetic analysis in half-space.IEEE Trans Antennas Propag 2020; 68(8):6461-6466.
[120]
Cai H, Hu H, Zhan Q.Enhancing scattering circular dichroism of chiral substrate via Mie resonances.IEEE Photonics J 2024; 16(1):1-6.
[121]
Choi WJ, Cheng G, Huang Z, Zhang S, Norris TB, Kotov NA.Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators.Nat Mater 2019; 18(8):820-826.
[122]
Jackson JD.Classical electrodynamics. (3rd ed.), Wiley, New York City (1999)
[123]
Allen L, Padgett MJ, Babiker M.IV the orbital angular momentum of light.Prog Opt 1999; 39:291-372.
[124]
Allen L, Beijersbergen MW, Spreeuw RJ, Woerdman JP.Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes.Phys Rev A 1992; 45(11):8185-8189.
[125]
Yao AM, Padgett MJ.Orbital angular momentum: origins, behavior and applications.Adv Opt Photonics 2011; 3(2):161-204.
[126]
He H, Friese ME, Heckenberg NR, Rubinsztein-Dunlop H.Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity.Phys Rev Lett 1995; 75(5):826-829.
[127]
Padgett M, Bowman R.Tweezers with a twist.Nat Photonics 2011; 5(6):343-348.
[128]
Mair A, Vaziri A, Weihs G, Zeilinger A.Entanglement of the orbital angular momentum states of photons.Nature 2001; 412(6844):313-316.
[129]
Wang J, Yang JY, Fazal IM, Ahmed N, Yan Y, Huang H, et al.Terabit free-space data transmission employing orbital angular momentum multiplexing.Nat Photonics 2012; 6(7):488-496.
[130]
Romero LCD, Andrews DL, Babiker M.A quantum electrodynamics framework for the nonlinear optics of twisted beams.J Opt B Quantum Semiclassical Opt 2002; 4(2):S66-S72.
[131]
Jáuregui R.Rotational effects of twisted light on atoms beyond the paraxial approximation.Phys Rev A 2004; 70(3):033415.
[132]
Alexandrescu A, Cojoc D, Fabrizio ED.Mechanism of angular momentum exchange between molecules and Laguerre–Gaussian beams.Phys Rev Lett 2006; 96(24):243001.
[133]
Mondal PK, Deb B, Majumder S.Angular momentum transfer in interaction of Laguerre–Gaussian beams with atoms and molecules.Phys Rev A 2014; 89(6):063418.
[134]
Babiker M, Bennett CR, Andrews DL, Davila Romero LC.Orbital angular momentum exchange in the interaction of twisted light with molecules.Phys Rev Lett 2002; 89(14):143601.
[135]
Andrews DL, Romero LCD, Babiker M.On optical vortex interactions with chiral matter.Opt Commun 2004; 237(1):133-139.
[136]
Araoka F, Verbiest T, Clays K, Persoons A.Interactions of twisted light with chiral molecules: an experimental investigation.Phys Rev A 2005; 71:5401.
[137]
Forbes KA, Andrews DL.Orbital angular momentum of twisted light: chirality and optical activity.J Phys Photonics 2021; 3(2):022007.
[138]
Forbes KA, Jones GA.Optical vortex dichroism in chiral particles.Phys Rev A 2021; 103(5):053515.
[139]
Forbes KA, Jones GA.Measures of helicity and chirality of optical vortex beams.J Opt 2021; 23(11):115401.
[140]
Mun J, Kim M, Yang Y, Badloe T, Ni J, Chen Y, et al.Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena.Light Sci Appl 2020; 9:139.
[141]
Green D, Forbes KA.Optical chirality of vortex beams at the nanoscale.Nanoscale 2023; 15(2):540-552.
[142]
Forbes KA.Optical helicity of unpolarized light.Phys Rev A 2022; 105(2):023524.
[143]
B JLégin, Jain A, Parks A, Hufnagel F, Corkum P, Karimi E, et al.Nonlinear helical dichroism in chiral and achiral molecules.Nat Photonics 2023; 17(1):82-88.
[144]
Brullot W, Vanbel MK, Swusten T, Verbiest T.Resolving enantiomers using the optical angular momentum of twisted light.Sci Adv 2016; 2(3):e1501349.
[145]
Wo Pźniak, De Leon I, Höflich K, Leuchs G, Banzer P.Interaction of light carrying orbital angular momentum with a chiral dipolar scatterer.Optica 2019; 6(8):961.
[146]
Rouxel JR, Rösner B, Karpov D, Bacellar C, Mancini GF, Zinna F, et al.Hard X-ray helical dichroism of disordered molecular media.Nat Photonics 2022; 16(8):570-574.
[147]
Ni J, Liu S, Hu G, Hu Y, Lao Z, Li J, et al.Giant helical dichroism of single chiral nanostructures with photonic orbital angular momentum.ACS Nano 2021; 15(2):2893-2900.
[148]
Dai N, Liu S, Ren Z, Cao Y, Ni J, Wang D, et al.Robust helical dichroism on microadditively manufactured copper helices via photonic orbital angular momentum.ACS Nano 2023; 17(2):1541-1549.
[149]
Forbes KA.Raman optical activity using twisted photons.Phys Rev Lett 2019; 122(10):103201.
[150]
Müllner S, Buscher F, Moller A, Lemmens P.Discrimination of chiral and helical contributions to Raman scattering of liquid crystals using vortex beams.Phys Rev Lett 2022; 129(20):207801.
[151]
Papasimakis N, Fedotov VA, Savinov V, Raybould TA, Zheludev NI.Electromagnetic toroidal excitations in matter and free space.Nat Mater 2016; 15(3):263-271.
[152]
Wan C, Cao Q, Chen J, Chong A, Zhan Q.Toroidal vortices of light.Nat Photonics 2022; 16(7):519-522.
[153]
Zdagkas A, McDonnell C, Deng J, Shen Y, Li G, Ellenbogen T, et al.Observation of toroidal pulses of light.Nat Photonics 2022; 16(7):523-528.
[154]
Kosaka T, Inoue Y, Mori T.Toroidal interaction and propeller chirality of hexaarylbenzenes. dynamic domino inversion revealed by combined experimental and theoretical circular dichroism studies.J Phys Chem Lett 2016; 7(5):783-788.
[155]
Ding L, Xu X, Jeschke HO, Bai X, Feng E, Alemayehu AS, et al.Field-tunable toroidal moment in a chiral-lattice magnet.Nat Commun 2021; 12:5339.
[156]
Kosaka T, Iwai S, Inoue Y, Moriuchi T, Mori T.Solvent and temperature effects on dynamics and chiroptical properties of propeller chirality and toroidal interaction of hexaarylbenzenes.J Phys Chem A 2018; 122(37):7455-7463.
[157]
Chen W, Liu Y, Yu AZ, Cao H, Hu W, Qiao W, et al.Observation of chiral symmetry breaking in toroidal vortices of light.Phys Rev Lett 2024; 132(15):153801.
[158]
Fedotov VA, Mladyonov PL, Prosvirnin SL, Rogacheva AV, Chen Y, Zheludev NI.Asymmetric propagation of electromagnetic waves through a planar chiral structure.Phys Rev A 2006; 97:167401.
[159]
Wu C, Arju N, Kelp G, Fan JA, Dominguez J, Gonzales E, et al.Spectrally selective chiral Silicon metasurfaces based on infrared Fano resonances.Nat Commun 2014; 5:3892.
[160]
Wang S, Deng ZL, Wang Y, Zhou Q, Wang X, Cao Y, et al.Arbitrary polarization conversion dichroism metasurfaces for all-in-one full poincare sphere polarizers.Light Sci Appl 2021; 10:24.
[161]
Plum E, Fedotov VA, Zheludev NI.Optical activity in extrinsically chiral metamaterial.Appl Phys Lett 2008; 93(19):191911.
[162]
Plum E, Liu XX, Fedotov VA, Chen Y, Tsai DP, Zheludev NI.Metamaterials: optical activity without chirality.Phys Rev Lett 2009; 102(11):113902.
[163]
Sersic I, van de Haar MA, Arango FB, Koenderink AF.Ubiquity of optical activity in planar metamaterial scatterers.Phys Rev Lett 2012; 108(22):223903.
[164]
Cao T, Wei C, Mao L, Li Y.Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array.Sci Rep 2014; 4(1):7442.
[165]
Ma Z, Li Y, Li Y, Gong Y, Maier SA, Hong M.All-dielectric planar chiral metasurface with gradient geometric phase.Opt Express 2018; 26(5):6067-6078.
[166]
Ouyang L, Rosenmann D, Czaplewski DA, Gao J, Yang X.Broadband infrared circular dichroism in chiral metasurface absorbers.Nanotechnology 2020; 31(29):295203.
[167]
Wang P, Hu R, Huang X, Wang T, Hu S, Hu M, et al.Terahertz chiral metamaterials enabled by textile manufacturing.Adv Mater 2022; 34(16):2110590.
[168]
Hsu CW, Zhen B, Stone AD, Joannopoulos JD, Solja Mčić.Bound states in the continuum.Nat Rev Mater 2016; 1(9):16048.
[169]
Bulgakov EN, Sadreev AF.Bound states in the continuum in photonic waveguides inspired by defects.Phys Rev B 2008; 78(7):075105.
[170]
Koshelev K, Lepeshov S, Liu M, Bogdanov A, Kivshar Y.Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum.Phys Rev Lett 2018; 121(19):193903.
[171]
Wu F, Wu J, Guo Z, Jiang H, Sun Y, Li Y, et al.Giant enhancement of the Goos–Hänchen shift assisted by quasibound states in the continuum.Phys Rev A 2019; 12:014028.
[172]
Wu F, Liu D, Xiao S.Bandwidth-tunable near-infrared perfect absorption of graphene in a compound grating waveguide structure supporting quasi-bound states in the continuum.Opt Express 2021; 29(25):41975-41989.
[173]
Yin X, Schaferling M, Metzger B, Giessen H.Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model.Nano Lett 2013; 13(12):6238-6243.
[174]
Alizadeh MH, Reinhard BM.Plasmonically enhanced chiral optical fields and forces in achiral split ring resonators.ACS Photonics 2015; 2(3):361-368.
[175]
Tittl A, Leitis A, Liu M, Yesilkoy F, Choi DY, Neshev DN, et al.Imaging-based molecular barcoding with pixelated dielectric metasurfaces.Science 2018; 360(6393):1105-1109.
[176]
Leitis A, Tittl A, Liu M, Lee BH, Gu MB, Kivshar YS, et al.Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval.Sci Adv 2019; 5(5):eaaw2871.
[177]
Yesilkoy F, Arvelo ER, Jahani Y, Liu M, Tittl A, Cevher V, et al.Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces.Nat Photonics 2019; 13(6):390-396.
[178]
Carletti L, Koshelev K, De Angelis C, Kivshar Y.Giant nonlinear response at the nanoscale driven by bound states in the continuum.Phys Rev Lett 2018; 121(3):033903.
[179]
Koshelev K, Tang Y, Li K, Choi DY, Li G, Kivshar Y.Nonlinear metasurfaces governed by bound states in the continuum.ACS Photonics 2019; 6(7):1639-1644.
[180]
Liu Z, Xu Y, Lin Y, Xiang J, Feng T, Cao Q, et al.High-Q quasibound states in the continuum for nonlinear metasurfaces.Phys Rev Lett 2019; 123(25):253901.
[181]
Koshelev K, Kruk S, Melik-Gaykazyan E, Choi JH, Bogdanov A, Park HG, et al.Subwavelength dielectric resonators for nonlinear nanophotonics.Science 2020; 367(6475):288-292.
[182]
Fang C, Yang Q, Yuan Q, Gan X, Zhao J, Shao Y, et al.High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces.Opto-Electron Adv 2021; 4(6):200030.
[183]
Gandolfi M, Tognazzi A, Rocco D, De Angelis C, Carletti L.Near-unity third-harmonic circular dichroism driven by a quasibound state in the continuum in asymmetric Silicon metasurfaces.Phys Rev A 2021; 104(2):023524.
[184]
Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kante B.Lasing action from photonic bound states in continuum.Nature 2017; 541(7636):196-199.
[185]
Ha ST, Fu YH, Emani NK, Pan Z, Bakker RM, Paniagua-Dominguez R, et al.Directional lasing in resonant semiconductor nanoantenna arrays.Nat Nanotechnol 2018; 13(11):1042-1047.
[186]
Chen Z, Segev M.Highlighting photonics: looking into the next decade.eLight 2021; 1:2.
[187]
Overvig A, Yu N, Al Aù.Chiral quasi-bound states in the continuum.Phys Rev Lett 2021; 126(7):073001.
[188]
Gorkunov MV, Antonov AA, Kivshar YS.Metasurfaces with maximum chirality empowered by bound states in the continuum.Phys Rev Lett 2020; 125(9):093903.
[189]
Overvig AC, Malek SC, Yu N.Multifunctional nonlocal metasurfaces.Phys Rev Lett 2020; 125(1):017402.
[190]
Dixon J, Lawrence M, Barton DR, Dionne J.Self-isolated Raman lasing with a chiral dielectric metasurface.Phys Rev Lett 2021; 126(12):123201.
[191]
Overvig AC, Alú A. Wavefront-selective Fano resonant metasurfaces. Adv Photonics, 3 (02) (2021), Article 026002
[192]
Overvig AC, Mann SA, Al Aù.Thermal metasurfaces: complete emission control by combining local and nonlocal light–matter interactions.Phys Rev X 2021; 11(2):021050.
[193]
Gorkunov MV, Antonov AA, Tuz VR, Kupriianov AS, Kivshar YS.Bound states in the continuum underpin near-lossless maximum chirality in dielectric metasurfaces.Adv Opt Mater 2021; 9(19):2100797.
[194]
Kim KH, Kim JR.High-Q chiroptical resonances by quasi-bound states in the continuum in dielectric metasurfaces with simultaneously broken in-plane inversion and mirror symmetries.Adv Opt Mater 2021; 9(22):2101162.
[195]
Shi T, Deng ZL, Geng G, Zeng X, Zeng Y, Hu G, et al.Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum.Nat Commun 2022; 13:4111.
[196]
Ma T, Tian J, Li J.Chiroptical resonances with High Q factors driven by quasi bound states in the continuum in all-dielectric metasurface at terahertz frequencies.Opt Commun 2023; 532:129216.
[197]
Kühner L, Wendisch FJ, Antonov AA, Burger J, Huttenhofer L, de SML, et al.Unlocking the out-of-plane dimension for photonic bound states in the continuum to achieve maximum optical chirality.Light Sci Appl 2023; 12:250.
[198]
Yin X, Jin J, Soljacic M, Peng C, Zhen B.Observation of topologically enabled unidirectional guided resonances.Nature 2020; 580(7804):467-471.
[199]
Liu W, Wang B, Zhang Y, Wang J, Zhao M, Guan F, et al.Circularly polarized states spawning from bound states in the continuum.Phys Rev Lett 2019; 123(11):116104.
[200]
Chen Y, Deng H, Sha X, Chen W, Wang R, Chen YH, et al.Observation of intrinsic chiral bound states in the continuum.Nature 2023; 613(7944):474-478.
[201]
Zhou Z, Jia B, Wang N, Wang X, Li Y.Observation of perfectly-chiral exceptional point via bound state in the continuum.Phys Rev Lett 2023; 130(11):116101.
[202]
Wu T, Ren J, Wang R, Zhang X.Competition of chiroptical effect caused by nanostructure and chiral molecules.J Phys Chem C 2014; 118(35):20529-20537.
[203]
Shi JH, Shi QC, Li YX, Nie GY, Guan CY, Cui TJ.Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality.Sci Rep 2015; 5(1):16666.
[204]
Yang S, Li Y, Chen X, Yang Q, Han J, Zhang W.Extrinsic optical activity in all-dielectric terahertz metamaterial.Opt Lett 2020; 45(22):6146-6149.
[205]
Cao T, Wei CW, Simpson RE, Zhang L, Cryan MJ.Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies.Sci Rep 2014; 4(1):3955.
[206]
Hu J, Lawrence M, Dionne JA.High quality factor dielectric metasurfaces for ultraviolet circular dichroism spectroscopy.ACS Photonics 2020; 7(1):36-42.
[207]
Zhao CX, Liu JN, Li BQ, Ren D, Chen X, Yu J, et al.Multiscale construction of bifunctional electrocatalysts for long‐lifespan rechargeable zinc–air batteries.Adv Funct Mater 2020; 30(36):2003619.
[208]
Feis J, Beutel D, Köpfler J, Garcia-Santiago X, Rockstuhl C, Wegener M, et al.Helicity-preserving optical cavity modes for enhanced sensing of chiral molecules.Phys Rev Lett 2020; 124(3):033201.
[209]
Wu J, Xu X, Su X, Zhao S, Wu C, Sun Y, et al.Observation of giant extrinsic chirality empowered by quasi-bound states in the continuum.Phys Rev Appl 2021; 16(6):064018.
[210]
Czajkowski KM, Antosiewicz TJ.Local versus bulk circular dichroism enhancement by achiral all-dielectric nanoresonators.Nanophotonics 2022; 11(18):4287-4297.
[211]
Peng J, Liu W, Wang S.Polarization singularities in light scattering by small particles.Phys Rev A 2021; 103:023520.
[212]
Jia S, Peng J, Cheng Y, Wang S.Chiral discrimination by polarization singularities of a metal sphere.Phys Rev A 2022; 105(3):033513.
[213]
Dennis MR.Topological singularities in wave fields [dissertation]. University of Bristol, Bristol (2001)
[214]
García-Etxarri A.Optical polarization möbius strips on all-dielectric optical scatterers.ACS Photonics 2017; 4(5):1159-1164.
[215]
Chen W, Yang Q, Chen Y, Liu W.Extremize optical chiralities through polarization singularities.Phys Rev Lett 2021; 126(25):253901.
[216]
Peng J, Zhang RY, Jia S, Liu W, Wang S.Topological near fields generated by topological structures.Sci Adv 2022; 8(41):eabq0910.
[217]
Jia S, Fu T, Peng J, Wang S.Broadband and large-area optical chirality generated by an achiral metasurface under achiral excitation.Phys Rev A 2023; 108(5):053504.
[218]
Franken PA, Hill AE, Peters CW, Weinreich G.Generation of optical harmonics.Phys Rev Lett 1961; 7:118-119.
[219]
Agrawal GP.Nonlinear fiber optics: its history and recent progress.J Opt Soc Am B 2011; 28(12):A1-A10.
[220]
Lin Q, Painter OJ, Agrawal GP.Nonlinear optical phenomena in Silicon waveguides: modeling and applications.Opt Express 2007; 15(25):16604-16644.
[221]
Luo R, He Y, Lian H, Li M, Lin Q.Semi‐nonlinear nanophotonic waveguides for highly efficient second‐harmonic generation.Laser Photonics Rev 2019; 13(3):1800288.
[222]
Minovich AE, Miroshnichenko AE, Bykov AY, Murzina TV, Neshev DN, Kivshar YS.Functional and nonlinear optical metasurfaces.Laser Photonics Rev 2015; 9(2):195-213.
[223]
Li G, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces. Nat Rev Mat, 2 (2017), p. 17010
[224]
Chen S, Li G, Cheah KW, Zentgraf T, Zhang S.Controlling the phase of optical nonlinearity with plasmonic metasurfaces.Nanophotonics 2018; 7(6):1013-1024.
[225]
Grinblat G.Nonlinear, dielectric nanoantennas and metasurfaces: frequency conversion and wavefront control.ACS Photonics 2021; 8(12):3406-3432.
[226]
Krausz F, Ivanov M.Attosecond physics.Rev Mod Phys 2009; 81(1):163-234.
[227]
Liu S, Sinclair MB, Saravi S, Keeler GA, Yang Y, Reno J, et al.Resonantly enhanced second-harmonic generation using III–V semiconductor all-dielectric metasurfaces.Nano Lett 2016; 16(9):5426-5432.
[228]
Vabishchevich PP, Liu S, Sinclair MB, Keeler GA, Peake GM, Brener I.Enhanced second-harmonic generation using broken symmetry III–V semiconductor Fano metasurfaces.ACS Photonics 2018; 5(5):1685-1690.
[229]
Carletti L, Zilli A, Moia F, Toma A, Finazzi M, De Angelis C, et al.Steering and encoding the polarization of the second harmonic in the visible with a monolithic LiNbO3 metasurface.ACS Photonics 2021; 8(3):731-737.
[230]
Xu L, Smirnova DA, Camacho-Morales R, Aoni RA, Kamali KZ, Cai M, et al.Enhanced four-wave mixing from multi-resonant Silicon dimer-hole membrane metasurfaces.New J Phys 2022; 24(3):035002.
[231]
Carletti L, Kruk SS, Bogdanov AA, De Angelis C, Kivshar Y.High-harmonic generation at the nanoscale boosted by bound states in the continuum.Phys Rev Research 2019; 1(2):023016.
[232]
Zograf G, Koshelev K, Zalogina A, Korolev V, Hollinger R, Choi DY, et al.High-harmonic generation from resonant dielectric metasurfaces empowered by bound states in the continuum.ACS Photonics 2022; 9(2):567-574.
[233]
Butet J, Russier-Antoine I, Jonin C, Lascoux N, Benichou E, Brevet PF.Sensing with multipolar second harmonic generation from spherical metallic nanoparticles.Nano Lett 2012; 12(3):1697-1701.
[234]
Tseng ML, Jahani Y, Leitis A, Altug H.Dielectric metasurfaces enabling advanced optical biosensors.ACS Photonics 2020; 8:47-60.
[235]
Qin J, Jiang S, Wang Z, Cheng X, Li B, Shi Y, et al.Metasurface micro/nano-optical sensors: principles and applications.ACS Nano 2022; 16(8):11598-11618.
[236]
Tran RJ, Sly KL, Conboy JC.Applications of surface second harmonic generation in biological sensing.Annu Rev Anal Chem 2017; 10(1):387-414.
[237]
Byers JD, Yee HI, Petralli-Mallow T, Hicks JM.Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers.Phys Rev B Condens Matter 1994; 49(20):14643-14647.
[238]
Kauranen M, Van Elshocht S, Verbiest T, Persoons A.Tensor analysis of the second-order nonlinear optical susceptibility of chiral anisotropic thin films.Chem Phys 2000; 112:1497-1502.
[239]
Kauranen M, Verbiest T, van Elshocht S, Persoons A.Chirality in surface nonlinear optics.Opt Mater 1998; 9:286-294.
[240]
Valev VK, Smisdom N, Silhanek AV, De Clercq B, Gillijns W, Ameloot M, et al.Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures.Nano Lett 2009; 9(11):3945-3948.
[241]
Guo WP, Liang WY, Cheng CW, Wu WL, Wang YT, Sun Q, et al.Chiral second-harmonic generation from monolayer WS2/aluminum plasmonic vortex metalens.Nano Lett 2020; 20(4):2857-2864.
[242]
Yan J, Feng W, Kim JY, Lu J, Kumar P, Mu Z, et al.Self-assembly of chiral nanoparticles into semiconductor helices with tunable near-infrared optical activity.Chem Mater 2020; 32(1):476-488.
[243]
Ohnoutek L, Kim JY, Lu J, Olohan BJ, R DMăsădean, Dan Pantoș G, et al.Third-harmonic Mie scattering from semiconductor nanohelices.Nat Photonics 2022; 16(2):126-133.
[244]
Zograf G, Zalogina A, Koshelev K, Choi D, Korolev V, Hollinger R, et al.High-harmonic generation in dielectric metasurfaces empowered by bound states in the continuum. In: Proceedings of the 2020 Conference on Lasers and Electro-Optics; 2020 May 10–15; San Jose, CA, USA. New York City: IEEE; 2020.
[245]
Koshelev K, Tang Y, Hu Z, Kravchenko II, Li G, Kivshar Y.Resonant chiral effects in nonlinear dielectric metasurfaces.ACS Photonics 2023; 10(1):298-306.
[246]
Gandolfi M, Fagiani L, Tognazzi A, Franceschini P, Rocco D, Luan Y.Third-harmonic circular dichroism in a chiral all-dielectric metasurface. In: Proceedings of the 2023 Seventeenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials); 2023 Sep 11–16; Chania, Greece. New York City: IEEE; 2023.
[247]
Ziegler LD.Hyper‐Raman spectroscopy.J Raman Spectrosc 1990; 21(12):769-779.
[248]
Collins JT, Rusimova KR, Hooper DC, Jeong HH, Ohnoutek L, Pradaux-Caggiano F, et al.First observation of optical activity in hyper-Rayleigh scattering.Phys Rev X 2019; 9(1):011024.
[249]
Verreault D, Moreno K, ÉMerlet , Adamietz F, Kauffmann B, Ferrand Y, et al.Hyper-Rayleigh scattering as a new chiroptical method: uncovering the nonlinear optical activity of aromatic oligoamide foldamers.J Am Chem Soc 2020; 142(1):257-263.
[250]
Rodriguez V, Verreault D.Hyper-Rayleigh scattering and third-harmonic scattering in chiral liquids: basic evidences and differences with linear chiroptical techniques.J Phys Chem Lett 2024; 15(24):6334-6342.
[251]
Forbes KA.Nonlinear chiral molecular photonics using twisted light: hyper-Rayleigh and hyper-Raman optical activity.J Opt 2020; 22(9):095401.
[252]
Barron LD, Buckingham AD.Simple two-group model for Rayleigh and Raman optical activity.J Am Chem Soc 1974; 96(15):4769-4773.
[253]
Hiramatsu K, Okuno M, Kano H, Leproux P, Couderc V, Hamaguchi HO.Observation of Raman optical activity by heterodyne-detected polarization-resolved coherent anti-stokes Raman scattering.Phys Rev Lett 2012; 109(8):083901.
[254]
Fujisawa T, Leverenz RL, Nagamine M, Kerfeld CA, Unno M.Raman optical activity reveals carotenoid photoactivation events in the orange carotenoid protein in solution.J Am Chem Soc 2017; 139(30):10456-10460.
[255]
Xiao TH, Cheng Z, Luo Z, Isozaki A, Hiramatsu K, Itoh T, et al.All-dielectric chiral-field-enhanced Raman optical activity.Nat Commun 2021; 12:3062.
[256]
Rodriguez I, Shi L, Lu X, Korgel BA, Alvarez-Puebla RA, Meseguer F.Silicon nanoparticles as Raman scattering enhancers.Nanoscale 2014; 6(11):5666-5670.
[257]
Abdali S, Blanch EW.Surface enhanced Raman optical activity (SEROA).Chem Soc Rev 2008; 37(5):980-992.
[258]
Caldarola M, Albella P, Cort Eés, Rahmani M, Roschuk T, Grinblat G, et al.Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion.Nat Commun 2015; 6:7915.
[259]
Xiao TH, Cheng Z, Goda K.Giant optical activity in an all‐dielectric spiral nanoflower.Small 2018; 14(31):1800485.
[260]
Er E, Chow TH, Liz-Marzán LM, Kotov NA.Circular polarization-resolved Raman optical activity: a perspective on chiral spectroscopies of vibrational states.ACS Nano 2024; 18(20):12589-12597.
[261]
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, et al.Present and future of surface-enhanced Raman scattering.ACS Nano 2020; 14(1):28-117.
[262]
Cheng F, Hu S, Zhang Y, Yang Z, Liu Y, Zhang H, et al.3D connected plasmonic octamers for boosting single-particle surface-enhanced Raman scattering.J Phys Chem C 2024; 128(18):7820-7829.
[263]
Fan M, Andrade GFS, Brolo AG.A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry.Anal Chim Acta 2020; 1097:1-29.
[264]
Zrimsek AB, Chiang N, Mattei M, Zaleski S, McAnally MO, Chapman CT, et al.Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy.Chem Rev 2017; 117(11):7583-7613.
[265]
Yang H, Mo H, Zhang J, Hong L, Li ZY.Observation of single-molecule Raman spectroscopy enabled by synergic electromagnetic and chemical enhancement.PhotoniX 2024; 5(1):3.
AI Summary AI Mindmap
PDF(4364 KB)

Accesses

Citations

Detail

Sections
Recommended

/