Tissue Engineering and Spinal Cord Injury Repair

Lai Xu, Songlin Zhou, Xiu Dai, Xiaosong Gu, Zhaolian Ouyang

Engineering ›› 2025, Vol. 46 ›› Issue (3) : 60-72.

PDF(1453 KB)
PDF(1453 KB)
Engineering ›› 2025, Vol. 46 ›› Issue (3) : 60-72. DOI: 10.1016/j.eng.2024.12.027
Research
Review

Tissue Engineering and Spinal Cord Injury Repair

Author information +
History +

Abstract

Tissue engineering and regenerative medicine is a new interdisciplinary subject integrating life science, material science, engineering technology, and clinical medicine. Over the last ten years, significant advancements have been achieved in the study of biomaterials and tissue engineering. Progress in the field of tissue engineering and regenerative medicine can result in optimal tissue regeneration and effective functional reconstruction. Spinal cord injury (SCI) is the most severe complication of spinal trauma and frequently results in significant functional impairments in the lower extremities of the affected segment. Repair of SCI is a medical challenge worldwide. Advancements in tissue engineering theory and technology offer fresh opportunities for addressing SCI, as well as providing new strategies and methodologies to tackle the challenges associated with repairing and reconstructing spinal cord function. This article provides an overview of the latest developments in tissue engineering and SCI repair, focusing on biomaterials, cells, and active factors. It also introduces nine key components related to SCI and proposes innovative approaches for repairing and functionally reconstructing the injured spinal cord.

Graphical abstract

Keywords

Tissue engineering / Spinal cord injury / Regenerative microenvironment

Cite this article

Download citation ▾
Lai Xu, Songlin Zhou, Xiu Dai, Xiaosong Gu, Zhaolian Ouyang. Tissue Engineering and Spinal Cord Injury Repair. Engineering, 2025, 46(3): 60‒72 https://doi.org/10.1016/j.eng.2024.12.027

References

[1]
Hvistendahl M.China’s push in tissue engineering.Science 2012; 338(6109):900-902.
[2]
Eftekhari A, Maleki Dizaj S, Sharifi S, Salatin S, Rahbar Saadat Y, Zununi Vahed S, et al.The use of nanomaterials in tissue engineering for cartilage regeneration; current approaches and future perspectives.Int J Mol Sci 2020; 21(2):536.
[3]
Song YH, Agrawal NK, Griffin JM, Schmidt CE.Recent advances in nanotherapeutic strategies for spinal cord injury repair.Adv Drug Deliv Rev 2019; 148:38-59.
[4]
Gao JM, Yu XY, Wang XL, He YN, Ding JD.Biomaterial-related cell microenvironment in tissue engineering and regenerative medicine.Engineering 2022; 13:31-45.
[5]
Shen Y, Zhang W, Xie Y, Li A, Wang X, Chen X, et al.Surface modification to enhance cell migration on biomaterials and its combination with 3D structural design of occluders to improve interventional treatment of heart diseases.Biomaterials 2021; 279:121208.
[6]
Gu XS.Biodegradable materials and the tissue engineering of nerves.Engineering 2021; 7(12):1700-1703.
[7]
Ramalho BDS, Almeida FM, Sales CM, de Lima S, Martinez AMB.Injection of bone marrow mesenchymal stem cells by intravenous or intraperitoneal routes is a viable alternative to spinal cord injury treatment in mice.Neural Regen Res 2018; 13(6):1046-1053.
[8]
Liu Y, Zhang Z, Zhang Y, Luo B, Liu X, Cao Y, et al.Construction of adhesive and bioactive silk fibroin hydrogel for treatment of spinal cord injury.Acta Biomater 2023; 158:178-189.
[9]
Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, et al.Traumatic spinal cord injury.Nat Rev Dis Primers 2017; 3:17018.
[10]
Yang L, Chueng SD, Li Y, Patel M, Rathnam C, Dey G, et al.A biodegradable hybrid inorganic nanoscaffold for advanced stem cell therapy.Nat Commun 2018; 9(1):3147.
[11]
Li Y, He X, Kawaguchi R, Zhang Y, Wang Q, Monavarfeshani A, et al.Microglia-organized scar-free spinal cord repair in neonatal mice.Nature 2020; 587(7835):613-668.
[12]
Fakhoury M.Spinal cord injury: overview of experimental approaches used to restore locomotor activity.Rev Neurosci 2015; 26(4):397-405.
[13]
Haggerty AE, Maldonado-Lasuncion I, Oudega M.Biomaterials for revascularization and immunomodulation after spinal cord injury.Biomed Mater 2018; 13(4):044105.
[14]
Wu C, Liu A, Chen S, Zhang X, Chen L, Zhu Y, et al.Cell-laden electroconductive hydrogel simulating nerve matrix to deliver electrical cues and promote neurogenesis.ACS Appl Mater Interfaces 2019; 11(25):22152-22163.
[15]
Ahmadian E, Eftekhari A, Dizaj SM, Sharifi S, Mokhtarpour M, Nasibova AN, et al.The effect of hyaluronic acid hydrogels on dental pulp stem cells behavior.Int J Biol Macromol 2019; 140:245-254.
[16]
Cai J, Zhang H, Hu Y, Huang Z, Wang Y, Xia Y, et al.Gelma-mxene hydrogel nerve conduits with microgrooves for spinal cord injury repair.J Nanobiotechnology 2022; 20(1):460.
[17]
Wang R, Wu X, Tian Z, Hu T, Cai C, Wu G, et al.Sustained release of hydrogen sulfide from anisotropic ferrofluid hydrogel for the repair of spinal cord injury.Bioact Mater 2023; 23:118-128.
[18]
Xu GY, Xu S, Zhang YX, Yu ZY, Zou F, Ma XS, et al.Cell-free extracts from human fat tissue with a hyaluronan-based hydrogel attenuate inflammation in a spinal cord injury model through M2 microglia/microphage polarization.Small 2022; 18(17):e2107838.
[19]
Shen H, Xu B, Yang C, Xue W, You Z, Wu X, et al.A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor function recovery after spinal cord injury.Biomaterials 2022; 280:121279.
[20]
Liu K, Dong X, Wang Y, Wu X, Dai H.Dopamine-modified chitosan hydrogel for spinal cord injury.Carbohydr Polym 2022; 298:120047.
[21]
Fan C, Yang W, Zhang L, Cai H, Zhuang Y, Chen Y, et al.Restoration of spinal cord biophysical microenvironment for enhancing tissue repair by injury-responsive smart hydrogel.Biomaterials 2022; 288:121689.
[22]
Li X, Zhang C, Haggerty AE, Yan J, Lan M, Seu M, et al.The effect of a nanofiber-hydrogel composite on neural tissue repair and regeneration in the contused spinal cord.Biomaterials 2020; 245:119978.
[23]
Wu P, Xu C, Zou X, Yang K, Xu Y, Li X, et al.Capacitive-coupling-responsive hydrogel scaffolds offering wireless in situ electrical stimulation promotes nerve regeneration.Adv Mater 2024; 36(14):e2310483.
[24]
Xiao L, Xie P, Ma J, Shi K, Dai Y, Pang M, et al.A bioinspired injectable, adhesive, and self-healing hydrogel with dual hybrid network for neural regeneration after spinal cord injury.Adv Mater 2023; 35(41):e2304896.
[25]
Fan P, Li S, Yang J, Yang K, Wu P, Dong Q, et al.Injectable, self-healing hyaluronic acid-based hydrogels for spinal cord injury repair.Int J Biol Macromol 2024; 263(Pt 2):130333.
[26]
Luo Y, Fan L, Liu C, Wen H, Wang S, Guan P, et al.An injectable, self-healing, electroconductive extracellular matrix-based hydrogel for enhancing tissue repair after traumatic spinal cord injury.Bioact Mater 2022; 7:98-111.
[27]
Alvarez Z, Kolberg-Edelbrock AN, Sasselli IR, Ortega JA, Qiu R, Syrgiannis Z, et al.Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury.Science 2021; 374(6569):848-856.
[28]
Liu D, Shu M, Liu W, Shen Y, Long G, Zhao Y, et al.Binary scaffold facilitates in situ regeneration of axons and neurons for complete spinal cord injury repair.Biomater Sci 2021; 9(8):2955-2971.
[29]
Liu W, Xu B, Xue W, Yang B, Fan Y, Chen B, et al.A functional scaffold to promote the migration and neuronal differentiation of neural stem/progenitor cells for spinal cord injury repair.Biomaterials 2020; 243:119941.
[30]
Zou Y, Ma D, Shen H, Zhao Y, Xu B, Fan Y, et al.Aligned collagen scaffold combination with human spinal cord-derived neural stem cells to improve spinal cord injury repair.Biomater Sci 2020; 8(18):5145-5156.
[31]
Hatami M, Mehrjardi NZ, Kiani S, Hemmesi K, Azizi H, Shahverdi A, et al.Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord.Cytotherapy 2009; 11(5):618-630.
[32]
Wang N, Xiao Z, Zhao Y, Wang B, Li X, Li J, et al.Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury.J Tissue Eng Regen Med 2018; 12(2):e1154-e1163.
[33]
Li L, Zhang Y, Mu J, Chen J, Zhang C, Cao H, et al.Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury.Nano Lett 2020; 20(6):4298-4305.
[34]
Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, et al.Mesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy.Int J Mol Sci 2019; 20(11):2698.
[35]
Peng Z, Gao W, Yue B, Jiang J, Gu Y, Dai J, et al.Promotion of neurological recovery in rat spinal cord injury by mesenchymal stem cells loaded on nerve-guided collagen scaffold through increasing alternatively activated macrophage polarization.J Tissue Eng Regen Med 2018; 12(3):e1725-e1736.
[36]
Zou Y, Zhao Y, Xiao Z, Chen B, Ma D, Shen H, et al.Comparison of regenerative effects of transplanting three-dimensional longitudinal scaffold loaded-human mesenchymal stem cells and human neural stem cells on spinal cord completely transected rats.ACS Biomater Sci Eng 2020; 6(3):1671-1680.
[37]
Xiao Z, Tang F, Tang J, Yang H, Zhao Y, Chen B, et al.One-year clinical study of neuroregen scaffold implantation following scar resection in complete chronic spinal cord injury patients.Sci China Life Sci 2016; 59(7):647-655.
[38]
Li Y, Cao X, Deng W, Yu Q, Sun C, Ma P, et al.3D printable sodium alginate-matrigel (SA-MA) hydrogel facilitated ectomesenchymal stem cells (EMSCs) neuron differentiation.J Biomater Appl 2021; 35(6):709-719.
[39]
Wang J, Kong X, Li Q, Li C, Yu H, Ning G, et al.The spatial arrangement of cells in a 3D-printed biomimetic spinal cord promotes directional differentiation and repairs the motor function after spinal cord injury.Biofabrication 2021; 13(4):045016.
[40]
Zhang L, Fan C, Hao W, Zhuang Y, Liu X, Zhao Y, et al.Nscs migration promoted and drug delivered exosomes-collagen scaffold via a bio-specific peptide for one-step spinal cord injury repair.Adv Healthc Mater 2021; 10(8):e2001896.
[41]
Liu X, Hao M, Chen Z, Zhang T, Huang J, Dai J, et al.3D bioprinted neural tissue constructs for spinal cord injury repair.Biomaterials 2021; 272:120771.
[42]
Liu X, Song S, Chen Z, Gao C, Li Y, Luo Y, et al.Release of O-GlcNAc transferase inhibitor promotes neuronal differentiation of neural stem cells in 3D bioprinted supramolecular hydrogel scaffold for spinal cord injury repair.Acta Biomater 2022; 151:148-162.
[43]
Li Y, Cheng S, Wen H, Xiao L, Deng Z, Huang J, et al.Coaxial 3D printing of hierarchical structured hydrogel scaffolds for on-demand repair of spinal cord injury.Acta Biomater 2023; 168:168400-168415.
[44]
Liu JA, Tam KW, Chen YL, Feng X, Chan CWL, Lo ALH, et al.Transplanting human neural stem cells with approximately 50% reduction of SOX9 gene dosage promotes tissue repair and functional recovery from severe spinal cord injury.Adv Sci 2023; 10(20):e2205804.
[45]
Lai BQ, Che MT, Feng B, Bai YR, Li G, Ma YH, et al.Tissue-engineered neural network graft relays excitatory signal in the completely transected canine spinal cord.Adv Sci 2019; 6(22):1901240.
[46]
Lai BQ, Wu RJ, Han WT, Bai YR, Liu JL, Yu HY, et al.Tail nerve electrical stimulation promoted the efficiency of transplanted spinal cord-like tissue as a neuronal relay to repair the motor function of rats with transected spinal cord injury.Biomaterials 2023; 297:122103.
[47]
Fischer I, Dulin JN, Lane MA.Transplanting neural progenitor cells to restore connectivity after spinal cord injury.Nat Rev Neurosci 2020; 21(7):366-383.
[48]
Koffler J, Zhu W, Qu X, Platoshyn O, Dulin JN, Brock J, et al.Biomimetic 3D-printed scaffolds for spinal cord injury repair.Nat Med 2019; 25(2):263-269.
[49]
Chen Z, Sun Z, Fan Y, Yin M, Jin C, Guo B, et al.Mimicked spinal cord fibers trigger axonal regeneration and remyelination after injury.ACS Nano 2023; 17(24):25591-25613.
[50]
Kawai M, Imaizumi K, Ishikawa M, Shibata S, Shinozaki M, Shibata T, et al.Long-term selective stimulation of transplanted neural stem/progenitor cells for spinal cord injury improves locomotor function.Cell Rep 2021; 37(8):110019.
[51]
Sun Z, Chen Z, Yin M, Wu X, Guo B, Cheng X, et al.Harnessing developmental dynamics of spinal cord extracellular matrix improves regenerative potential of spinal cord organoids.Cell Stem Cell 2024; 31(5):772-787.
[52]
Xu Y, Zhou J, Liu C, Zhang S, Gao F, Guo W, et al.Understanding the role of tissue-specific decellularized spinal cord matrix hydrogel for neural stem/progenitor cell microenvironment reconstruction and spinal cord injury.Biomaterials 2021; 268:120596.
[53]
Peng Y, Chen X, Zhang Q, Liu S, Wu W, Li K, et al.Enzymatically bioactive nucleus pulposus matrix hydrogel microspheres for exogenous stem cells therapy and endogenous repair strategy to achieve disc regeneration.Adv Sci 2024; 11(10):e2304761.
[54]
Liu J, Yan R, Wang B, Chen S, Hong H, Liu C, et al.Decellularized extracellular matrix enriched with GDNF enhances neurogenesis and remyelination for improved motor recovery after spinal cord injury.Acta Biomater 2024; 180:308-322.
[55]
Ju Y, Hu Y, Yang P, Xie X, Fang B.Extracellular vesicle-loaded hydrogels for tissue repair and regeneration.Mater Today Bio 2023; 18:100522.
[56]
Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H.New technologies for analysis of extracellular vesicles.Chem Rev 2018; 118(4):1917-1950.
[57]
Tkach M, Thery C.Communication by extracellular vesicles: where we are and where we need to go.Cell 2016; 164(6):1226-1232.
[58]
Zhu B, Gu G, Ren J, Song X, Li J, Wang C, et al.Schwann cell-derived exosomes and methylprednisolone composite patch for spinal cord injury repair.ACS Nano 2023; 17(22):22928-22943.
[59]
Qin T, Li C, Xu Y, Qin Y, Jin Y, He R, et al.Local delivery of EGFR+ NSCs-derived exosomes promotes neural regeneration post spinal cord injury via miR-34a-5p/HDAC6 pathway.Bioact Mater 2024; 33:33424-33443.
[60]
He X, Yang L, Dong K, Zhang F, Liu Y, Ma B, et al.Biocompatible exosome-modified fibrin gel accelerates the recovery of spinal cord injury by VGF-mediated oligodendrogenesis.J Nanobiotechnology 2022; 20(1):360.
[61]
Guo S, Perets N, Betzer O, Ben-Shaul S, Sheinin A, Michaelevski I, et al.Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog sirna repairs complete spinal cord injury.ACS Nano 2019; 13(9):10015-10028.
[62]
Han M, Yang H, Lu X, Li Y, Liu Z, Li F, et al.Three-dimensional-cultured MSC-derived exosome-hydrogel hybrid microneedle array patch for spinal cord repair.Nano Lett 2022; 22(15):6391-6401.
[63]
Jiang W, Zhang X, Yu S, Yan F, Chen J, Liu J, et al.Decellularized extracellular matrix in the treatment of spinal cord injury.Exp Neurol 2023; 368:114506.
[64]
Boyce VS, Mendell LM.Neurotrophic factors in spinal cord injury.Handb Exp Pharmacol 2014; 220:443-460.
[65]
Rao JS, Zhao C, Zhang A, Duan H, Hao P, Wei RH, et al.NT3-chitosan enables de novo regeneration and functional recovery in monkeys after spinal cord injury.Proc Natl Acad Sci USA 2018; 115(24):E595-E604.
[66]
Joo W, Hippenmeyer S, Neurodevelopment LL.Dendrite morphogenesis depends on relative levels of NT-3/TrkC signaling.Science 2014; 346(6209):626-629.
[67]
Li G, Zhang B, Sun JH, Shi LY, Huang MY, Huang LJ, et al.An NT-3-releasing bioscaffold supports the formation of TrkC-modified neural stem cell-derived neural network tissue with efficacy in repairing spinal cord injury.Bioact Mater 2021; 6(11):3766-3781.
[68]
Ji WC, Li M, Jiang WT, Ma X, Li J.Protective effect of brain-derived neurotrophic factor and neurotrophin-3 overexpression by adipose-derived stem cells combined with silk fibroin/chitosan scaffold in spinal cord injury.Neurol Res 2020; 42(5):361-371.
[69]
Wang Z, Duan H, Hao F, Hao P, Zhao W, Gao Y, et al.Circuit reconstruction of newborn neurons after spinal cord injury in adult rats via an NT3-chitosan scaffold.Prog Neurobiol 2023; 220:102375.
[70]
Zhao C, Rao JS, Duan H, Hao P, Shang J, Fan Y, et al.Chronic spinal cord injury repair by NT3-chitosan only occurs after clearance of the lesion scar.Signal Transduct Target Ther 2022; 7(1):184.
[71]
Zhu R, Zhu X, Zhu Y, Wang Z, He X, Wu Z, et al.Immunomodulatory layered double hydroxide nanoparticles enable neurogenesis by targeting transforming growth factor-β receptor 2.ACS Nano 2021; 15(2):2812-2830.
[72]
Baloh RH, Johnson JP, Avalos P, Allred P, Svendsen S, Gowing G, et al.Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: a phase 1/2a trial.Nat Med 2022; 28(9):1813-1822.
[73]
Ye LX.Exogenous platelet-derived growth factor improves neurovascular unit recovery after spinal cord injury.Neural Regen Res 2021; 16(4):765-771.
[74]
Wu W, Jia S, Xu H, Gao Z, Wang Z, Lu B, et al.Supramolecular hydrogel microspheres of platelet-derived growth factor mimetic peptide promote recovery from spinal cord injury.ACS Nano 2023; 17(4):3818-3837.
[75]
Yuan T, Shao Y, Zhou X, Liu Q, Zhu Z, Zhou B, et al.Highly permeable DNA supramolecular hydrogel promotes neurogenesis and functional recovery after completely transected spinal cord injury.Adv Mater 2021; 33(35):e2102428.
[76]
Song P, Han T, Wu Z, Fang H, Liu Y, Ying W, et al.Transplantation of neural stem cells loaded in an IGF-1 bioactive supramolecular nanofiber hydrogel for the effective treatment of spinal cord injury.Adv Sci 2024; 11(17):e2306577.
[77]
Zhou P, Xu P, Guan J, Zhang C, Chang J, Yang F, et al.Promoting 3D neuronal differentiation in hydrogel for spinal cord regeneration.Colloids Surf B Biointerfaces 2020; 194:111214.
[78]
Qiu C, Sun Y, Li J, Zhou J, Xu Y, Qiu C, et al.A 3D-printed dual driving forces scaffold with self-promoted cell absorption for spinal cord injury repair.Adv Sci 2023; 10(33):e2301639.
[79]
Yuan X, Yuan W, Ding L, Shi M, Luo L, Wan Y, et al.Cell-adaptable dynamic hydrogel reinforced with stem cells improves the functional repair of spinal cord injury by alleviating neuroinflammation.Biomaterials 2021; 279:121190.
[80]
Liu D, Shen H, Shen Y, Long G, He X, Zhao Y, et al.Dual-cues laden scaffold facilitates neurovascular regeneration and motor functional recovery after complete spinal cord injury.Adv Healthc Mater 2021; 10(10):e2100089.
[81]
Liu D, Shen H, Zhang K, Shen Y, Wen R, He X, et al.Functional hydrogel co-remolding migration and differentiation microenvironment for severe spinal cord injury repair.Adv Healthc Mater 2024; 13(3):e2301662.
[82]
Xiong T, Yang K, Zhao T, Zhao H, Gao X, You Z, et al.Multifunctional integrated nanozymes facilitate spinal cord regeneration by remodeling the extrinsic neural environment.Adv Sci 2023; 10(7):e2205997.
[83]
Yang Y, Fan Y, Zhang H, Zhang Q, Zhao Y, Xiao Z, et al.Small molecules combined with collagen hydrogel direct neurogenesis and migration of neural stem cells after spinal cord injury.Biomaterials 2021; 269:120479.
[84]
Zhao X, Gu R, Zhao Y, Wei F, Gao X, Zhuang Y, et al.Adult spinal cord tissue transplantation combined with local tacrolimus sustained-release collagen hydrogel promotes complete spinal cord injury repair.Cell Prolif 2023; 56(5):e13451.
[85]
Zhang N, Lin JQ, Lin VPH, Milbreta U, Chin JS, Chew EGY, et al.A 3D fiber-hydrogel based non-viral gene delivery platform reveals that micrornas promote axon regeneration and enhance functional recovery following spinal cord injury.Adv Sci 2021; 8(15):2100805.
[86]
Ma J, Li J, Wang X, Li M, Teng W, Tao Z, et al.Gdnf-loaded polydopamine nanoparticles-based anisotropic scaffolds promote spinal cord repair by modulating inhibitory microenvironment.Adv Healthc Mater 2023; 12(8):e2202377.
[87]
Song S, Zhou J, Wan J, Zhao X, Li K, Yang C, et al.Three-dimensional printing of microfiber-reinforced hydrogel loaded with oxymatrine for treating spinal cord injury.Int J Bioprint 2023; 9(3):692.
[88]
Li Z, Zhao T, Ding J, Gu H, Wang Q, Wang Y, et al.A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury.Bioact Mater 2023; 19:550-568.
[89]
Gu XS.Tissue engineering is under way.Engineering 2017; 3(1):2.
AI Summary AI Mindmap
PDF(1453 KB)

Accesses

Citations

Detail

Sections
Recommended

/