Biocompatible Protein/Liquid Metal Hydrogel-Enabled Wearable Electronics for Monitoring Marine Inhabitants’ Health

Lidong Wu, Jinxue Zhao, Yuanxin Li, Haiyang Qin, Xuejing Zhai, Peiyi Li, Yang Li, Yingnan Liu, Ningyue Chen, Yuan Li

Engineering ›› 2025, Vol. 47 ›› Issue (4) : 213-221.

PDF(2606 KB)
PDF(2606 KB)
Engineering ›› 2025, Vol. 47 ›› Issue (4) : 213-221. DOI: 10.1016/j.eng.2024.12.030
Research
Article

Biocompatible Protein/Liquid Metal Hydrogel-Enabled Wearable Electronics for Monitoring Marine Inhabitants’ Health

Author information +
History +

Highlights

• The KELM hydrogel exhibits high sensitivity, high elongation and remarkable shape-memory properties.

• The strain sensor exhibits the lowest detection limit (0.5 mm, 1% stretch).

• The strain sensor successfully monitors the traceable heartbeat of scallops.

• The KELM hydrogel expands the preparation strategies of protein hydrogels.

Abstract

Wearable electronics incorporating proteins for biocompatibility have garnered significant research attention, given their potential applications in biocompatible medical devices, artificial skin, humanoid robots, and other fields. However, a notable challenge exists, as many wearable electronics currently lack those essential properties due to issues such as non-biological compatibility, as well as insufficient mechanical and conductive performance. Here, we have developed a hybrid keratin (KE) hydrogel by incorporating a liquid metal (LM, eutectic gallium-indium alloy) to design a wearable electronic device with excellent biocompatibility, enhanced conductivity, and good mechanical properties. The resulting keratin liquid metal (KELM) hydrogel demonstrates favorable mechanical characteristics, including good tensile strength (166 kPa), impressive stretchability (2600%), and long-term stability. Furthermore, it exhibits good conductivity (6.84 S∙m−1) and sensitivity as a sensing material (gauge factor (GF) = 7.03), rendering it suitable for constructing high-performance strain sensors. Notably, the KELM hydrogel-based wearable electronics extend their functionality to monitoring marine inhabitants’ health. This innovative application provides new insights for designing the next generation of biomimetic electronic devices, with potential applications in human-machine interfaces, electronic skin, artificial intelligence, and health monitoring.

Graphical abstract

Keywords

Marine inhabitants health / Aquaculture / Keratin hydrogel / Liquid metal / Wearable electronics

Cite this article

Download citation ▾
Lidong Wu, Jinxue Zhao, Yuanxin Li, Haiyang Qin, Xuejing Zhai, Peiyi Li, Yang Li, Yingnan Liu, Ningyue Chen, Yuan Li. Biocompatible Protein/Liquid Metal Hydrogel-Enabled Wearable Electronics for Monitoring Marine Inhabitants’ Health. Engineering, 2025, 47(4): 213‒221 https://doi.org/10.1016/j.eng.2024.12.030

References

[1]
Londono CD, Cones SF, Deng J, Wu J, Yuk H, Guza DE, et al.Bioadhesive interface for marine sensors on diverse soft fragile species.Nat Commun 2024; 15(1):2958.
[2]
Sydeman WJ, Poloczanska E, Reed TE, Thompson SA.Climate change and marine vertebrates.Science 2015; 350(6262):772-777.
[3]
Ratnarajah L, Abu-Alhaija R, Atkinson A, Batten S, Bax NJ, Bernard KS, et al.Monitoring and modelling marine zooplankton in a changing climate.Nat Commun 2023; 14(1):564.
[4]
Kaidarova A, Geraldi NR, Wilson RP, Kosel J, Meekan MG, Eguiluz VM, et al.Wearable sensors for monitoring marine environments and their inhabitants.Nat Biotechnol 2023; 41(9):1208-1220.
[5]
Wang N, Yang X, Zhang X.Ultrarobust subzero healable materials enabled by polyphenol nano-assemblies.Nat Commun 2023; 14(1):814.
[6]
Kaidarova A, Khan MA, Marengo M, Swanepoel L, Przybysz A, Muller C, et al.Wearable multifunctional printed graphene sensors.NPJ Flex Electron 2019; 3(1):15.
[7]
Yu Z, Wu P.Underwater communication and optical camouflage ionogels.Adv Mater 2021; 33(24):2008479.
[8]
Yu Z, Wu P.Water‐resistant ionogel electrode with tailorable mechanical properties for aquatic ambulatory physiological signal monitoring.Adv Funct Mater 2021; 31(51):2107226.
[9]
Tas MO, Baker MA, Masteghin MG, Bentz J, Boxshall K, Stolojan V.Highly stretchable, directionally oriented carbon nanotube/pdms conductive films with enhanced sensitivity as wearable strain sensors.ACS Appl Mater Interfaces 2019; 11(43):39560-39573.
[10]
Meng K, Liu Z, Xiao X, Manshaii F, Li P, Yin J, et al.Bioinspired wearable pulse sensors for ambulant cardiovascular monitoring and biometric authentication.Adv Funct Mater 2024; 34(39):2403163.
[11]
Zhu X, Zhang J, Li M, Hou X, Liu A, Dong X, et al.Cardiac performance and heart gene network provide dynamic responses of bay scallop argopecten irradians irradians exposure to marine heatwaves.Sci Total Environ 2023; 882:163594.
[12]
Lu M, Hayat R, Zhang X, Jiao Y, Huang J, Huangfu Y, et al.Comparative analysis of the cardiac structure and transcriptome of scallop and snail, perspectives on heart chamber evolution.Mar Life Sci Technol 2023; 5(4):478-491.
[13]
Kamenos NA, Calosi P, Moore PG.Substratum-mediated heart rate responses of an invertebrate to predation threat.Anim Behav 2006; 71(4):809-813.
[14]
Wang J, Wang N, Xu D, Tang L, Sheng B.Flexible humidity sensors composed with electrodes of laser induced graphene and sputtered sensitive films derived from poly(ether-ether-ketone).Sens Actuators B Chem 2023; 375:132846.
[15]
Zoidis P, Papathanasiou I, Polyzois G.The use of a modified poly-ether-ether-ketone (peek) as an alternative framework material for removable dental prostheses. A clinical report.J Prosthodont 2016; 25(7):580-584.
[16]
Spechler JA, Koh TW, Herb JT, Rand BP, Arnold CB.A transparent, smooth, thermally robust, conductive polyimide for flexible electronics.Adv Funct Mater 2015; 25(48):7428-7434.
[17]
Xia S, Song S, Jia F, Gao G.A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring.J Mater Chem B Mater Biol Med 2019; 7(30):4638-4648.
[18]
Wang D, Ren S, Chen J, Li Y, Wang Z, Xu J, et al.Healable, highly thermal conductive, flexible polymer composite with excellent mechanical properties and multiple functionalities.Chem Eng J 2022; 430:133163.
[19]
Lin X, Zhang X, Liu L, Liang J, Liu W.Polymer/expanded graphite-based flexible phase change material with high thermal conductivity for battery thermal management.J Clean Prod 2022; 331:130014.
[20]
Bing N, Yang J, Gao H, Xie H, Yu W.Unsaturated polyester resin supported form-stable phase change materials with enhanced thermal conductivity for solar energy storage and conversion.Renew Energy 2021; 173:926-933.
[21]
Niazi M, Alizadeh E, Zarebkohan A, Seidi K, Ayoubi-Joshaghani MH, Azizi M, et al.Advanced bioresponsive multitasking hydrogels in the new era of biomedicine.Adv Funct Mater 2021; 31(41):2104123.
[22]
Liu X, Chen X, Chi X, Feng Z, Yang C, Gao R, et al.Biomimetic integration of tough polymer elastomer with conductive hydrogel for highly stretchable, flexible electronic.Nano Energy 2022; 92:106735.
[23]
Zhang YZ, Lee KH, Anjum DH, Sougrat R, Jiang Q, Kim H, et al.Mxenes stretch hydrogel sensor performance to new limits.Sci Adv 2018; 4(6):eaat0098.
[24]
Chen F, Lu S, Zhu L, Tang Z, Wang Q, Qin G, et al.Conductive regenerated silk-fibroin-based hydrogels with integrated high mechanical performances.J Mater Chem B Mater Biol Med 2019; 7(10):1708-1715.
[25]
Zhao L, Zhao J, Zhang F, Xu Z, Chen F, Shi Y, et al.Highly stretchable, adhesive, and self-healing silk fibroin-dopted hydrogels for wearable sensors.Adv Healthc Mater 2021; 10(10):2002083.
[26]
Chen G, Matsuhisa N, Liu Z, Qi D, Cai P, Jiang Y, et al.Plasticizing silk protein for on-skin stretchable electrodes.Adv Mater 2018; 30(21):1800129.
[27]
Song B, Fan X, Shen J, Gu H.Ultra-stable and self-healing coordinated collagen-based multifunctional double-network organohydrogel e-skin for multimodal sensing monitoring of strain-resistance, bioelectrode, and self-powered triboelectric nanogenerator.Chem Eng J 2023; 474:145780.
[28]
Chen K, Chen X, Han X, Fu Y.A comparison study on the release kinetics and mechanism of bovine serum albumin and nanoencapsulated albumin from hydrogel networks.Int J Biol Macromol 2020; 163:1291-1300.
[29]
Xu H, Jiang X, Han X, Cai H, Gao F.Cooking inspired tough, adhesive, and low-temperature tolerant gluten-based organohydrogels for high performance strain sensors.J Mater Chem A Mater Energy Sustain 2021; 9(44):25104-25113.
[30]
Liu W, Sun J, Sun Y, Xiang Y, Yan Y, Han Z, et al.Multifunctional injectable protein-based hydrogel for bone regeneration.Chem Eng J 2020; 394:124875.
[31]
Roshanbinfar K, Kolesnik-Gray M, Angeloni M, Schruefer S, Fiedler M, Schubert DW, et al.Collagen hydrogel containing polyethylenimine-gold nanoparticles for drug release and enhanced beating properties of engineered cardiac tissues.Adv Healthc Mater 2023; 12(20):2202408.
[32]
Xu J, Zhang H, Guo Z, Zhang C, Tan H, Gong G, et al.Fully physical crosslinked bsa-based conductive hydrogels with high strength and fast self-recovery for human motion and wireless electrocardiogram sensing.Int J Biol Macromol 2023; 230:123195.
[33]
Shah K, Vasileva D, Karadaghy A, Zustiak SP.Development and characterization of polyethylene glycol–carbon nanotube hydrogel composite.J Mater Chem B Mater Biol Med 2015; 3(40):7950-7962.
[34]
Zhang B, Liu D, Liang Y, Zhang D, Yan H, Zhang Y.Flexible transparent and conductive films of reduced-graphene-oxide wrapped silver nanowires.Mater Lett 2017; 201:50-53.
[35]
Muxi L, Yuhong Z, Liwen C, Jianquan L, Ting Z, Hua H.Research progress on preparation technology of graphene-reinforced aluminum matrix composites.Mater Res Express 2018; 6(3):032002.
[36]
Li Z, Liu P, Chen S, Liu S, Yu Y, Pan W, et al.High-strength, freeze-resistant, recyclable, and biodegradable polyvinyl alcohol/glycol/wheat protein complex organohydrogel for wearable sensing devices.Biomacromolecules 2023; 24(8):3557-3567.
[37]
Tao X, Zhu K, Chen H, Ye S, Cui P, Dou L, et al.Recyclable, anti-freezing and anti-drying silk fibroin-based hydrogels for ultrasensitive strain sensors and all-hydrogel-state super-capacitors.Mater Today Chem 2023; 32:101624.
[38]
Sun Z, Yi Z, Zhang H, Ma X, Su W, Sun X, et al.Bio-responsive alginate-keratin composite nanogels with enhanced drug loading efficiency for cancer therapy.Carbohydr Polym 2017; 175:159-169.
[39]
Wang J, Hao S, Luo T, Cheng Z, Li W, Gao F, et al.Feather keratin hydrogel for wound repair: preparation, healing effect and biocompatibility evaluation.Colloids Surf B Biointerfaces 2017; 149:341-350.
[40]
Esparza Y, Ullah A, Wu J.Molecular mechanism and characterization of self-assembly of feather keratin gelation.Int J Biol Macromol 2018; 107:290-296.
[41]
Meng R, Du Q, Zhong N, Zhou X, Liu S, Yin S, et al.A tandem electrocatalysis of sulfur reduction by bimetal 2D MOFs.Adv Energy Mater 2021; 11(47):2102819.
[42]
Li C, Yang X, Wang Y, Liu J, Zhang X.Core–shell nanostructured assemblies enable ultrarobust, notch‐resistant and self‐healing materials.Adv Funct Mater 2024; 34(52):2410659.
[43]
Mou L, Qi J, Tang L, Dong R, Xia Y, Gao Y, et al.Highly stretchable and biocompatible liquid metal-elastomer conductors for self-healing electronics.Small 2020; 16(51):2005336.
[44]
Xin Y, Lou Y, Liu H, Wu D, Zhang J.Liquid metals and disulfides: interactive metal‐polymer hybrids for flexible and self‐healable conductor.Adv Mater Technol 2021; 6(3):2000852.
[45]
Xin Y, Peng H, Xu J, Zhang J.Ultrauniform embedded liquid metal in sulfur polymers for recyclable, conductive, and self‐healable materials.Adv Funct Mater 2019; 29(17):1808989.
[46]
Cera L, Gonzalez GM, Liu Q, Choi S, Chantre CO, Lee J, et al.A bioinspired and hierarchically structured shape-memory material.Nat Mater 2021; 20(2):242-249.
[47]
Thelen J, Dickey MD, Ward T.A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing.Lab Chip 2012; 12(20):3961-3967.
[48]
Lin Y, Genzer J, Dickey MD.Attributes, fabrication, and applications of gallium-based liquid metal particles.Adv Sci 2020; 7(12):2000192.
[49]
Chen IF, Lu CF, Su WF.Highly conductive 2D metal-organic framework thin film fabricated by liquid–liquid interfacial reaction using one-pot-synthesized benzenehexathiol.Langmuir 2018; 34(51):15754-15762.
[50]
Gao Y, Jia F, Gao G.Transparent and conductive amino acid-tackified hydrogels as wearable strain sensors.Chem Eng J 2019; 375:121915.
PDF(2606 KB)

Accesses

Citations

Detail

Sections
Recommended

/