Pressure Sensors Based on the Third-generation Semiconductor Silicon Carbide: A Comprehensive Review

Xudong Fang, Chen Wu, Bian Tian, Libo Zhao, Xueyong Wei, Zhuangde Jiang

Engineering ›› 2025

PDF(10865 KB)
PDF(10865 KB)
Engineering ›› 2025 DOI: 10.1016/j.eng.2024.12.036

Pressure Sensors Based on the Third-generation Semiconductor Silicon Carbide: A Comprehensive Review

Author information +
History +

Abstract

Microelectromechanical system (MEMS) high-temperature pressure sensors are widely used in aerospace, petrochemical industries, automotive electronics, and other fields owing to their advantages of miniaturization, lightweight design, simplified signal processing, and high accuracy. In recent years, advances in semiconductor material growth technology and intelligent equipment operation have significantly increased interest in high-temperature pressure sensors based on the third-generation semiconductor silicon carbide (SiC). This review examines the material properties of SiC single crystals and discusses several technologies influencing the performance of SiC pressure sensors, including the piezoresistive effect, ohmic contact, etching processes, and packaging methodologies. Additionally, it explores future research directions in the field. The review highlights the importance of increasing operating temperatures and advancing sensor integration as critical trends for future SiC high-temperature pressure sensor research and applications.

Keywords

Silicon carbide / Pressure sensor / Extreme environment / Etching and packaging / Ohmic contact

Cite this article

Download citation ▾
Xudong Fang, Chen Wu, Bian Tian, Libo Zhao, Xueyong Wei, Zhuangde Jiang. Pressure Sensors Based on the Third-generation Semiconductor Silicon Carbide: A Comprehensive Review. Engineering, 2025 https://doi.org/10.1016/j.eng.2024.12.036

References

[1]
Senesky DG, Jamshidi B, Cheng KB, Pisano AP.Harsh environment silicon carbide sensors for health and performance monitoring of aerospace systems: a review.IEEE Sens J 2009; 9(11):1472-1478.
[2]
Siddall R.The development and fabrication of silicon carbide based metal oxide semiconductor gas sensors for automotive applications.
[3]
Sharma B, Thakur A, Srivastava R.The state-of-the-art review on the sensors used in the automotive sector.In: Proceedings of the 2024 International Conference on Communication, Computer Sciences and Engineering (I C3S E); 2024 May 09–11; Gautam Buddha Nagar, India. Piscataway: IEE E; 2024. p. 1109–14.
[4]
Okojie RS, Neudeck P, Wrbanek J, Wrbanek S, Eldridge J, Steiner TR.Emerging high temperature sensors and electronics for future lunar-martian reactors.In: Proceedings of the American Nuclear Society Nuclear and Emerging Technologies for Space (NET S); 2024 May 6–10; Santa Fe, N M, US A. Washington: NRT S; 2024. p. 20240005086
[5]
Wright NG, Horsfall AB.SiC sensors: a review.J Phys D 2007; 40(20):6345.
[6]
Market Research Future.Magarpatta city: market research future [Internet]; New York: Market Research Future; c2024 [cited 2024 Aug 1].
[7]
Neudeck P.High temperature devices for aerospace applications.In: Proceedings of the International Conference on Silicon Carbide and Related Materials (ICSCR M); 2023 Sep 17–22; Sorrento. Washington: NRT S; 2023. p. 20230009977.
[8]
Chen Y, Xu Q, Zhang X, Kuang M.Materials and sensing mechanisms for high-temperature pressure sensors: a review.IEEE Sens J 2023; 23(22):26910-26924.
[9]
Li X, Liu Q, Pang S, Xu K, Tang H, Sun C.High-temperature piezoresistive pressure sensor based on implantation of oxygen into silicon wafer.Sens Actuators A 2012; 179:277-282.
[10]
Ngo HD, Mukhopadhyay B, Thanh VC, Mackowiak P, Schlichting V, Obermeier E, et al.In: Proceedings of the SENSORS, 2012 IEEE; 2012 Oct 28–31; Taipei, China.IEEE, Piscataway 2012; 1-4.
[11]
Li S, Liang T, Wang W, Hong Y, Zheng T, Xiong J.A novel SOI pressure sensor for high temperature application.J Semicond 2015; 36(1):014014.
[12]
Okojie RS, Lukco D, Nguyen V, Savrun E.4H-SiC piezoresistive pressure sensors at 800°C with observed sensitivity recovery.IEEE Electron Device Lett 2015; 36(2):174-176.
[13]
Guo X, Xun Q, Li Z, Du S.Silicon carbide converters and MEMS devices for high-temperature power electronics: a critical review.Micromachines 2019; 10(6):406.
[14]
Jia M, Yi C, Han Y, Wang L, Li X, Xu G, et al.Hierarchical network enabled flexible textile pressure sensor with ultrabroad response range and high‐temperature resistance.Adv Sci 2022; 9(14):2105738.
[15]
Maboudian R, Carraro C, Senesky DG, Roper CS.Advances in silicon carbide science and technology at the micro-and nanoscales.J Vac Sci Technol A 2013; 31(5):050805.
[16]
Huang X, Zhang X.Investigating the advanced characteristics of SiC based piezoresistive pressure sensors.Mater Today Commun 2020; 25:101493.
[17]
Zhai Y, Li H, Wu H, Tao Z, Xu G, Cao X, et al.Application of bulk silicon carbide technology in high temperature MEMS sensors.Mater Sci Semicond Process 2024; 173:108137.
[18]
Okojie RS, Ned AA, Kurtz AD, Carr WN, IEE E.Alpha(6H)-SiC pressure sensors for high temperature applications.In: Proceedings the IEEE Micro Electro Mechanical Systems Workshop; San Diego, C A, US A. Piscataway: IEE E; 1996. p.146–149.
[19]
Okojie RS.Stable 600°C silicon carbide MEMS pressure transducers.In: Proceedings of the Defense and Security Symposium; 2007 Apr 9–13; Orlando, F L, US A. Washington: SPI E; 2007. p. 65550V.
[20]
Okojie RS, Lukco D, Nguyen V, Savrun E.High temperature SiC pressure sensors with low offset voltage shift.In: Proceedings of the Defense and Security Symposium; 2014 May 5–9; Baltimore, M D, US A. Washington: SPI E; 2014. p. 911308.
[21]
Okojie RS, Lukco D, Chang CW, Savrun E.Characterization of silicon carbide pressure sensors at 800°C.In: Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCER S & EUROSENSORS XXXIII); 2019 Jun 23–27; Berlin, Germany. Piscataway: IEE E; 2019. p. 2080–3.
[22]
Ziermann R, Von J Berg, Obermeier E, Wischmeyer F, Niemann E, Möller H, et al.High temperature piezoresistive β-SiC-on-SOI pressure sensor with on chip SiC thermistor.Mater Sci Eng, 61–62 1999; 576-578.
[23]
Wieczorek G, Schellin B, Obermeier E, Fagnani G, Drera L.SiC based pressure sensor for high-temperature environments.In: Proceedings of the SENSORS, 2007 IEE E; 2007 Oct 28–31; Atlanta, G A, US A. Piscataway: IEE E; 2007. p. 748–51.
[24]
Fang X, Wu C, Zhao Y, Jiang Z, Rong W, Feng Z, et al.A 350° C piezoresistive n-type 4H-SiC pressure sensor for hydraulic and pneumatic pressure tests.J Micromech Microeng 2020; 30(5):055009.
[25]
Patankar MK, Gupta A, Kasinathan M, Behera RP, Jayanthi T, DasGupta N, et al.Design, analysis and fabrication of 4H-SiC diaphragm for piezoresistive MEMS pressure sensor.ISSS J Micro Smart Syst 2021; 10(3):41-50.
[26]
Li Y, Liang T, Lei C, Li Q, Li Z, Ghaffar A, et al.Study on the stability of the electrical connection of high-temperature pressure sensor based on the piezoresistive effect of p-type SiC.Micromachines 2021; 12(2):216.
[27]
Shang HP, Tian B, Wang D, Liu Y, Wang W.Development of all-SiC absolute pressure sensor based on sealed cavity structure.IEEE Sens J 2021; 21(24):27308-27314.
[28]
Tong B, Nguyen TH, Nguyen HQ, Nguyen TH, Nguyen T, Dinh T, et al.Highly sensitive and robust 3C-SiC/Si pressure sensor with stress amplification structure.Materials & Design 2022; 224:111297.
[29]
Wejrzanowski T, Tymicki E, Plocinski T, et al.Design of SiC-doped piezoresistive pressure sensor for high-temperature applications.Sensors 2021; 21(18):6066.
[30]
Wang L, Zhao Y, Yang Y, et al.Two-step femtosecond laser etching for bulk micromachining of 4H–SiC membrane applied in pressure sensing.Ceramics International 2022; 48(9):12359-12367.
[31]
Wu C, Fang X, Kang Q, Fang Z, Wu J, He H, et al.Exploring the nonlinear piezoresistive effect of 4H-SiC and developing MEMS pressure sensors for extreme environments.Microsyst Nanoeng 2023; 9(1):41.
[32]
Wang Q, Ding J, Wang W.Fabrication and temperature coefficient compensation technology of low cost high temperature pressure sensor.Sens Actuators A 2005; 120(2):468-473.
[33]
Yao Z, Liang T, Jia P, Hong Y, Qi L, Lei C, et al.Passive resistor temperature compensation for a high-temperature piezoresistive pressure sensor.Sensors 2016; 16(7):1142.
[34]
Tan Q, Lu F, Ji Y, Wang H, Zhang W, Xiong J.LC temperature-pressure sensor based on HTCC with temperature compensation algorithm for extreme 1100°C applications.Sens Actuators A 2018; 280:437-446.
[35]
Zhou G, Zhao Y, Guo F, Xu W.A smart high accuracy silicon piezoresistive pressure sensor temperature compensation system.Sensors 2014; 14(7):12174-12190.
[36]
Wu R, Li H, Gao L.Research on temperature drift mechanism and compensation method of silicon piezoresistive pressure sensors.AIP Adv 2023; 13(3):035323.
[37]
Wang B, Gu X, Ma L, Yan S.Temperature error correction based on BP neural network in meteorological wireless sensor network.Int J Sens Netw 2017; 23(4):265-278.
[38]
Zhou Q, Liu X, Luo S, Jiang X, Yang D, Yuan W.Design and numerical simulation of capacitive pressure sensor based on silicon carbide.IEEE Sens J 2023; 23(24):30535-30545.
[39]
Young DJ, Du J, Zorman CA, Ko WH.High-temperature single-crystal 3C-SiC capacitive pressure sensor.IEEE Sens J 2004; 4(4):464-470.
[40]
Chen L, Mehregany M.A silicon carbide capacitive pressure sensor for in-cylinder pressure measurement.Sens Actuators A, 145–146 2008; 2-8.
[41]
Marsi N, Majlis BY, Hamzah AA, Abidin HEZ, Mohd-Yasin F.3C-SiC-on-Si based MEMS packaged capacitive pressure sensor operating up to 500°C and 5MPa.In: Proceedings of the 2015 IEEE Regional Symposium on Micro and Nanoelectronics (RS M); 2015 Aug 19–21; Kuala Terengganu, Malaysia. Piscataway: IEE E; 2015. p. 1–4.
[42]
Marsi N, Majlis BY, Hamzah AA, Mohd-Yasin F.High reliability of MEMS packaged capacitive pressure sensor employing 3C-SiC for high temperature.Energy Procedia 2015; 68:471-479.
[43]
Marsi N, Majlis BY, Hamzah AA, Mohd-Yasin F.Development of high temperature resistant of 500°C employing silicon carbide (3C-SiC) based MEMS pressure sensor.Microsyst Technol 2015; 21(2):319-330.
[44]
Marsi N, Majlis BY, Hamzah AA, et al.The Mechanical and Electrical Effects of MEMS Capacitive Pressure Sensor Based 3C‐SiC for Extreme Temperature.Journal of engineering 2014; 2014(1):715167.
[45]
C NCường, Thang TX, Thinh LM, Phuc VDD, Ly TH, Thanh NVK, et al.Analysis of a novel 3C-SiC thin layer on silicon diaphragms for enhanced stress amplification in MEMS piezoresistive pressure sensors.Vietnam J Sci Technol Eng 2024; 66(3):32-38.
[46]
Mu F, Xu Y, Shin S, Wang Y, Xu H, Shang H, et al.Wafer bonding of SiC-AlN at room temperature for all-SiC capacitive pressure sensor.Micromachines 2019; 10(10):635.
[47]
Cao Z, Yin Y, Xu J, Zhang S, Zou J.Design of MEMS high-temperature capacitance pressure sensor based on 4H-SiC.Nanotechnol Precis Eng 2015; 13(3):179-185.
[48]
Zhang Q, Liu Y, Li H, et al.A Review of SiC Sensor Applications in High-Temperature and Radiation Extreme Environments.Sensors 2024; 24(23):7731.
[49]
Li H, Liu J, Sheng T, Li J, Zhang D, Jiang Y.All-SiC fiber-optic sensor for pressure and temperature dual-mode sensing in harsh environments.Sens Actuators A 2024; 373:115388.
[50]
Pulliam WJ, Russler PM, Mlcak R, Murphy KA, Kozikowski CL.Micromachined SiC fiber optic pressure sensors for high-temperature aerospace applications.Environmental and Industrial Sensing; 2000 ; Boston, M A, US A. Washington: SPI E; 2000. p. 21–30.
[51]
Jiang YG, Li J, Zhou Z, Jiang X, Zhang D.Fabrication of all-SiC fiber-optic pressure sensors for high-temperature applications.Sensors 2016; 16(10):1660.
[52]
Liang T, Li W, Lei C, Li Y, Li Z, Xiong J.All-SiC fiber-optic sensor based on direct wafer bonding for high temperature pressure sensing.Photonic Sens 2022; 12(2):130-139.
[53]
Nguyen TK.Piezoresistive Effect in 4H Silicon Carbide towards Mechanical Sensing in Harsh Environments.
[54]
Marsi N, Majlis BY, Mohd-Yasin F, Abidin HEZ, Hamzah AA.A review: properties of silicon carbide materials in MEMS application.Int J Nanoelectron Mater 2020; 13:113-128.
[55]
Nguyen TK, Phan HP, Dinh T, Md AR Foisal, Nguyen NT, Dao DV.High-temperature tolerance of the piezoresistive effect in p-4H-SiC for harsh environment sensing.J Mater Chem C 2018; 6(32):8613-8617.
[56]
Racka-Szmidt K, Stonio B, Filipiak M, Sochacki M.A review: inductively coupled plasma reactive ion etching of silicon carbide.Materials 2021; 15(1):123.
[57]
Zhao Y, Zhao YL, Wang LK.Application of femtosecond laser micromachining in silicon carbide deep etching for fabricating sensitive diaphragm of high temperature pressure sensor.Sens Actuators A 2020; 309:112017.
[58]
Zhuang D, Edgar JH.Wet etching of GaN, AlN, and SiC: a review.Mater Sci Eng 2005; 48(1):1-46.
[59]
Mehregany M, Zorman CA, Roy S, Fleischman AJ, Rajan N.Silicon carbide for microelectromechanical systems.Int Mater Rev 2000; 45(3):85-108.
[60]
Mehregany M, Zorman CA, Rajan N, Wu CH.Silicon carbide MEMS for harsh environments.Proc IEEE 1998; 86(8):1594-1609.
[61]
Yang XL, Pan YN, Gao C, et al.Development of High Quality 8 inch 4H-SiC Substrates.Solid State Phenomena 2023; 344:41-46.
[62]
Fang Z, Wu X, Zhao H, Fang X, Wu C, Zhang D, et al.Pt thin-film resistance thermo detectors with stable interfaces for potential integration in SiC high-temperature pressure sensors.Microsyst Nanoeng 2024; 10(1):133.
[63]
Wijesundara MBJ, Azevedo R.Silicon carbide microsystems for harsh environments.
[64]
Powell AR, Rowland LB.SiC materials-progress, status, and potential roadblocks.Proc IEEE 2002; 90(6):942-955.
[65]
Kimoto T, Cooper JA.Fundamentals of silicon carbide technology: growth, characterization, devices and applications.
[66]
Glass RC, Henshall D, Tsvetkov VF, Carter CH.SiC seeded crystal growth.
[67]
Kamei K, Kusunoki K, Yashiro N, Okada N, Tanaka T, Yauchi A.Solution growth of single crystalline 6H, 4H-SiC using Si-Ti-C melt.J Cryst Growth 2009; 311(3):855-858.
[68]
Musolino M, Carria E, Crippa D, Preti S, Azadmand M, Mauceri M, et al.Development of n-type epitaxial growth on 200 mm 4H-SiC wafers for the next generation of power devices.Microelectron Eng 2023; 274:111976.
[69]
Ujihara T, Munetoh S, Kusunoki K, Kamei K, Usami N, Fujiwara K, et al.Crystal quality of a 6H-SiC layer grown over macrodefects by liquid-phase epitaxy: a Raman spectroscopic study.Thin Solid Films 2005; 476(1):206-209.
[70]
Yakimova R, Janz Eén.Current status and advances in the growth of SiC.Diam Relat Mater 2000; 9(3–6):432-438.
[71]
Kordina O, Hallin C, Ellison A, Bakin AS, Ivanov IG, Henry A, et al.High temperature chemical vapor deposition of SiC.Appl Phys Lett 1996; 69(10):1456-1458.
[72]
Frank FC.Capillary equilibria of dislocated crystals.Acta Crystallogr 1951; 4(6):497-501.
[73]
Nakamura D, Gunjishima I, Yamaguchi S, Ito T, Okamoto A, Kondo H, et al.Ultrahigh-quality silicon carbide single crystals.Nature 2004; 430(7003):1009-1012.
[74]
Uehigashi H, Fukada K, Ito M, Kamata I, Fujibayashi H, Naitou M, et al.Analysis and reduction of stacking faults in fast epitaxial growth.Mater Sci Forum 2016; 858:173-176.
[75]
Powell AR, Sumakeris JJ, Khlebnikov Y, Paisley MJ, Leonard RT, Deyneka E, et al.Bulk growth of large area SiC crystals.Mater Sci Forum 2016; 858:5-10.
[76]
Phan HP.Piezoresistive effect of p-type single crystalline 3C-SiC: Silicon carbide mechanical sensors for harsh environments.
[77]
Shor JS, Goldstein D, Kurtz AD.Characterization of n-type beta-SiC as a piezoresistor.IEEE transactions on electron devices 1993; 40(6):1093-1099.
[78]
Strass J, Eickhoff M, Kroetz G.The influence of crystal quality on the piezoresistive effect of p-SiC between RT and 450◦C measured by using microstructures.In: Proceedings of the Transducer 97 International Conference on Solid State Sensors and Actuators; 1997 June 19; Chicago, US A: IEE E. 1997. p. 1439-1442.
[79]
Eickhoff M, Stutzmann M.Influence of crystal defects on the piezoresistive properties of 3C–SiC.Journal of applied physics 2004; 96(5):2878-2888.
[80]
Wu CH, Zorman CA, Mehregany M.Fabrication and testing of bulk micromachined silicon carbide piezoresistive pressure sensors for high temperature applications.IEEE Sensors Journal 2006; 6(2):316-324.
[81]
Shor JS, Bemis L, Kurtz AD.Characterization of monolithic n-type 6H-SiC piezoresistive sensing elements.IEEE Transactions on Electron Devices 1994; 41(5):661-665.
[82]
Okojie RS, Ned AA, Kurtz AD, et al.Characterization of highly doped n-and p-type 6H-SiC piezoresistors.IEEE transactions on electron devices 1998; 45(4):785-790.
[83]
Via FL, Camarda M, La A Magna.Mechanisms of growth and defect properties of epitaxial SiC.Appl Phys Rev 2014; 1(3):031301.
[84]
Larkin DJ, Neudeck PG, Powell JA, Matus LG.Site-competition epitaxy for superior silicon carbide electronics.Appl Phys Lett 1994; 65(13):1659-1661.
[85]
Tsuchida H, Kamata I, Miyazawa T, Ito M, Zhang X, Nagano M.Recent advances in 4H-SiC epitaxy for high-voltage power devices.Mater Sci Semicond Process 2018; 78:2-12.
[86]
Wahab Q, Ellison A, Henry A, Janz Eén, Hallin C, Di J Persio, et al.Influence of epitaxial growth and substrate-induced defects on the breakdown of 4H-SiC Schottky diodes.Appl Phys Lett 2000; 76(19):2725-2727.
[87]
Kimoto T, Miyamoto N, Matsunami H.Performance limiting surface defects in SiC epitaxial p-n junction diodes.IEEE Trans Electron Dev 1999; 46(3):471-477.
[88]
Elishakoff I.Handbook on Timoshenko-Ehrenfest beam and Uflyand-Mindlin plate theories.
[89]
Hjelmstad KD.Fundamentals of structural mechanics.Ed 2. New York: Springer; 2007.
[90]
Boresi AP, Chong K, Lee JD.Elasticity in engineering mechanics.
[91]
Bao M.Analysis and design principles of MEMS devices.
[92]
Wu C, Fang X, Guo X, Zhao L, Tian B, Jiang Z.Optimal design of SiC piezoresistive pressure sensor considering material anisotropy.Rev Sci Instrum 2020; 91(1):015004.
[93]
Tian B, Shang H, Zhao L, Wang W.Performance optimization of SiC piezoresistive pressure sensor through suitable piezoresistor design.Microsyst Technol 2021; 27(8):3083-3093.
[94]
Barlian AA, Park WT, Mallon JR, Rastegar AJ, Pruitt BL.Review:semiconductor piezoresistance for microsystems.Proc IEEE 2009; 97(3):513-552.
[95]
Nguyen T, Dinh T, Foisal ARM, Phan HP, Nguyen TK, Nguyen NT, et al.Giant piezoresistive effect by optoelectronic coupling in a heterojunction.Nat Commun 2019; 10(1):4139.
[96]
Phan HP, Dao DV, Nakamura K, Dimitrijev S, Nguyen NT.The piezoresistive effect of SiC for MEMS sensors at high temperatures: a review.J Microelectromech Syst 2015; 24(6):1663-1677.
[97]
Nguyen TK, Phan HP, Dinh T, Dowling KM, Foisal ARM, Senesky DG, et al.Highly sensitive 4H-SiC pressure sensor at cryogenic and elevated temperatures.Mater Des 2018; 156:441-445.
[98]
Bhumika SB, Chaitra N, Chetankumar PF, et al.Design and analysis of peculiar piezoresistive pressure sensor (PPPS) for distinct application.In: Proceedings of the 2023 9th International Conference on Signal Processing and Communication (ICS C); 2023 Dec 21–23; NOID A, India. Piscataway: IEE E; 2023. p. 657–62.
[99]
Nguyen TK, Phan HP, Dinh T, Han J, Dimitrijev S, Tanner P, et al.Experimental investigation of piezoresistive effect in p-type 4H-SiC.IEEE Electron Device Lett 2017; 38(7):955-958.
[100]
Meng M, Fu R, Xue T, Shen M, Hu Y, Liu Y, et al.Nonlinear piezoresistive effect of 4H-SiC for applications of high temperature pressure sensors.J Mater Sci 2024; 59(38):18105-18119.
[101]
Nguyen TK, Phan HP, Dinh T, Toriyama T, Nakamura K, Foisal ARM, et al.Isotropic piezoresistance of p-type 4H-SiC in (0001) plane.Appl Phys Lett 2018; 113(1):012104.
[102]
Li Y, Liang T, Lei C, Hong Y, Li W, Li Z, et al.Quantitative analysis of piezoresistive characteristic based on a P-type 4H-SiC epitaxial layer.Micromachines 2019; 10(10):629.
[103]
Solid MJP.State and Semiconductor Physics.
[104]
Liu G, Tuttle BR, Dhar S.Silicon carbide: a unique platform for metal-oxide-semiconductor physics.Appl Phys Rev 2015; 2(2):021307.
[105]
Akiyama T, Briand D, De NF Rooij.Design-dependent gauge factors of highly doped n-type 4H-SiC piezoresistors.J Micromech Microeng 2012; 22(8):085034.
[106]
Phan HP, Tanner P, Dao DV, Wang L, Nguyen NT, Zhu Y, et al.Piezoresistive effect of p-type single crystalline 3C-SiC thin film.IEEE Electron Device Lett 2014; 35(3):399-401.
[107]
Porter LM, Mohammad FA.Review of issues pertaining to the development of contacts to silicon carbide: 1996–2002.In: Cheung R, editor. Silicon Carbide Microelectromechanical Systems for Harsh Environments. London: Imperial College Press; 2006. p. 46–101.
[108]
Xue T, Huang Z, Zhang X, Meng M, Yu S, Chen T, et al.Study on high temperature reliability of electrical interconnection material of SiC pressure sensor.J Mater Sci Mater Electron 2024; 35(10):700.
[109]
Lu JG, Luo YY, Li WH, Meng FB, Wang LZ, et al.Storage life test and failure analysis of aerospace relays.Trans China Electrotech Soc 2009; 24(2):54-59.
[110]
Schramp J.Metallization failures in semiconductor devices.
[111]
Badal Pà, Bongiorno C, Fiorenza P, Bellocchi G, Smecca E, Vivona M, et al.Electrical and structural properties of Ohmic contacts of SiC diodes fabricated on thin wafers.Solid State Phenom 2024; 359:97-103.
[112]
Lewke D, Supplieth F, von M Ringleben, et al.Study of Laser Backside Ohmic Contact Formation of SiC-Ni Interface to Evaluate the Process Influence on the Electrical Characteristics.Materials Science Forum. Trans Tech Publications Ltd 2022; 180-184.
[113]
Marinova T, Kakanakova-Georgieva A, Krastev V, Kakanakov R, Neshev M, Kassamakova L, et al.Nickel based Ohmic contacts on SiC.Mater Sci Eng 1997; 46(1–3):223-226.
[114]
Han SY, Kim KH, Kim JK, Jang HW, Lee KH, Kim NK, et al.Ohmic contact formation mechanism of Ni on n-type 4H-SiC.Appl Phys Lett 2001; 79(12):1816-1818.
[115]
Nikitina I, Vassilevski K, Horsfall A, et al.Phase composition and electrical characteristics of nickel silicide Schottky contacts formed on 4H–SiC.Semiconductor science and technology 2009; 24(5):055006.
[116]
Johnson BJ, Capano MA.Mechanism of ohmic behavior of Al/Ti contacts to p-type 4H-SiC after annealing.Journal of Applied physics 2004; 95(10):5616-5620.
[117]
P Bécz, Tóth L, di MA Forte-Poisson, Vacas J.Ti3SiC2 formed in annealed Al/Ti contacts to p-type SiC.Appl Surf Sci 2003; 206(1–4):8-11.
[118]
Wang Z, Tsukimoto S, Saito M, Ito K, Murakami M, Ikuhara Y.Ohmic contacts on silicon carbide: the first monolayer and its electronic effect.Phys Rev B 2009; 80(24):245303.
[119]
Yang Z, Zhou Y, Wang T, Liu Q, Lu Z.Crack propagation behaviors at Cu/SiC interface by molecular dynamics simulation.Comput Mater Sci 2014; 82:17-25.
[120]
Xiong Y, Hu W, Shu Y, et al.Atomistic simulation on the generation of defects in Cu/SiC composites during cooling.Journal of Materials Science & Technology 2022; 123:1-12.
[121]
Zhou X, Bu W, Song S, Sansoz F, Huang X.Multiscale modeling of interfacial mechanical behaviours of SiC/Mg nanocomposites.Mater Des 2019; 182:108093.
[122]
Wang Y, Chen N.Atomistic investigations of misfit dislocation for Pt/SiC (111) interface fracture.Modelling Simul Mater Sci Eng 2010; 18(6):065012.
[123]
Dandekar CR, Shin YC.Molecular dynamics based cohesive zone law for describing Al-SiC interface mechanics.Compos Part A 2011; 42(4):355-363.
[124]
Qiu C, Su Y, Yang J, Wang X, Chen B, Ouyang Q, et al.Microstructural characteristics and mechanical behavior of SiC (CNT)/Al multiphase interfacial micro-zones via molecular dynamics simulations.Compos Part B 2021; 220:108996.
[125]
Hähnel A, Pippel E, Ischenko V, Woltersdorf J.Nanostructuring in Ni/SiC reaction layers, investigated by imaging of atomic columns and DFT calculations.Mater Chem Phys 2009; 114(2–3):802-808.
[126]
Zhou TT, Huang CZ, Liu HL, Zou B, Zhu HT.Molecular dynamics simulation of Al2O3-SiC interface.Mater Sci Forum 2011;697–698:192–7.
[127]
Ouyang Y, Wu J, Wen J, et al.Molecular dynamics simulation of diffusion for Ni–Zr interface.International Journal of Modern Physics B 2020; 34(25):2050217.
[128]
Jiang L, Plank NOV, Cheung R, Brown R, Mount A.Surface characterization of inductively coupled plasma etched SiC in SF6/O2.Microelectron Eng, 67–68 2003; 369-375.
[129]
Gabor T, Stickler R.Chemical etching studies and transmission electron microscopy of silicon carbide.Nature 1963; 199(4898):1054-1056.
[130]
Masakazu K, Ohtani N, Takahashi J, Yashiro H, Kanaya M.Mechanism of molten KOH etching of SiC single crystals: comparative study with thermal oxidation.
[131]
Zhang Y, Chen H, Liu D, Deng H.High efficient polishing of sliced 4H-SiC (0001) by molten KOH etching.Appl Surf Sci 2020; 525:146532.
[132]
Gao D, Howe RT, Maboudian R.High-selectivity etching of polycrystalline 3C-SiC films using HBr-based transformer coupled plasma.Appl Phys Lett 2003; 82(11):1742-1744.
[133]
Katsuno M, Ohtani N, Takahashi J, Yashiro H, Kanaya M.Mechanism of molten KOH etching of SiC single crystals: comparative study with thermal oxidation.
[134]
Xu S, Jiang F, Gao F, Wang L, Teng J, Fu D, et al.Single-crystal integrated photoanodes based on 4H-SiC nanohole arrays for boosting photoelectrochemical water splitting activity.ACS Appl Mater Interfaces 2020; 12(18):20469-20478.
[135]
Xu S, Jiang F, Lu X, Ma Y, Fu D, Yang W, et al.Carbon-based hole storage engineering toward ultralow onset potential and high photocurrent density of integrated SiC photoanodes.
[136]
Wang K, Wang H, Chen C, Li W, Wang L, Hu F, et al.High-performance ultraviolet photodetector based on single-crystal integrated self-supporting 4H-SiC nanohole arrays.ACS Appl Mater Interfaces 2023; 15(19):23457-23469.
[137]
Wang H, Li W, Gloginji Mć, Petrovi Sć, Krupska TV, Turov VV, et al.High-sensitivity photoelectrochemical ultraviolet photodetector with stable pH-universal adaptability based on whole single-crystal integrated self-supporting 4H-SiC nanoarrays.Small 2024; 20(31):2400045.
[138]
Chen Y, Yu P, Zhong Y, Dong S, Hou M, Liu H, et al.Review—progress in electrochemical etching of third-generation semiconductors.ECS J Solid State Sci Technol 2023; 12(4):045004.
[139]
Liao Y, Shin SH, Kim M.Ultraviolet antireflective porous nanoscale periodic hole array of 4H-SiC by Photon-Enhanced Metal-assisted chemical etching.Applied Surface Science 2022; 581:152387.
[140]
Chen Y, Zhang C, Li L, Zhou S, Chen X, Gao J, et al.Hybrid anodic and metal-assisted chemical etching method enabling fabrication of silicon carbide nanowires.Small 2019; 15(7):1803898.
[141]
Shi D, Chen Y, Li Z, Dong S, Li L, Hou M, et al.Anisotropic charge transport enabling high‐throughput and high‐aspect‐ratio wet etching of silicon carbide.Small Methods 2022; 6(8):2200329.
[142]
Khuat V, Ma Y, Si J, Chen T, Chen F, Hou X.Fabrication of through holes in silicon carbide using femtosecond laser irradiation and acid etching.Appl Surf Sci 2014; 289:529-532.
[143]
Gao B, Chen T, Khuat V, Si J, Hou X.Fabrication of grating structures on silicon carbide by femtosecond laser irradiation and wet etching.Chin Opt Lett 2016; 14(2):021407.
[144]
Lazar M, Jacquier C, Dubois C, Raynaud C, Ferro G, Planson D, et al.P-type SiC layers formed by VLS induced selective epitaxial growth.Mater Sci Forum, 483–485 2005; 633-636.
[145]
Yan R, Li L, Mo JH, Cui YX, Fu XC, et al.Technology of SiC shallow groove etching by ICP-RIE.Semicond Technol 2014; 8:600-604.
[146]
Wesch W.Silicon carbide: synthesis and processing.Nucl Instrum Methods Phys Res B 1996; 116(1–4):305-321.
[147]
Subbiah N, Feng Q, Ramirez KAB, Wilde J, Bruckner G.Implementation of high-temperature pressure sensor package and characterization up to 500°C.In: Proceedings of the 2018 IEE E 20th Electronics Packaging Technology Conference (EPT C); 2018 Dec 4–7; Singapore. Piscataway: IEE E; 2018. p. 355–8.
[148]
Chen LY, Johnson RW, Neudeck PG, Beheim GM, Spry DJ, Meredith RD.Packaging technologies for 500°C SiC electronics and sensors.Mater Sci Forum, 717–720 2012; 1033-1036.
[149]
Subbiah N, Ghosh S, Wilde J, Zeiser R.Comparison of packaging concepts for high-temperature pressure sensors at 500°C.In: Proceedings of the 2017 IEE E 67th Electronic Components and Technology Conference (ECT C); 2017 May 30–Jun 2; Orlando, F L, US A. Piscataway: IEE E; 2017. p. 945–55.
[150]
Campabadal F, Carreras JL, Cabruja E.Flip-chip packaging of piezoresistive pressure sensors.Sens Actuators A 2006; 132(1):415-419.
[151]
Lv HJ, Yu HY, Hou JH, Geng T.A study of a silicon carbide capacitive pressure sensor applied in harsh environment.Appl Mech Mater, 241–244 2012; 984-987.
[152]
Waber T, Pahl W, Schmidt M, Feiertag G, Stufler S, Dudek R, et al.Flip-chip packaging of piezoresistive barometric pressure sensors.In: Proceedings of the SPIE Microtechnologies; 2013 Apr 24–26; Grenoble, France. Washington: SPI E; 2013. p. 87632D.
[153]
Wang Q, Yang X, Zhang Y, Ding J.A simple thermo-compression bonding setup for wire bonding interconnection in pressure sensor silicon chip packaging.
[154]
Tian Y, Wang C, Lum I, Mayer M, Jung JP, Zhou Y.Investigation of ultrasonic copper wire wedge bonding on Au/Ni plated Cu substrates at ambient temperature.J Mater process Technol 2008; 208(1–3):179-186.
[155]
Breach CD, Wulff FW.A brief review of selected aspects of the materials science of ball bonding.Microelectron Reliab 2010; 50(1):1-20.
[156]
Guo S, Eriksen H, Childress K, Fink A, Hoffman M.High temperature smart-cut SOI pressure sensor.Sens Actuators A 2009; 154(2):255-260.
[157]
Au KY, Che FX, Ching EWL.Extremely high temperature and high pressure (x-HTHP) endurable SOI device and sensor packaging for harsh environment applications.In: Proceedings of the 2017 IEE E 67th Electronic Components and Technology Conference (ECT C); 2017 May 30–Jun 2; Orlando, F L, US A. Piscataway: IEE E; 2017. p. 1107–12.
[158]
Tian Y, Wang C, Zhou YN.Bonding mechanism of ultrasonic wedge bonding of copper wire on Au/Ni/Cu substrate.Trans Nonferrous Met Soc China 2008; 18(1):132-137.
[159]
Jiang ZD, Zhao LB, Zhao YL, Liu YH, Prewett PD, Jiang KC.Oil-filled Isolated high pressure sensor for high temperature application.Key Eng Mater 2010; 437:397-401.
[160]
Zhang Z, Wong CP.Recent advances in flip-chip underfill: materials, process, and reliability.IEEE Trans Adv Packag 2004; 27(3):515-524.
[161]
Liu Z, Huang X, Zhu Z, Chen J, Jin Y.Design and optimization of a TSV 3D packaged pressure sensor for high temperature and dynamic measurement.In: Proceedings of the 2012 13th International Conference on Electronic Packaging Technology & High Density Packaging; 2012 Aug 13–16; Guilin, China. Piscataway: IEE E; 2012. p. 60–3.
[162]
Dutta I, Gopinath A, Marshall C.Underfill constraint effects during thermomechanical cycling of flip-chip solder joints.J Electron Mater 2002; 31(4):253-264.
[163]
Masheeb F, Stefanescu S, Ned AA, Kurtz AD, Beheim G.Leadless sensor packaging for high temperature applications.In: Proceedings of the Technical Digest. MEM S 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02C H37266); 2002 Jan 24–24; Las Vegas, N V, US A. Piscataway: IEE E; 2002. p. 392–5.
[164]
Lee H, Smet V, Tummala R.A review of SiC power module packaging technologies: challenges, advances, and emerging issues.IEEE J Emerg Sel Top Power Electron 2020; 8(1):239-255.
[165]
ÅSandvand , Halvorsen E, Jakobsen H.In situ observation of metal properties in a piezoresistive pressure sensor.J Microelectromech Syst 2017; 26(6):1381-1388.
[166]
Roberts J, Hussain S, Rahim MK, Motalab M, Suhling JC, et al.Characterization of microprocessor chip stress distributions during component packaging and thermal cycling.In: Proceedings of the 2010 Proceedings 60th Electronic Components and Technology Conference (ECT C); 2010 Jun 1–4; Las Vegas, N V, US A. Piscataway: IEE E; 2010. p. 1281–95.
[167]
Zhang X, Park S, Judy MW.Accurate assessment of packaging stress effects on MEMS sensors by measurement and sensor–package interaction simulations.J Microelectromech Syst 2007; 16(3):639-649.
[168]
Chang YY, Chung H, Lwo BJ, Tseng KF.In situ stress and reliability monitoring on plastic packaging through piezoresistive stress sensor.IEEE Trans Compon Packag Manuf Technol 2013; 3(8):1358-1363.
[169]
Hamid Y, Hutt DA, Whalley DC, Craddock R.Relative contributions of packaging elements to the thermal hysteresis of a MEMS pressure sensor.Sensors 2020; 20(6):1727.
[170]
Hunter GW, Neudeck PG, Okojie RS, Beheim GM, Powell JA, Chen L.An overview of high-temperature electronics and sensor development at NASA Glenn Research Center.J Turbomach 2003; 125(4):658-664.
[171]
Fang X, Wu C, Guo X, Zhao L, Zhao Y, Jiang Z, et al.Development of a 4H-SiC piezoresistive pressure sensor for high temperature applications.In: Proceedings of the 2019 IEE E 14th International Conference on Nano/Micro Engineered and Molecular Systems (NEM S); 2019 Apr 11–14; Bangkok, Thailand. Piscataway: IEE E; 2019. p. 105–9.
[172]
Yuan HH, Ching EWL, Sing CY, Chidambaram V, Bum LJ, Rong EPJ, et al.Extreme high pressure and high temperature package development.In: Proceedings of the 2013 IEE E 15th Electronics Packaging Technology Conference (EPT C 2013); 2013 Dec 11–13; Singapore. Piscataway: IEE E; 2013. p. 379–83.
[173]
Nowak D, Sawicki S, Dziedzic A.High temperature LTCC package for gas sensor.In: Proceedings of the 2010 International Students and Young Scientists Workshop “Photonics and Microsystems”; 2010 Jun 25–27; Szklarska Poreba, Poland. Piscataway: IEE E; 2010. p. 64–65.
[174]
Von J Berg, Ziermann R, Reichert W, Obermeier E, Eickhoff M, Krötz G, et al.High temperature piezoresistive β-SiC-on-SOI pressure sensor for combustion engines.Mater Sci Forum, 264–268 1998; 1101-1106.
[175]
Li C, Jia P, Sun B, Hong Y, Xue Y, Jia M, et al.A differential split-type pressure sensor for high-temperature applications.IEEE Access 2021; 9:20641-20647.
[176]
Tian B, Shang H, Zhao L, et al.Hermeticity analysis on SiC cavity structure for all-SiC piezoresistive pressure sensor.Sensors 2021; 21(2):379.
[177]
Wang F, Yang X, Zhao Y, Wu J, Guo Z, He Z, et al.Low-temperature direct bonding of SiC to Si via plasma activation.Appl Sci 2022; 12(7):3261.
[178]
Xu J, Wang C, Li D, Cheng J, Wang Y, Hang C, et al.Fabrication of SiC/Si, SiC/SiO2, and SiC/glass heterostructures via VUV/O3 activated direct bonding at low temperature.Ceram Int 2019; 45(3):4094-4098.
[179]
Tang W, Chen Z, Tian D, Zhang H.Fabrication of SiC MEMS pressure sensor by anodic bonding.In: Proceedings of the 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems; 2008 Jun 3–5; Hong Kong, CHIN A. New York: ASM E; 2008. p. 1–8.
[180]
Zhang D, Zhao Y, Jiang Y.SiC-SiC bonding methods for ultra high-temperature pressure sensors.Nanotechnol Precis Eng 2014; 12(4):258-262.
[181]
Zheng S, Li K, Chen Y, Yan X, Zhan D, Fu J.Effect of different smear layers on the bonding performance and durability of four adhesive systems.Chin J Tissue Eng Res 2020; 24(4):517-523.
[182]
El N Hawi, Gerussi F, Koebel MM.Glass-to-glass anodic bonding with liquid tin based fillers: a mechanistic study.ECS J Solid State Sci Technol 2013; 2(9):Q165-Q171.
[183]
Xu J, Du Y, Tian Y, et al.Progress in wafer bonding technology towards MEMS, high-power electronics, optoelectronics, and optofluidics.International Journal of Optomechatronics 2020; 14(1):94-118.
[184]
Takeuchi K, Higurashi E, Wang J, Yamauchi A, Suga T.Removal of adsorbed water on Si wafers for surface activated bonding.In: Proceedings of the 2022 IEEE CPMT Symposium Japan (ICS J); 2022 Nov 9–11; Kyoto, Japan. Piscataway: IEE E; 2022. p. 61–4.
[185]
Mu F, Iguchi K, Nakazawa H, Takahashi Y, He R, Fujino M, et al.Room temperature SiC-SiO2 wafer bonding enhanced by using an intermediate Si nano layer.ECS J Solid State Sci Technol 2017; 6(5):P227.
[186]
Mu F, Iguchi K, Nakazawa H, Takahashi Y, Fujino M, He R, et al.A comparison study: direct wafer bonding of SiC-SiC by standard surface-activated bonding and modified surface-activated bonding with Si-containing Ar ion beam.Appl Phys Express 2016; 9(8):081302.
[187]
Zhao X, Qu Y, Deng N, Yuan J, Du L, Hu W, et al.Structural and phonon transport analysis of surface-activated bonded SiC-SiC homogenous interfaces.Appl Surf Sci 2024; 678:161139.
[188]
Kim YK, Kim EK, Kim SW, Ju BK.Low temperature epoxy bonding for wafer level MEMS packaging.Sens Actuators A 2008; 143(2):323-328.
[189]
Katsoulis C, Kandare E, Kandola BK.The effect of nanoparticles on structural morphology, thermal and flammability properties of two epoxy resins with different functionalities.Polym Degrad Stabil 2011; 96(4):529-540.
[190]
Hanu LG, Simon GP, Cheng YB.Thermal stability and flammability of silicone polymer composites.Polym Degrad Stabil 2006; 91(6):1373-1379.
[191]
Wang X, Wang J, Wang H.Preparation, structural evolution, and performance of heat-resistant organosilicon polymer adhesives for joining SiC ceramics.J Adhes 2019; 95(2):85-102.
[192]
Choa SH, Ko BH, Lee HS.Recent trends of MEMS packaging and bonding technology.J Microelectron Packag Soc 2017; 24(4):9-17.
[193]
Zhao C, Wang J, Zhang SM, Zou JB.Glass frit as a hermetic joining material for bonding among three wafers with metallic film feed-through.Key Eng Mater, 609–610 2014; 489-494.
[194]
Knechtel R, Wiemer M, Frömel J.Wafer level encapsulation of microsystems using glass frit bonding.Microsyst Technol 2006; 12(5):468-472.
[195]
Murayama K, Furukawa C, Yamasaki S, Ohno Y, Kajisa T, Nagase M.Biosensing beyond Debye screening length using epitaxial graphene field-effect transistors on SiC substrate.Surf Interfaces 2024; 54:105279.
[196]
Mikhailova TS, Kalusulingam R, Bogush IY, Myasoedova TN.Impedance sensors based on silicon-carbon films for detection low concentrations of organic vapors.Solid-State Electron 2024; 220:108978.
[197]
Chen Z, Luo Z, Wu Y, Tang X, Zheng Z.High-precision voltage balancer for series-connected SiC MOSFETs application.J Electr Eng Technol 2024; in press.
AI Summary AI Mindmap
PDF(10865 KB)

Accesses

Citations

Detail

Sections
Recommended

/