Electron Transfer Pathways and Vanadium Isotope Fractionation During Microbially Mediated Vanadate Reduction

Wenyue Yan, Baogang Zhang, Yi’na Li, Jianping Lu, Yangmei Fei, Shungui Zhou, Hailiang Dong, Fang Huang

Engineering ›› 2025, Vol. 46 ›› Issue (3) : 257-266.

PDF(2335 KB)
PDF(2335 KB)
Engineering ›› 2025, Vol. 46 ›› Issue (3) : 257-266. DOI: 10.1016/j.eng.2025.01.001
Research
Article

Electron Transfer Pathways and Vanadium Isotope Fractionation During Microbially Mediated Vanadate Reduction

Author information +
History +

Abstract

Microbial vanadate (V(V)) reduction is a key process for environmental geochemistry and detoxification of vanadium (V). However, the electron transfer pathways and V isotope fractionation involved in this process are not yet fully understood. In this study, the V(V) reduction mechanisms with concomitant V isotope fractionation by the Gram-positive bacterium Bacillus subtilis (B. subtilis) and the Gram-negative bacterium Thauera humireducens (T. humireducens) were investigated. Both strains could effectively reduce V(V), removing (90.5% ± 1.6%) and (93.0% ± 1.8%) of V(V) respectively from an initial concentration of 50 mg·L−1 during a 10-day incubation period. V(V) was bioreduced to insoluble vanadium (IV), which was distributed both inside and outside the cells. Electron transfer via cytochrome C, nicotinamide adenine dinucleotide, and glutathione played critical roles in V(V) reduction. Metabolomic analysis showed that differentially enriched metabolites (quinone, biotin, and riboflavin) mediated electron transfer in both strains. The aqueous V in the remaining solution became isotopically heavier as V(V) bioreduction proceeded. The obtained V isotope composition dynamics followed a Rayleigh fractionation model, and the isotope enrichment factor (ε) was (–0.54‰ ± 0.04‰) for B. subtilis and (–0.32‰ ± 0.03‰) for T. humireducens, with an insignificant difference. This study provides molecular insights into electron transfer for V(V) bioreduction and reveals V isotope fractionation during this bioprocess, which is helpful for understanding V biogeochemistry and developing novel strategies for V remediation.

Graphical abstract

Keywords

Vanadate / Bioreduction / Vanadium isotope fractionation / Electron transfer

Cite this article

Download citation ▾
Wenyue Yan, Baogang Zhang, Yi’na Li, Jianping Lu, Yangmei Fei, Shungui Zhou, Hailiang Dong, Fang Huang. Electron Transfer Pathways and Vanadium Isotope Fractionation During Microbially Mediated Vanadate Reduction. Engineering, 2025, 46(3): 257‒266 https://doi.org/10.1016/j.eng.2025.01.001

References

[1]
Bellenger JP, Wichard T, Kustka AB, Kraepiel AML.Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores.Nat Geosci 2008; 1:243-246.
[2]
Schlesinger WH, Klein EM, Vengosh A.Global biogeochemical cycle of vanadium.Proc Natl Acad Sci 2017; 114:E11092-E11100.
[3]
Lu Z, Zhang Y, Wang H, Xia C, Liu Y, Dou S, et al.Transparent thermally tunable microwave absorber prototype based on patterned VO2 film.Engineering 2023; 29:198-206.
[4]
Zhang B, Zhang H, He J, Zhou S, Dong H, Rinklebe J, et al.Vanadium in the environment: biogeochemistry and bioremediation.Environ Sci Technol 2023; 57:14770-14786.
[5]
Watt JAJ, Burke IT, Edwards RA, Malcolm HM, Mayes WM, Olszewska JP, et al.Vanadium: a re-emerging environmental hazard.Environ Sci Technol 2018; 52:11973-11974.
[6]
Jia L, Anthony EJ, Charland JP.Investigation of vanadium compounds in ashes from a CFBC firing 100% petroleum coke.Energy Fuels 2002; 16:397-403.
[7]
Gustafsson JP.Vanadium geochemistry in the biogeosphere–speciation, solid-solution interactions, and ecotoxicity.Appl Geochem 2019; 102:1-25.
[8]
Huang JH, Huang F, Evans L, Glasauer S.Vanadium: global (bio)geochemistry.Chem Geol 2015; 417:68-89.
[9]
Zhang H, Jiao S, Xing Y, Jiang B, Zhou S, Zhang B.Unveiling soil microbiome adaptation and survival strategy under vanadium stress in nationwide mining environments.J Geophys Res: Biogeosci 2024; 129:e2023JG007655.
[10]
Shaheen SM, Alessi DS, Tack FMG, Ok YS, Kim K, Gustafsson JP, et al.Redox chemistry of vanadium in soils and sediments: interactions with colloidal materials, mobilization, speciation, and relevant environmental implications—a review.Adv Colloid Interface Sci 2019; 265:1-13.
[11]
He J, Zhang B, Tan C, Tang Y, Shen Z, Wu S, et al.Distinguishing contributions of diverse sediment components to vanadium transport, immobilization and transformation in aquifer.Water Res 2024; 265:122248.
[12]
Lai C, Dong Q, Chen J, Zhu Q, Yang X, Chen W, et al.Role of extracellular polymeric substances in a methane based membrane biofilm reactor reducing vanadate.Environ Sci Technol 2018; 52:10680-10688.
[13]
Yan G, Sun X, Dong Y, Gao W, Gao P, Li B, et al.Vanadate reducing bacteria and archaea may use different mechanisms to reduce vanadate in vanadium contaminated riverine ecosystems as revealed by the combination of DNA-SIP and metagenomic-binning.Water Res 2022; 226:119247.
[14]
Sun X, Qiu L, Kolton M, Häggblom M, Xu R, Kong T, et al.Reduction by Polaromonas spp. in vanadium mine tailings.Environ Sci Technol 2020; 54:14442-14454.
[15]
Ortiz-Bernad I, Anderson RT, Vrionis HA, Lovley DR.Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater.Appl Environ Microb 2004; 70:3091-3095.
[16]
Carpentier W, Sandra K, De Smet I, Brig Aé, De Smet L, Van Beeumen J.Microbial reduction and precipitation of vanadium by Shewanella oneidensis.Appl Environ Microbiol 2003; 69:3636-3639.
[17]
Zhang J, Dong H, Zhao L, McCarrick R, Agrawal A.Microbial reduction of precipitation of vanadium by mesophilic and thermophilic methanogens.Chem Geol 2014; 370:29-39.
[18]
Wang G, Zhang B, Li S, Yang M, Yin C.Simultaneous microbial reduction of vanadium (V) and chromium (VI) by Shewanella loihica PV-4.Bioresour Technol 2017; 227:353-358.
[19]
Wu F, Owens JD, Scholz F, Huang L, Li S, Riedinger N, et al.Sedimentary vanadium isotope signatures in low oxygen marine conditions.Geochim Cosmochim Acta 2020; 284:134-155.
[20]
Wu F, Qin T, Li X, Liu Y, Huang J, Wu Z, et al.First-principles investigation of vanadium isotope fractionation in solution and during adsorption.Earth Planet Sci Lett 2015; 426:216-224.
[21]
Ch Jételat, Nielsen SG, Auro M, Carpenter D, Mundy L, Thomas PJ.Vanadium stable isotopes in biota of terrestrial and aquatic food chains.Environ Sci Technol 2021; 55:4813-4821.
[22]
Chen Z, Ding X, Kiseeva ES, Lin X, Huang J, Huang F.Vanadium isotope fractionation of alkali basalts during mantle melting.Lithos 2023; 107082:442-443.
[23]
Dong L, Wei W, Xu L, Lin Y, Liu Z, Pan S, et al.Vanadium isotope evidence for seawater contribution to V enrichment/mineralization in early Cambrian metalliferous black shales.Sci Bull 2024; 69:1006-1010.
[24]
Johnson TM, Jennifer D, Basu A, Jemison N, Wang XL, Kathrin S, et al.A review of the development of Cr, Se, U, Sb, and Te isotopes as indicators of redox reactions, contaminant fate, and contaminant transport in aqueous systems.W.W.S. Kenneth (Ed.), Isotopic constraints on earth system processes, John Wiley & Sons, New York City 2022; 237-269.
[25]
Ma C, Yu Z, Lu Q, Li Z, Zhou S.Anaerobic humus and Fe(III) reduction and electron transport pathway by a novel humus-reducing bacterium, Thauera humireducens SgZ-1.Appl Microbiol Biotechnol 2015; 99:3619-3628.
[26]
Fei Y, Zhang B, Chen D, Liu T, Dong H.The overlooked role of denitrifying bacteria in mediating vanadate reduction.Geochim Cosmochim Acta 2023; 361:67-81.
[27]
Deng J, Huang KH, An L, Hu CH, Ju SQ, Xiao N.Cloud point extraction and simultaneous spectrophotometric determination of V(V), Co(II) and Cu(II) ions in water samples by 5-Br-PADAP using partial least squares regression.J Radioanal Nucl Chem 2014; 300:835-842.
[28]
Bridgewater LL, Baird RB, Eaton AD, Rice EW.American public health association, In: Standard methods for the examination of water and wastewater. 23rd edition. Washington, DC: American Public Health Association; 2017.
[29]
Wang S, Zhang B, Fei Y, Liu H, Zhao Y, Guo H.Elucidating multiple electron-transfer pathways for metavanadate bioreduction by actinomycetic Streptomyces microflavus.Environ Sci Technol 2023; 57:19921-19931.
[30]
Qi YH, Wu F, Ionov DA, Puchtel IS, Carlson RW, Nicklas RW, et al.Vanadium isotope composition of the bulk silicate earth: constraints from peridotites and komatiites.Geochim Cosmochim Acta 2023; 259:288-301.
[31]
Wu F, Qi Y, Yu H, Tian S, Hou Z, Huang F.Vanadium isotope measurement by MC-ICP-MS.Chem Geol 2016; 421:17-25.
[32]
Wu F, Qi Y, Yu H, Tian S, Hou Z, Huang F.Coupled variations in V–Fe abundances and isotope compositions in latosols: implications for V mobilization during chemical weathering.Geochim Cosmochim Acta 2022; 320:26-40.
[33]
Prytulak J, Nielsen SG, Ionov DA, Halliday AN, Harvey J, Kelley KA, et al.The stable vanadium isotope composition of the mantle and mafic lavas.Earth Planet Sci Lett 2013; 365:177-189.
[34]
Zhang B, Li Y, Fei Y, Cheng Y.Novel pathway for vanadium (V) bio-detoxification by Gram-positive Lactococcus raffinolactis.Environ Sci Technol 2021; 55:2121-2131.
[35]
Zhou X, Kang F, Qu X, Fu H, Alvarez P, Tao S, et al.Role of extracellular polymeric substances in microbial reduction of arsenate to arsenite by Escherichia coli and Bacillus subtilis.Environ Sci Technol 2020; 54:6185-6193.
[36]
Elmouwahidi A, Bailón-García E, P AFérez-Cadenas, Fernández-Sáez N, Carrasco-Marín F.Development of Vanadium‐coated carbon microspheres: electrochemical behavior as electrodes for supercapacitors.Adv Funct Materials 2018; 28:1802337.
[37]
Zhao Y, Hsieh HS, Wang M, Jafvert CT.Light-independent redox reactions of graphene oxide in water: electron transfer from NADH through graphene oxide to molecular oxygen, producing reactive oxygen species.Carbon 2017; 123:216-222.
[38]
Henke AH, Laudadio ED, Orbeck JKH, Tamijani AA, Hoang KNL, Mason SE, et al.Reciprocal redox interactions of lithium cobalt oxide nanoparticles with nicotinamide adenine dinucleotide (NADH) and glutathione (GSH): toward a mechanistic understanding of nanoparticle-biological interactions.Environ Sci Nano 2021; 8:1749-1760.
[39]
Carpentier W, Sandra K, De Smet I, Brig Aé, De Smet L, Van Beeumen J.Microbial reduction and precipitation of vanadium by Shewanella oneidensis.Appl Environ Microbiol 2003; 69:3636-3639.
[40]
Islam MK, Tsuboya C, Kusaka H, Aizawa S, Ueki T, Michibata H, et al.Reduction of vanadium (V) to vanadium (IV) by NADPH, and vanadium (IV) to vanadium (III) by cysteine methyl ester in the presence of biologically relevant ligands.BBA-Gen Subjects 2007; 1770:1212-1218.
[41]
Kretzschmar J, Strobel A, Haubitz T, Drobot B, Steudtner R, Barkleit A, et al.Uranium(VI) complexes of glutathione disulfide forming in aqueous solution.Inorg Chem 2020; 59:4244-4254.
[42]
Zheng X, Zhao B, Liu C.Bio-reduction mechanism of V(V) by thermophilic hydrogen-producing bacteria under acidic conditions.Environ Sci Wat Res 2021; 7:1657-1665.
[43]
Maiti M, Murali VP, Selvakumar D, Podder A, Maiti KK, Bhuniya S.NADH-induced “kick-on” fluorescent probe validates crosstalk with redox regulator GSH.Sens Actuators B Chem 2019; 299:126964.
[44]
Newman DK, Kolter RA.Role for excreted quinones in extracellular electron transfer.Nature 2000; 405:94-97.
[45]
Kar P, Tatard F, Lamblin G, Banet P, Aubert PH, Plesse C, et al.Silver nanoparticles to improve electron transfer at interfaces of gold electrodes modified by biotin or avidin.J Electroanal 2013; 692:17-25.
[46]
Zhang B, Song W, Pang P, Lai H, Chen Q, Zhang P, et al.Role of contacts in long-range protein conductance.Proc Natl Acad Sci 2019; 116:5886-5891.
[47]
Light SH, Su L, Rivera-Lugo R, Cornejo JA, Louie A, Iavarone AT, et al.A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria.Nature 2018; 562:140-144.
[48]
Suzuki Y, Kitatsuji Y, Ohnuki T, Tsujimura S.Flavin mononucleotide mediated electron pathway for microbial U(VI) reduction.Phys Chem Chem Phys 2010; 12:10081-10087.
[49]
Huang Y, Long Z, Zhou D, Wang L, He P, Zhang G, et al.Fingerprinting vanadium in soils based on speciation characteristics and isotope compositions.Sci Total Environ 2021; 791:148240.
[50]
Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site.J Hazard Mater 2014;264:498–504.
[51]
Wiederhold JG.Metal stable isotope signatures as tracers in environmental geochemistry.Environ Sci Technol 2015; 49:2606-2624.
[52]
DePaolo DJ.Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions.Geochim Cosmochim Acta 2011; 75:1039-1056.
[53]
Basu A, Johnson TM, Sanford RA.Cr isotope fractionation factors for Cr (VI) reduction by a metabolically diverse group of bacteria.Geochim Cosmochim Acta 2014; 142:349-361.
[54]
Schilling K, Basu A, Wanner C, Sanford RA, Pallud C, Johnson TM, et al.Mass-dependent selenium isotopic fractionation during microbial reduction of seleno-oxyanions by phylogenetically diverse bacteria.Geochim Cosmochim Acta 2020; 276:274-288.
[55]
Han J, Chen G, Qin L, Mu Y.Metal respiratory pathway-independent Cr isotope fractionation during Cr(VI) reduction by Shewanella oneidensis MR-1.Environ Sci Technol Lett 2017; 4:500-504.
[56]
Wu S, Lu S, Liu J, Yang S, Yan Q, Jiang Z.Physicochemical properties and bioactivities of rice beans fermented by Bacillus amyloliquefaciens.Engineering 2021; 7:219-225.
[57]
Ma J, Wang F, Fan H, Li E, Chu H, Zhou X, et al.Metagenomic insight reveals the microbial structure and function of the full-scale coking wastewater treatment system: gene-based nitrogen removal.Engineering 2024; 36:76-89.
[58]
Wen H, Carignan J.Selenium isotopes trace the source and redox processes in the black shale-hosted Se-rich deposits in China.Geochim Cosmochim Acta 2011; 75:1411-1427.
AI Summary AI Mindmap
PDF(2335 KB)

Accesses

Citations

Detail

Sections
Recommended

/